This class maintains the representation of the environment as seen by a planning instance. The environment geometry, the robot geometry and state are maintained. More...
#include <planning_scene.h>
Classes | |
struct | CollisionDetector |
Public Member Functions | |
void | clearDiffs () |
Clear the diffs accumulated for this planning scene, with respect to the parent. This function is a no-op if there is no parent specified. More... | |
void | decoupleParent () |
Make sure that all the data maintained in this scene is local. All unmodified data is copied from the parent and the pointer to the parent is discarded. More... | |
PlanningScenePtr | diff () const |
Return a new child PlanningScene that uses this one as parent. More... | |
PlanningScenePtr | diff (const moveit_msgs::PlanningScene &msg) const |
Return a new child PlanningScene that uses this one as parent and has the diffs specified by msg applied. More... | |
bool | getAttachedCollisionObjectMsg (moveit_msgs::AttachedCollisionObject &attached_collision_obj, const std::string &ns) const |
Construct a message (attached_collision_object) with the attached collision object data from the planning_scene for the requested object. More... | |
void | getAttachedCollisionObjectMsgs (std::vector< moveit_msgs::AttachedCollisionObject > &attached_collision_objs) const |
Construct a vector of messages (attached_collision_objects) with the attached collision object data for all objects in planning_scene. More... | |
bool | getCollisionObjectMsg (moveit_msgs::CollisionObject &collision_obj, const std::string &ns) const |
Construct a message (collision_object) with the collision object data from the planning_scene for the requested object. More... | |
void | getCollisionObjectMsgs (std::vector< moveit_msgs::CollisionObject > &collision_objs) const |
Construct a vector of messages (collision_objects) with the collision object data for all objects in planning_scene. More... | |
void | getCostSources (const robot_trajectory::RobotTrajectory &trajectory, std::size_t max_costs, std::set< collision_detection::CostSource > &costs, double overlap_fraction=0.9) const |
Get the top max_costs cost sources for a specified trajectory. The resulting costs are stored in costs. More... | |
void | getCostSources (const robot_trajectory::RobotTrajectory &trajectory, std::size_t max_costs, const std::string &group_name, std::set< collision_detection::CostSource > &costs, double overlap_fraction=0.9) const |
Get the top max_costs cost sources for a specified trajectory, but only for group group_name. The resulting costs are stored in costs. More... | |
void | getCostSources (const robot_state::RobotState &state, std::size_t max_costs, std::set< collision_detection::CostSource > &costs) const |
Get the top max_costs cost sources for a specified state. The resulting costs are stored in costs. More... | |
void | getCostSources (const robot_state::RobotState &state, std::size_t max_costs, const std::string &group_name, std::set< collision_detection::CostSource > &costs) const |
Get the top max_costs cost sources for a specified state, but only for group group_name. The resulting costs are stored in costs. More... | |
const robot_state::RobotState & | getCurrentState () const |
Get the state at which the robot is assumed to be. More... | |
robot_state::RobotState & | getCurrentStateNonConst () |
Get the state at which the robot is assumed to be. More... | |
robot_state::RobotStatePtr | getCurrentStateUpdated (const moveit_msgs::RobotState &update) const |
Get a copy of the current state with components overwritten by the state message update. More... | |
void | getKnownObjectColors (ObjectColorMap &kc) const |
void | getKnownObjectTypes (ObjectTypeMap &kc) const |
const MotionFeasibilityFn & | getMotionFeasibilityPredicate () const |
Get the predicate that decides whether motion segments are considered valid or invalid for reasons beyond ones covered by collision checking and constraint evaluation. More... | |
const std::string & | getName () const |
Get the name of the planning scene. This is empty by default. More... | |
const std_msgs::ColorRGBA & | getObjectColor (const std::string &id) const |
void | getObjectColorMsgs (std::vector< moveit_msgs::ObjectColor > &object_colors) const |
Construct a vector of messages (object_colors) with the colors of the objects from the planning_scene. More... | |
const object_recognition_msgs::ObjectType & | getObjectType (const std::string &id) const |
bool | getOctomapMsg (octomap_msgs::OctomapWithPose &octomap) const |
Construct a message (octomap) with the octomap data from the planning_scene. More... | |
const PlanningSceneConstPtr & | getParent () const |
Get the parent scene (whith respect to which the diffs are maintained). This may be empty. More... | |
void | getPlanningSceneDiffMsg (moveit_msgs::PlanningScene &scene) const |
Fill the message scene with the differences between this instance of PlanningScene with respect to the parent. If there is no parent, everything is considered to be a diff and the function behaves like getPlanningSceneMsg() More... | |
void | getPlanningSceneMsg (moveit_msgs::PlanningScene &scene) const |
Construct a message (scene) with all the necessary data so that the scene can be later reconstructed to be exactly the same using setPlanningSceneMsg() More... | |
void | getPlanningSceneMsg (moveit_msgs::PlanningScene &scene, const moveit_msgs::PlanningSceneComponents &comp) const |
Construct a message (scene) with the data requested in comp. If all options in comp are filled, this will be a complete planning scene message. More... | |
const robot_model::RobotModelConstPtr & | getRobotModel () const |
Get the kinematic model for which the planning scene is maintained. More... | |
const StateFeasibilityFn & | getStateFeasibilityPredicate () const |
Get the predicate that decides whether states are considered valid or invalid for reasons beyond ones covered by collision checking and constraint evaluation. More... | |
bool | hasObjectColor (const std::string &id) const |
bool | hasObjectType (const std::string &id) const |
bool | isPathValid (const moveit_msgs::RobotState &start_state, const moveit_msgs::RobotTrajectory &trajectory, const std::string &group="", bool verbose=false, std::vector< std::size_t > *invalid_index=NULL) const |
Check if a given path is valid. Each state is checked for validity (collision avoidance and feasibility) More... | |
bool | isPathValid (const moveit_msgs::RobotState &start_state, const moveit_msgs::RobotTrajectory &trajectory, const moveit_msgs::Constraints &path_constraints, const std::string &group="", bool verbose=false, std::vector< std::size_t > *invalid_index=NULL) const |
Check if a given path is valid. Each state is checked for validity (collision avoidance, feasibility and constraint satisfaction). It is also checked that the goal constraints are satisfied by the last state on the passed in trajectory. More... | |
