Go to the documentation of this file.
4 #ifndef SOPHUS_TYPES_HPP
5 #define SOPHUS_TYPES_HPP
12 template <
class Scalar,
int M,
int Options = 0>
13 using Vector = Eigen::Matrix<Scalar, M, 1, Options>;
15 template <
class Scalar,
int Options = 0>
20 template <
class Scalar,
int Options = 0>
25 template <
class Scalar>
30 template <
class Scalar>
35 template <
class Scalar>
40 template <
class Scalar,
int M,
int N>
41 using Matrix = Eigen::Matrix<Scalar, M, N>;
43 template <
class Scalar>
48 template <
class Scalar>
53 template <
class Scalar>
58 template <
class Scalar>
63 template <
class Scalar>
68 template <
class Scalar,
int N,
int Options = 0>
71 template <
class Scalar,
int Options = 0>
76 template <
class Scalar,
int Options = 0>
82 template <
class Scalar>
85 static Scalar
impl(Scalar s0, Scalar s1) {
91 template <
class Scalar,
int M,
int N>
96 return (p0 - p1).template lpNorm<Eigen::Infinity>();
100 template <
class Scalar>
103 static void impl(Scalar& s) { s = Scalar(0); }
106 template <
class Scalar,
int M,
int N>
112 template <
class T1,
class Scalar>
115 template <
class Scalar>
118 static void impl(Scalar& s, Scalar value,
int at) {
124 template <
class Scalar,
int N>
133 template <
class Scalar>
136 static Scalar
impl(Scalar
const& s) {
return s * s; }
139 template <
class Scalar,
int N>
145 template <
class Scalar>
148 static Scalar
impl(Scalar
const& s) {
return s; }
151 template <
class Scalar,
int M,
int N>
155 return s.transpose();
179 template <
class T,
class Scalar>
199 template <
class Scalar>
201 static bool const value = std::is_floating_point<Scalar>::value;
204 template <
class Scalar,
int M,
int N>
206 static bool const value = std::is_floating_point<Scalar>::value;
209 template <
class Scalar_>
214 template <
class Scalar_,
int M,
int N>
221 template <
typename Vector,
int NumDimensions,
222 typename =
typename std::enable_if<
223 Vector::RowsAtCompileTime == NumDimensions &&
224 Vector::ColsAtCompileTime == 1>::type>
235 using Line2 = Eigen::Hyperplane<T, 2>;
241 #endif // SOPHUS_TYPES_HPP
Vector7< float > Vector7f
Matrix6< float > Matrix6f
Vector6< double > Vector6d
Matrix4< float > Matrix4f
Vector7< double > Vector7d
void setElementAt(T &p, Scalar value, int i)
ParametrizedLine2< float > ParametrizedLine2f
static void impl(Scalar &s)
Vector< Scalar, 3, Options > Vector3
Matrix4< double > Matrix4d
static Scalar impl(Scalar s0, Scalar s1)
static Scalar impl(Matrix< Scalar, N, 1 > const &s)
Matrix< Scalar, 2, 2 > Matrix2
#define SOPHUS_ENSURE(expr,...)
Matrix2< float > Matrix2f
Vector2< float > Vector2f
Vector< Scalar, 2, Options > Vector2
static Scalar impl(Scalar const &s)
Vector4< double > Vector4d
Matrix2< double > Matrix2d
Matrix3< double > Matrix3d
ParametrizedLine< Scalar, 3, Options > ParametrizedLine3
Matrix< Scalar, 7, 7 > Matrix7
static Scalar impl(Scalar const &s)
static void impl(Vector< Scalar, N > &v, Scalar value, int at)
auto maxMetric(T const &p0, T const &p1) -> decltype(details::MaxMetric< T >::impl(p0, p1))
Vector3< double > Vector3d
static void impl(Matrix< Scalar, M, N > &v)
static Scalar impl(Matrix< Scalar, M, N > const &p0, Matrix< Scalar, M, N > const &p1)
Matrix7< float > Matrix7f
ParametrizedLine3< double > ParametrizedLine3d
Eigen::Matrix< Scalar, M, N > Matrix
Matrix7< double > Matrix7d
Vector2< double > Vector2d
auto transpose(T const &p) -> decltype(details::Transpose< T >::impl(T()))
Matrix< Scalar, 6, 6 > Matrix6
Eigen::Hyperplane< T, 3 > Plane3
Planes in 3d are hyperplanes.
Vector3< float > Vector3f
Vector< Scalar, 7 > Vector7
Vector< Scalar, 6 > Vector6
Matrix6< double > Matrix6d
static void impl(Scalar &s, Scalar value, int at)
ParametrizedLine2< double > ParametrizedLine2d
Eigen::Hyperplane< T, 2 > Line2
Lines in 2d are hyperplanes.
ParametrizedLine3< float > ParametrizedLine3f
Vector6< float > Vector6f
auto squaredNorm(T const &p) -> decltype(details::SquaredNorm< T >::impl(p))
Matrix< Scalar, 3, 3 > Matrix3
Matrix3< float > Matrix3f
Vector< Scalar, 4 > Vector4
Vector4< float > Vector4f
Eigen::Matrix< Scalar, M, 1, Options > Vector
Eigen::ParametrizedLine< Scalar, N, Options > ParametrizedLine
static Matrix< Scalar, M, N > impl(Matrix< Scalar, M, N > const &s)
ParametrizedLine< Scalar, 2, Options > ParametrizedLine2
Matrix< Scalar, 4, 4 > Matrix4
sophus
Author(s): Hauke Strasdat
autogenerated on Wed Mar 2 2022 01:01:48