bool | isPathValid (const moveit_msgs::RobotState &start_state, const moveit_msgs::RobotTrajectory &trajectory, const moveit_msgs::Constraints &path_constraints, const moveit_msgs::Constraints &goal_constraints, const std::string &group="", bool verbose=false, std::vector< std::size_t > *invalid_index=NULL) const |
Check if a given path is valid. Each state is checked for validity (collision avoidance, feasibility and constraint satisfaction). It is also checked that the goal constraints are satisfied by the last state on the passed in trajectory. More... | |
bool | isPathValid (const moveit_msgs::RobotState &start_state, const moveit_msgs::RobotTrajectory &trajectory, const moveit_msgs::Constraints &path_constraints, const std::vector< moveit_msgs::Constraints > &goal_constraints, const std::string &group="", bool verbose=false, std::vector< std::size_t > *invalid_index=NULL) const |
Check if a given path is valid. Each state is checked for validity (collision avoidance, feasibility and constraint satisfaction). It is also checked that the goal constraints are satisfied by the last state on the passed in trajectory. More... | |
bool | isPathValid (const robot_trajectory::RobotTrajectory &trajectory, const moveit_msgs::Constraints &path_constraints, const std::vector< moveit_msgs::Constraints > &goal_constraints, const std::string &group="", bool verbose=false, std::vector< std::size_t > *invalid_index=NULL) const |
Check if a given path is valid. Each state is checked for validity (collision avoidance, feasibility and constraint satisfaction). It is also checked that the goal constraints are satisfied by the last state on the passed in trajectory. More... | |
bool | isPathValid (const robot_trajectory::RobotTrajectory &trajectory, const moveit_msgs::Constraints &path_constraints, const moveit_msgs::Constraints &goal_constraints, const std::string &group="", bool verbose=false, std::vector< std::size_t > *invalid_index=NULL) const |
Check if a given path is valid. Each state is checked for validity (collision avoidance, feasibility and constraint satisfaction). It is also checked that the goal constraints are satisfied by the last state on the passed in trajectory. More... | |
bool | isPathValid (const robot_trajectory::RobotTrajectory &trajectory, const moveit_msgs::Constraints &path_constraints, const std::string &group="", bool verbose=false, std::vector< std::size_t > *invalid_index=NULL) const |
Check if a given path is valid. Each state is checked for validity (collision avoidance, feasibility and constraint satisfaction). More... | |
bool | isPathValid (const robot_trajectory::RobotTrajectory &trajectory, const std::string &group="", bool verbose=false, std::vector< std::size_t > *invalid_index=NULL) const |
Check if a given path is valid. Each state is checked for validity (collision avoidance and feasibility) More... | |
bool | isStateConstrained (const moveit_msgs::RobotState &state, const moveit_msgs::Constraints &constr, bool verbose=false) const |
Check if a given state satisfies a set of constraints. More... | |
bool | isStateConstrained (const robot_state::RobotState &state, const moveit_msgs::Constraints &constr, bool verbose=false) const |
Check if a given state satisfies a set of constraints. More... | |
bool | isStateConstrained (const moveit_msgs::RobotState &state, const kinematic_constraints::KinematicConstraintSet &constr, bool verbose=false) const |
Check if a given state satisfies a set of constraints. More... | |
bool | isStateConstrained (const robot_state::RobotState &state, const kinematic_constraints::KinematicConstraintSet &constr, bool verbose=false) const |
Check if a given state satisfies a set of constraints. More... | |
bool | isStateFeasible (const moveit_msgs::RobotState &state, bool verbose=false) const |
Check if a given state is feasible, in accordance to the feasibility predicate specified by setStateFeasibilityPredicate(). Returns true if no feasibility predicate was specified. More... | |
bool | isStateFeasible (const robot_state::RobotState &state, bool verbose=false) const |
Check if a given state is feasible, in accordance to the feasibility predicate specified by setStateFeasibilityPredicate(). Returns true if no feasibility predicate was specified. More... | |
bool | isStateValid (const moveit_msgs::RobotState &state, const std::string &group="", bool verbose=false) const |
Check if a given state is valid. This means checking for collisions and feasibility. More... | |
bool | isStateValid (const robot_state::RobotState &state, const std::string &group="", bool verbose=false) const |
Check if a given state is valid. This means checking for collisions and feasibility. More... | |
bool | isStateValid (const moveit_msgs::RobotState &state, const moveit_msgs::Constraints &constr, const std::string &group="", bool verbose=false) const |
Check if a given state is valid. This means checking for collisions, feasibility and whether the user specified validity conditions hold as well. More... | |
bool | isStateValid (const robot_state::RobotState &state, const moveit_msgs::Constraints &constr, const std::string &group="", bool verbose=false) const |
Check if a given state is valid. This means checking for collisions, feasibility and whether the user specified validity conditions hold as well. More... | |
bool | isStateValid (const robot_state::RobotState &state, const kinematic_constraints::KinematicConstraintSet &constr, const std::string &group="", bool verbose=false) const |
Check if a given state is valid. This means checking for collisions, feasibility and whether the user specified validity conditions hold as well. More... | |
void | loadGeometryFromStream (std::istream &in) |
Load the geometry of the planning scene from a stream. More... | |
void | loadGeometryFromStream (std::istream &in, const Eigen::Affine3d &offset) |
Load the geometry of the planning scene from a stream at a certain location using offset. More... | |
PlanningScene (const robot_model::RobotModelConstPtr &robot_model, collision_detection::WorldPtr world=collision_detection::WorldPtr(new collision_detection::World())) | |
construct using an existing RobotModel More... | |
PlanningScene (const urdf::ModelInterfaceSharedPtr &urdf_model, const srdf::ModelConstSharedPtr &srdf_model, collision_detection::WorldPtr world=collision_detection::WorldPtr(new collision_detection::World())) | |
construct using a urdf and srdf. A RobotModel for the PlanningScene will be created using the urdf and srdf. More... | |
void | printKnownObjects (std::ostream &out) const |
Outputs debug information about the planning scene contents. More... | |
bool | processAttachedCollisionObjectMsg (const moveit_msgs::AttachedCollisionObject &object) |
bool | processCollisionObjectMsg (const moveit_msgs::CollisionObject &object) |
void | processOctomapMsg (const octomap_msgs::OctomapWithPose &map) |
void | processOctomapMsg (const octomap_msgs::Octomap &map) |
void | processOctomapPtr (const std::shared_ptr< const octomap::OcTree > &octree, const Eigen::Affine3d &t) |
bool | processPlanningSceneWorldMsg (const moveit_msgs::PlanningSceneWorld &world) |
void | pushDiffs (const PlanningScenePtr &scene) |
If there is a parent specified for this scene, then the diffs with respect to that parent are applied to a specified planning scene, whatever that scene may be. If there is no parent specified, this function is a no-op. More... | |
void | removeAllCollisionObjects () |
Clear all collision objects in planning scene. More... | |
void | removeObjectColor (const std::string &id) |
void | removeObjectType (const std::string &id) |
void | saveGeometryToStream (std::ostream &out) const |
Save the geometry of the planning scene to a stream, as plain text. More... | |
void | setAttachedBodyUpdateCallback (const robot_state::AttachedBodyCallback &callback) |
Set the callback to be triggered when changes are made to the current scene state. More... | |
void | setCollisionObjectUpdateCallback (const collision_detection::World::ObserverCallbackFn &callback) |
Set the callback to be triggered when changes are made to the current scene world. More... | |
void | setCurrentState (const moveit_msgs::RobotState &state) |
Set the current robot state to be state. If not all joint values are specified, the previously maintained joint values are kept. More... | |
void | setCurrentState (const robot_state::RobotState &state) |
Set the current robot state. More... | |
void | setMotionFeasibilityPredicate (const MotionFeasibilityFn &fn) |
Specify a predicate that decides whether motion segments are considered valid or invalid for reasons beyond ones covered by collision checking and constraint evaluation. More... | |
void | setName (const std::string &name) |
Set the name of the planning scene. More... | |
void | setObjectColor (const std::string &id, const std_msgs::ColorRGBA &color) |
void | setObjectType (const std::string &id, const object_recognition_msgs::ObjectType &type) |
bool | setPlanningSceneDiffMsg (const moveit_msgs::PlanningScene &scene) |
Apply changes to this planning scene as diffs, even if the message itself is not marked as being a diff (is_diff member). A parent is not required to exist. However, the existing data in the planning instance is not cleared. Data from the message is only appended (and in cases such as e.g., the robot state, is overwritten). More... | |
bool | setPlanningSceneMsg (const moveit_msgs::PlanningScene &scene) |
Set this instance of a planning scene to be the same as the one serialized in the scene message, even if the message itself is marked as being a diff (is_diff member) More... | |
void | setStateFeasibilityPredicate (const StateFeasibilityFn &fn) |
Specify a predicate that decides whether states are considered valid or invalid for reasons beyond ones covered by collision checking and constraint evaluation. This is useful for setting up problem specific constraints (e.g., stability) More... | |
bool | usePlanningSceneMsg (const moveit_msgs::PlanningScene &scene) |
Call setPlanningSceneMsg() or setPlanningSceneDiffMsg() depending on how the is_diff member of the message is set. More... | |
~PlanningScene () | |
Reasoning about frames | |
const std::string & | getPlanningFrame () const |
Get the frame in which planning is performed. More... | |
const robot_state::Transforms & | getTransforms () const |
Get the set of fixed transforms from known frames to the planning frame. More... | |
const robot_state::Transforms & | getTransforms () |
Get the set of fixed transforms from known frames to the planning frame. This variant is non-const and also updates the current state. More... | |
robot_state::Transforms & | getTransformsNonConst () |
Get the set of fixed transforms from known frames to the planning frame. More... | |
const Eigen::Affine3d & | getFrameTransform (const std::string &id) const |
Get the transform corresponding to the frame id. This will be known if id is a link name, an attached body id or a collision object. Return identity when no transform is available. Use knowsFrameTransform() to test if this function will be successful or not. More... | |
const Eigen::Affine3d & | getFrameTransform (const std::string &id) |
Get the transform corresponding to the frame id. This will be known if id is a link name, an attached body id or a collision object. Return identity when no transform is available. Use knowsFrameTransform() to test if this function will be successful or not. Because this function is non-const, the current state transforms are also updated, if needed. More... | |
const Eigen::Affine3d & | getFrameTransform (robot_state::RobotState &state, const std::string &id) const |
Get the transform corresponding to the frame id. This will be known if id is a link name, an attached body id or a collision object. Return identity when no transform is available. Use knowsFrameTransform() to test if this function will be successful or not. This function also updates the link transforms of state. More... | |
const Eigen::Affine3d & | getFrameTransform (const robot_state::RobotState &state, const std::string &id) const |
Get the transform corresponding to the frame id. This will be known if id is a link name, an attached body id or a collision object. Return identity when no transform is available. Use knowsFrameTransform() to test if this function will be successful or not. More... | |
bool | knowsFrameTransform (const std::string &id) const |
Check if a transform to the frame id is known. This will be known if id is a link name, an attached body id or a collision object. More... | |
bool | knowsFrameTransform (const robot_state::RobotState &state, const std::string &id) const |
Check if a transform to the frame id is known. This will be known if id is a link name, an attached body id or a collision object. More... | |
Reasoning about the geometry of the planning scene | |
void | addCollisionDetector (const collision_detection::CollisionDetectorAllocatorPtr &allocator) |
Add a new collision detector type. More... | |
void | setActiveCollisionDetector (const collision_detection::CollisionDetectorAllocatorPtr &allocator, bool exclusive=false) |
Set the type of collision detector to use. Calls addCollisionDetector() to add it if it has not already been added. More... | |
bool | setActiveCollisionDetector (const std::string &collision_detector_name) |
Set the type of collision detector to use. This type must have already been added with addCollisionDetector(). More... | |
const std::string & | getActiveCollisionDetectorName () const |
void | getCollisionDetectorNames (std::vector< std::string > &names) const |
get the types of collision detector that have already been added. These are the types which can be passed to setActiveCollisionDetector(). More... | |
const collision_detection::WorldConstPtr & | getWorld () const |
Get the representation of the world. More... | |
const collision_detection::WorldPtr & | getWorldNonConst () |
const collision_detection::CollisionWorldConstPtr & | getCollisionWorld () const |
Get the active collision detector for the world. More... | |
const collision_detection::CollisionRobotConstPtr & | getCollisionRobot () const |
Get the active collision detector for the robot. More... | |
const collision_detection::CollisionRobotConstPtr & | getCollisionRobotUnpadded () const |
Get the active collision detector for the robot. More... | |
const collision_detection::CollisionWorldConstPtr & | getCollisionWorld (const std::string &collision_detector_name) const |
Get a specific collision detector for the world. If not found return active CollisionWorld. More... | |
const collision_detection::CollisionRobotConstPtr & | getCollisionRobot (const std::string &collision_detector_name) const |
Get a specific collision detector for the padded robot. If no found return active CollisionRobot. More... | |
const collision_detection::CollisionRobotConstPtr & | getCollisionRobotUnpadded (const std::string &collision_detector_name) const |
Get a specific collision detector for the unpadded robot. If no found return active unpadded CollisionRobot. More... | |
const collision_detection::CollisionRobotPtr & | getCollisionRobotNonConst () |
Get the representation of the collision robot This can be used to set padding and link scale on the active collision_robot. NOTE: After modifying padding and scale on the active robot call propogateRobotPadding() to copy it to all the other collision detectors. More... | |
void | propogateRobotPadding () |
Copy scale and padding from active CollisionRobot to other CollisionRobots. This should be called after any changes are made to the scale or padding of the active CollisionRobot. This has no effect on the unpadded CollisionRobots. More... | |
const collision_detection::AllowedCollisionMatrix & | getAllowedCollisionMatrix () const |
Get the allowed collision matrix. More... | |
collision_detection::AllowedCollisionMatrix & | getAllowedCollisionMatrixNonConst () |
Get the allowed collision matrix. More... | |
Collision checking with respect to this planning scene | |
bool | isStateColliding (const std::string &group="", bool verbose=false) |
Check if the current state is in collision (with the environment or self collision). If a group name is specified, collision checking is done for that group only. Since the function is non-const, the current state transforms are updated before the collision check. More... | |
bool | isStateColliding (const std::string &group="", bool verbose=false) const |
Check if the current state is in collision (with the environment or self collision). If a group name is specified, collision checking is done for that group only. It is expected the current state transforms are up to date. More... | |
bool | isStateColliding (robot_state::RobotState &state, const std::string &group="", bool verbose=false) const |
Check if a given state is in collision (with the environment or self collision) If a group name is specified, collision checking is done for that group only. The link transforms for state are updated before the collision check. More... | |
bool | isStateColliding (const robot_state::RobotState &state, const std::string &group="", bool verbose=false) const |
Check if a given state is in collision (with the environment or self collision) If a group name is specified, collision checking is done for that group only. It is expected that the link transforms of state are up to date. More... | |
bool | isStateColliding (const moveit_msgs::RobotState &state, const std::string &group="", bool verbose=false) const |
Check if a given state is in collision (with the environment or self collision) If a group name is specified, collision checking is done for that group only. More... | |
void | checkCollision (const collision_detection::CollisionRequest &req, collision_detection::CollisionResult &res) |
Check whether the current state is in collision, and if needed, updates the collision transforms of the current state before the computation. More... | |
void | checkCollision (const collision_detection::CollisionRequest &req, collision_detection::CollisionResult &res) const |
Check whether the current state is in collision. The current state is expected to be updated. More... | |
void | checkCollision (const collision_detection::CollisionRequest &req, collision_detection::CollisionResult &res, robot_state::RobotState &kstate) const |
Check whether a specified state (kstate) is in collision. This variant of the function takes a non-const kstate and calls updateCollisionBodyTransforms() on it. More... | |
void | checkCollision (const collision_detection::CollisionRequest &req, collision_detection::CollisionResult &res, const robot_state::RobotState &kstate) const |
Check whether a specified state (kstate) is in collision. The collision transforms of kstate are expected to be up to date. More... | |
void | checkCollision (const collision_detection::CollisionRequest &req, collision_detection::CollisionResult &res, robot_state::RobotState &kstate, const collision_detection::AllowedCollisionMatrix &acm) const |
Check whether a specified state (kstate) is in collision, with respect to a given allowed collision matrix (acm). This variant of the function takes a non-const kstate and updates its link transforms if needed. More... | |
void | checkCollision (const collision_detection::CollisionRequest &req, collision_detection::CollisionResult &res, const robot_state::RobotState &kstate, const collision_detection::AllowedCollisionMatrix &acm) const |
Check whether a specified state (kstate) is in collision, with respect to a given allowed collision matrix (acm). More... | |
void | checkCollisionUnpadded (const collision_detection::CollisionRequest &req, collision_detection::CollisionResult &res) |
Check whether the current state is in collision, but use a collision_detection::CollisionRobot instance that has no padding. Since the function is non-const, the current state transforms are also updated if needed. More... | |
void | checkCollisionUnpadded (const collision_detection::CollisionRequest &req, collision_detection::CollisionResult &res) const |
Check whether the current state is in collision, but use a collision_detection::CollisionRobot instance that has no padding. More... | |
void | checkCollisionUnpadded (const collision_detection::CollisionRequest &req, collision_detection::CollisionResult &res, const robot_state::RobotState &kstate) const |
Check whether a specified state (kstate) is in collision, but use a collision_detection::CollisionRobot instance that has no padding. More... | |
void | checkCollisionUnpadded (const collision_detection::CollisionRequest &req, collision_detection::CollisionResult &res, robot_state::RobotState &kstate) const |
Check whether a specified state (kstate) is in collision, but use a collision_detection::CollisionRobot instance that has no padding. Update the link transforms of kstate if needed. More... | |
void | checkCollisionUnpadded (const collision_detection::CollisionRequest &req, collision_detection::CollisionResult &res, robot_state::RobotState &kstate, const collision_detection::AllowedCollisionMatrix &acm) const |
Check whether a specified state (kstate) is in collision, with respect to a given allowed collision matrix (acm), but use a collision_detection::CollisionRobot instance that has no padding. This variant of the function takes a non-const kstate and calls updates the link transforms if needed. More... | |
void | checkCollisionUnpadded (const collision_detection::CollisionRequest &req, collision_detection::CollisionResult &res, const robot_state::RobotState &kstate, const collision_detection::AllowedCollisionMatrix &acm) const |
Check whether a specified state (kstate) is in collision, with respect to a given allowed collision matrix (acm), but use a collision_detection::CollisionRobot instance that has no padding. More... | |
void | checkSelfCollision (const collision_detection::CollisionRequest &req, collision_detection::CollisionResult &res) |
Check whether the current state is in self collision. More... | |
void | checkSelfCollision (const collision_detection::CollisionRequest &req, collision_detection::CollisionResult &res) const |
Check whether the current state is in self collision. More... | |
void | checkSelfCollision (const collision_detection::CollisionRequest &req, collision_detection::CollisionResult &res, robot_state::RobotState &kstate) const |
Check whether a specified state (kstate) is in self collision. More... | |
void | checkSelfCollision (const collision_detection::CollisionRequest &req, collision_detection::CollisionResult &res, const robot_state::RobotState &kstate) const |
Check whether a specified state (kstate) is in self collision. More... | |
void | checkSelfCollision (const collision_detection::CollisionRequest &req, collision_detection::CollisionResult &res, robot_state::RobotState &kstate, const collision_detection::AllowedCollisionMatrix &acm) const |
Check whether a specified state (kstate) is in self collision, with respect to a given allowed collision matrix (acm). The link transforms of kstate are updated if needed. More... | |
void | checkSelfCollision (const collision_detection::CollisionRequest &req, collision_detection::CollisionResult &res, const robot_state::RobotState &kstate, const collision_detection::AllowedCollisionMatrix &acm) const |
Check whether a specified state (kstate) is in self collision, with respect to a given allowed collision matrix (acm) More... | |
void | getCollidingLinks (std::vector< std::string > &links) |
Get the names of the links that are involved in collisions for the current state. More... | |
void | getCollidingLinks (std::vector< std::string > &links) const |
Get the names of the links that are involved in collisions for the current state. More... | |
void | getCollidingLinks (std::vector< std::string > &links, robot_state::RobotState &kstate) const |
Get the names of the links that are involved in collisions for the state kstate. Update the link transforms for kstate if needed. More... | |
void | getCollidingLinks (std::vector< std::string > &links, const robot_state::RobotState &kstate) const |
Get the names of the links that are involved in collisions for the state kstate. More... | |
void | getCollidingLinks (std::vector< std::string > &links, robot_state::RobotState &kstate, const collision_detection::AllowedCollisionMatrix &acm) const |
Get the names of the links that are involved in collisions for the state kstate given the allowed collision matrix (acm) More... | |
void | getCollidingLinks (std::vector< std::string > &links, const robot_state::RobotState &kstate, const collision_detection::AllowedCollisionMatrix &acm) const |
Get the names of the links that are involved in collisions for the state kstate given the allowed collision matrix (acm) More... | |
void | getCollidingPairs (collision_detection::CollisionResult::ContactMap &contacts) |
Get the names of the links that are involved in collisions for the current state. Update the link transforms for the current state if needed. More... | |
void | getCollidingPairs (collision_detection::CollisionResult::ContactMap &contacts) const |
Get the names of the links that are involved in collisions for the current state. More... | |
void | getCollidingPairs (collision_detection::CollisionResult::ContactMap &contacts, const robot_state::RobotState &kstate) const |
Get the names of the links that are involved in collisions for the state kstate. More... | |
void | getCollidingPairs (collision_detection::CollisionResult::ContactMap &contacts, robot_state::RobotState &kstate) const |
Get the names of the links that are involved in collisions for the state kstate. Update the link transforms for kstate if needed. More... | |
void | getCollidingPairs (collision_detection::CollisionResult::ContactMap &contacts, robot_state::RobotState &kstate, const collision_detection::AllowedCollisionMatrix &acm) const |
Get the names of the links that are involved in collisions for the state kstate given the allowed collision matrix (acm). Update the link transforms for kstate if needed. More... | |
void | getCollidingPairs (collision_detection::CollisionResult::ContactMap &contacts, const robot_state::RobotState &kstate, const collision_detection::AllowedCollisionMatrix &acm) const |
Get the names of the links that are involved in collisions for the state kstate given the allowed collision matrix (acm) More... | |
Distance computation | |
double | distanceToCollision (robot_state::RobotState &kstate) const |
The distance between the robot model at state kstate to the nearest collision (ignoring self-collisions) More... | |
double | distanceToCollision (const robot_state::RobotState &kstate) const |
The distance between the robot model at state kstate to the nearest collision (ignoring self-collisions) More... | |
double | distanceToCollisionUnpadded (robot_state::RobotState &kstate) const |
The distance between the robot model at state kstate to the nearest collision (ignoring self-collisions), if the robot has no padding. More... | |
double | distanceToCollisionUnpadded (const robot_state::RobotState &kstate) const |
The distance between the robot model at state kstate to the nearest collision (ignoring self-collisions), if the robot has no padding. More... | |
double | distanceToCollision (robot_state::RobotState &kstate, const collision_detection::AllowedCollisionMatrix &acm) const |
The distance between the robot model at state kstate to the nearest collision, ignoring self-collisions and elements that are allowed to collide. More... | |
double | distanceToCollision (const robot_state::RobotState &kstate, const collision_detection::AllowedCollisionMatrix &acm) const |
The distance between the robot model at state kstate to the nearest collision, ignoring self-collisions and elements that are allowed to collide. More... | |
double | distanceToCollisionUnpadded (robot_state::RobotState &kstate, const collision_detection::AllowedCollisionMatrix &acm) const |
The distance between the robot model at state kstate to the nearest collision, ignoring self-collisions and elements that are allowed to collide, if the robot has no padding. More... | |
double | distanceToCollisionUnpadded (const robot_state::RobotState &kstate, const collision_detection::AllowedCollisionMatrix &acm) const |
The distance between the robot model at state kstate to the nearest collision, ignoring self-collisions and elements that always allowed to collide, if the robot has no padding. More... | |
Static Public Member Functions | |
static PlanningScenePtr | clone (const PlanningSceneConstPtr &scene) |
Clone a planning scene. Even if the scene scene depends on a parent, the cloned scene will not. More... | |
static bool | isEmpty (const moveit_msgs::PlanningScene &msg) |
Check if a message includes any information about a planning scene, or it is just a default, empty message. More... | |
static bool | isEmpty (const moveit_msgs::PlanningSceneWorld &msg) |
Check if a message includes any information about a planning scene world, or it is just a default, empty message. More... | |
static bool | isEmpty (const moveit_msgs::RobotState &msg) |
Check if a message includes any information about a robot state, or it is just a default, empty message. More... | |
Static Public Attributes | |
static const std::string | DEFAULT_SCENE_NAME = "(noname)" |
static const std::string | OCTOMAP_NS = "<octomap>" |
Private Types | |
typedef std::map< std::string, CollisionDetectorPtr >::const_iterator | CollisionDetectorConstIterator |
typedef std::map< std::string, CollisionDetectorPtr >::iterator | CollisionDetectorIterator |
Private Member Functions | |
void | allocateCollisionDetectors () |
void | allocateCollisionDetectors (CollisionDetector &detector) |
void | initialize () |
MOVEIT_STRUCT_FORWARD (CollisionDetector) | |
PlanningScene (const PlanningSceneConstPtr &parent) | |
Static Private Member Functions | |
static robot_model::RobotModelPtr | createRobotModel (const urdf::ModelInterfaceSharedPtr &urdf_model, const srdf::ModelConstSharedPtr &srdf_model) |
Private Attributes | |
collision_detection::AllowedCollisionMatrixPtr | acm_ |
CollisionDetectorPtr | active_collision_ |
std::map< std::string, CollisionDetectorPtr > | collision_ |
robot_state::AttachedBodyCallback | current_state_attached_body_callback_ |
collision_detection::World::ObserverCallbackFn | current_world_object_update_callback_ |
collision_detection::World::ObserverHandle | current_world_object_update_observer_handle_ |
robot_state::TransformsPtr | ftf_ |
robot_model::RobotModelConstPtr | kmodel_ |
robot_state::RobotStatePtr | kstate_ |
MotionFeasibilityFn | motion_feasibility_ |
std::string | name_ |
std::unique_ptr< ObjectColorMap > | object_colors_ |
std::unique_ptr< ObjectTypeMap > | object_types_ |
PlanningSceneConstPtr | parent_ |
StateFeasibilityFn | state_feasibility_ |
collision_detection::WorldPtr | world_ |
collision_detection::WorldConstPtr | world_const_ |
collision_detection::WorldDiffPtr | world_diff_ |
Friends | |
struct | CollisionDetector |
This class maintains the representation of the environment as seen by a planning instance. The environment geometry, the robot geometry and state are maintained.
Definition at line 87 of file planning_scene.h.
|
private |
Definition at line 994 of file planning_scene.h.
|
private |
Definition at line 993 of file planning_scene.h.
planning_scene::PlanningScene::PlanningScene | ( | const robot_model::RobotModelConstPtr & | robot_model, |
collision_detection::WorldPtr | world = collision_detection::WorldPtr(new collision_detection::World()) |
||
) |
construct using an existing RobotModel
Definition at line 122 of file planning_scene.cpp.
planning_scene::PlanningScene::PlanningScene | ( | const urdf::ModelInterfaceSharedPtr & | urdf_model, |
const srdf::ModelConstSharedPtr & | srdf_model, | ||
collision_detection::WorldPtr | world = collision_detection::WorldPtr(new collision_detection::World()) |
||
) |
construct using a urdf and srdf. A RobotModel for the PlanningScene will be created using the urdf and srdf.
Definition at line 128 of file planning_scene.cpp.
planning_scene::PlanningScene::~PlanningScene | ( | ) |
Definition at line 145 of file planning_scene.cpp.
|
private |
Definition at line 184 of file planning_scene.cpp.
void planning_scene::PlanningScene::addCollisionDetector | ( | const collision_detection::CollisionDetectorAllocatorPtr & | allocator | ) |
Add a new collision detector type.
A collision detector type is specified with (a shared pointer to) an allocator which is a subclass of CollisionDetectorAllocator. This identifies a combination of CollisionWorld/CollisionRobot which can ve used together.
This does nothing if this type of collision detector has already been added.
A new PlanningScene contains an FCL collision detector. This FCL collision detector will always be available unless it is removed by calling setActiveCollisionDetector() with exclusive=true.
example: to add FCL collision detection (normally not necessary) call planning_scene->addCollisionDetector(collision_detection::CollisionDetectorAllocatorFCL::create());
Definition at line 278 of file planning_scene.cpp.
|
private |
|
private |
void planning_scene::PlanningScene::checkCollision | ( | const collision_detection::CollisionRequest & | req, |
collision_detection::CollisionResult & | res | ||
) |
Check whether the current state is in collision, and if needed, updates the collision transforms of the current state before the computation.
Definition at line 516 of file planning_scene.cpp.
|
inline |
Check whether the current state is in collision. The current state is expected to be updated.
Definition at line 389 of file planning_scene.h.
|
inline |
Check whether a specified state (kstate) is in collision. This variant of the function takes a non-const kstate and calls updateCollisionBodyTransforms() on it.
Definition at line 396 of file planning_scene.h.
void planning_scene::PlanningScene::checkCollision | ( | const collision_detection::CollisionRequest & | req, |
collision_detection::CollisionResult & | res, | ||
const robot_state::RobotState & | kstate | ||
) | const |
Check whether a specified state (kstate) is in collision. The collision transforms of kstate are expected to be up to date.
Definition at line 525 of file planning_scene.cpp.
|
inline |
Check whether a specified state (kstate) is in collision, with respect to a given allowed collision matrix (acm). This variant of the function takes a non-const kstate and updates its link transforms if needed.
Definition at line 411 of file planning_scene.h.
void planning_scene::PlanningScene::checkCollision | ( | const collision_detection::CollisionRequest & | req, |
collision_detection::CollisionResult & | res, | ||
const robot_state::RobotState & | kstate, | ||
const collision_detection::AllowedCollisionMatrix & | acm | ||
) | const |
Check whether a specified state (kstate) is in collision, with respect to a given allowed collision matrix (acm).
Definition at line 548 of file planning_scene.cpp.
void planning_scene::PlanningScene::checkCollisionUnpadded | ( | const collision_detection::CollisionRequest & | req, |
collision_detection::CollisionResult & | res | ||
) |
Check whether the current state is in collision, but use a collision_detection::CollisionRobot instance that has no padding. Since the function is non-const, the current state transforms are also updated if needed.
Definition at line 560 of file planning_scene.cpp.
|
inline |
Check whether the current state is in collision, but use a collision_detection::CollisionRobot instance that has no padding.
Definition at line 432 of file planning_scene.h.
|
inline |
Check whether a specified state (kstate) is in collision, but use a collision_detection::CollisionRobot instance that has no padding.
Definition at line 440 of file planning_scene.h.
|
inline |
Check whether a specified state (kstate) is in collision, but use a collision_detection::CollisionRobot instance that has no padding. Update the link transforms of kstate if needed.
Definition at line 449 of file planning_scene.h.
|
inline |
Check whether a specified state (kstate) is in collision, with respect to a given allowed collision matrix (acm), but use a collision_detection::CollisionRobot instance that has no padding. This variant of the function takes a non-const kstate and calls updates the link transforms if needed.
Definition at line 459 of file planning_scene.h.
void planning_scene::PlanningScene::checkCollisionUnpadded | ( | const collision_detection::CollisionRequest & | req, |
collision_detection::CollisionResult & | res, | ||
const robot_state::RobotState & | kstate, | ||
const collision_detection::AllowedCollisionMatrix & | acm | ||
) | const |
Check whether a specified state (kstate) is in collision, with respect to a given allowed collision matrix (acm), but use a collision_detection::CollisionRobot instance that has no padding.
Definition at line 569 of file planning_scene.cpp.
void planning_scene::PlanningScene::checkSelfCollision | ( | const collision_detection::CollisionRequest & | req, |
collision_detection::CollisionResult & | res | ||
) |
Check whether the current state is in self collision.
Definition at line 539 of file planning_scene.cpp.
|
inline |
Check whether the current state is in self collision.
Definition at line 477 of file planning_scene.h.
|
inline |
Check whether a specified state (kstate) is in self collision.
Definition at line 484 of file planning_scene.h.
|
inline |
Check whether a specified state (kstate) is in self collision.
Definition at line 492 of file planning_scene.h.
|
inline |
Check whether a specified state (kstate) is in self collision, with respect to a given allowed collision matrix (acm). The link transforms of kstate are updated if needed.
Definition at line 501 of file planning_scene.h.
|
inline |
Check whether a specified state (kstate) is in self collision, with respect to a given allowed collision matrix (acm)
Definition at line 510 of file planning_scene.h.
void planning_scene::PlanningScene::clearDiffs | ( | ) |
Clear the diffs accumulated for this planning scene, with respect to the parent. This function is a no-op if there is no parent specified.
Definition at line 413 of file planning_scene.cpp.
|
static |
Clone a planning scene. Even if the scene scene depends on a parent, the cloned scene will not.
Definition at line 224 of file planning_scene.cpp.
|
staticprivate |
Definition at line 174 of file planning_scene.cpp.
void planning_scene::PlanningScene::decoupleParent | ( | ) |
Make sure that all the data maintained in this scene is local. All unmodified data is copied from the parent and the pointer to the parent is discarded.
Definition at line 1129 of file planning_scene.cpp.
PlanningScenePtr planning_scene::PlanningScene::diff | ( | ) | const |
Return a new child PlanningScene that uses this one as parent.
The child scene has its own copy of the world. It maintains a list (in world_diff_) of changes made to the child world.
The kmodel_, kstate_, ftf_, and acm_ are not copied. They are shared with the parent. So if changes to these are made in the parent they will be visible in the child. But if any of these is modified (i.e. if the get*NonConst functions are called) in the child then a copy is made and subsequent changes to the corresponding member of the parent will no longer be visible in the child.
Definition at line 232 of file planning_scene.cpp.
PlanningScenePtr planning_scene::PlanningScene::diff | ( | const moveit_msgs::PlanningScene & | msg | ) | const |
Return a new child PlanningScene that uses this one as parent and has the diffs specified by msg applied.
Definition at line 237 of file planning_scene.cpp.
|
inline |
The distance between the robot model at state kstate to the nearest collision (ignoring self-collisions)
Definition at line 605 of file planning_scene.h.
|
inline |
The distance between the robot model at state kstate to the nearest collision (ignoring self-collisions)
Definition at line 613 of file planning_scene.h.
|
inline |
The distance between the robot model at state kstate to the nearest collision, ignoring self-collisions and elements that are allowed to collide.
Definition at line 635 of file planning_scene.h.
|
inline |
The distance between the robot model at state kstate to the nearest collision, ignoring self-collisions and elements that are allowed to collide.
Definition at line 644 of file planning_scene.h.
|
inline |
The distance between the robot model at state kstate to the nearest collision (ignoring self-collisions), if the robot has no padding.
Definition at line 620 of file planning_scene.h.
|
inline |
The distance between the robot model at state kstate to the nearest collision (ignoring self-collisions), if the robot has no padding.
Definition at line 628 of file planning_scene.h.
|
inline |
The distance between the robot model at state kstate to the nearest collision, ignoring self-collisions and elements that are allowed to collide, if the robot has no padding.
Definition at line 652 of file planning_scene.h.
|
inline |
The distance between the robot model at state kstate to the nearest collision, ignoring self-collisions and elements that always allowed to collide, if the robot has no padding.
Definition at line 661 of file planning_scene.h.
|
inline |
Definition at line 269 of file planning_scene.h.
|
inline |
Get the allowed collision matrix.
Definition at line 336 of file planning_scene.h.
collision_detection::AllowedCollisionMatrix & planning_scene::PlanningScene::getAllowedCollisionMatrixNonConst | ( | ) |
Get the allowed collision matrix.
Definition at line 675 of file planning_scene.cpp.
bool planning_scene::PlanningScene::getAttachedCollisionObjectMsg | ( | moveit_msgs::AttachedCollisionObject & | attached_collision_obj, |
const std::string & | ns | ||
) | const |
Construct a message (attached_collision_object) with the attached collision object data from the planning_scene for the requested object.
Definition at line 855 of file planning_scene.cpp.
void planning_scene::PlanningScene::getAttachedCollisionObjectMsgs | ( | std::vector< moveit_msgs::AttachedCollisionObject > & | attached_collision_objs | ) | const |
Construct a vector of messages (attached_collision_objects) with the attached collision object data for all objects in planning_scene.
Definition at line 871 of file planning_scene.cpp.
void planning_scene::PlanningScene::getCollidingLinks | ( | std::vector< std::string > & | links | ) |
Get the names of the links that are involved in collisions for the current state.
Definition at line 605 of file planning_scene.cpp.
|
inline |
Get the names of the links that are involved in collisions for the current state.
Definition at line 522 of file planning_scene.h.
|
inline |
Get the names of the links that are involved in collisions for the state kstate. Update the link transforms for kstate if needed.
Definition at line 529 of file planning_scene.h.
|
inline |
Get the names of the links that are involved in collisions for the state kstate.
Definition at line 536 of file planning_scene.h.
|
inline |
Get the names of the links that are involved in collisions for the state kstate given the allowed collision matrix (acm)
Definition at line 543 of file planning_scene.h.
void planning_scene::PlanningScene::getCollidingLinks | ( | std::vector< std::string > & | links, |
const robot_state::RobotState & | kstate, | ||
const collision_detection::AllowedCollisionMatrix & | acm | ||
) | const |
Get the names of the links that are involved in collisions for the state kstate given the allowed collision matrix (acm)
Definition at line 613 of file planning_scene.cpp.
void planning_scene::PlanningScene::getCollidingPairs | ( | collision_detection::CollisionResult::ContactMap & | contacts | ) |
Get the names of the links that are involved in collisions for the current state. Update the link transforms for the current state if needed.
Definition at line 584 of file planning_scene.cpp.
|
inline |
Get the names of the links that are involved in collisions for the current state.
Definition at line 560 of file planning_scene.h.
|
inline |
Get the names of the links that are involved in collisions for the state kstate.
Definition at line 566 of file planning_scene.h.
|
inline |
Get the names of the links that are involved in collisions for the state kstate. Update the link transforms for kstate if needed.
Definition at line 574 of file planning_scene.h.
|
inline |
Get the names of the links that are involved in collisions for the state kstate given the allowed collision matrix (acm). Update the link transforms for kstate if needed.
Definition at line 583 of file planning_scene.h.
void planning_scene::PlanningScene::getCollidingPairs | ( | collision_detection::CollisionResult::ContactMap & | contacts, |
const robot_state::RobotState & | kstate, | ||
const collision_detection::AllowedCollisionMatrix & | acm | ||
) | const |
Get the names of the links that are involved in collisions for the state kstate given the allowed collision matrix (acm)
Definition at line 592 of file planning_scene.cpp.
void planning_scene::PlanningScene::getCollisionDetectorNames | ( | std::vector< std::string > & | names | ) | const |
get the types of collision detector that have already been added. These are the types which can be passed to setActiveCollisionDetector().
Definition at line 360 of file planning_scene.cpp.
bool planning_scene::PlanningScene::getCollisionObjectMsg | ( | moveit_msgs::CollisionObject & | collision_obj, |
const std::string & | ns | ||
) | const |
Construct a message (collision_object) with the collision object data from the planning_scene for the requested object.
Definition at line 813 of file planning_scene.cpp.
void planning_scene::PlanningScene::getCollisionObjectMsgs | ( | std::vector< moveit_msgs::CollisionObject > & | collision_objs | ) | const |
Construct a vector of messages (collision_objects) with the collision object data for all objects in planning_scene.
Definition at line 843 of file planning_scene.cpp.
|
inline |
Get the active collision detector for the robot.
Definition at line 300 of file planning_scene.h.
const collision_detection::CollisionRobotConstPtr & planning_scene::PlanningScene::getCollisionRobot | ( | const std::string & | collision_detector_name | ) | const |
Get a specific collision detector for the padded robot. If no found return active CollisionRobot.
Definition at line 384 of file planning_scene.cpp.
const collision_detection::CollisionRobotPtr & planning_scene::PlanningScene::getCollisionRobotNonConst | ( | ) |
Get the representation of the collision robot This can be used to set padding and link scale on the active collision_robot. NOTE: After modifying padding and scale on the active robot call propogateRobotPadding() to copy it to all the other collision detectors.
Definition at line 630 of file planning_scene.cpp.
|
inline |
Get the active collision detector for the robot.
Definition at line 306 of file planning_scene.h.
const collision_detection::CollisionRobotConstPtr & planning_scene::PlanningScene::getCollisionRobotUnpadded | ( | const std::string & | collision_detector_name | ) | const |
Get a specific collision detector for the unpadded robot. If no found return active unpadded CollisionRobot.
Definition at line 399 of file planning_scene.cpp.
|
inline |
Get the active collision detector for the world.
Definition at line 293 of file planning_scene.h.
const collision_detection::CollisionWorldConstPtr & planning_scene::PlanningScene::getCollisionWorld | ( | const std::string & | collision_detector_name | ) | const |
Get a specific collision detector for the world. If not found return active CollisionWorld.
Definition at line 369 of file planning_scene.cpp.
void planning_scene::PlanningScene::getCostSources | ( | const robot_trajectory::RobotTrajectory & | trajectory, |
std::size_t | max_costs, | ||
std::set< collision_detection::CostSource > & | costs, | ||
double | overlap_fraction = 0.9 |
||
) | const |
Get the top max_costs cost sources for a specified trajectory. The resulting costs are stored in costs.
Definition at line 2198 of file planning_scene.cpp.
void planning_scene::PlanningScene::getCostSources | ( | const robot_trajectory::RobotTrajectory & | trajectory, |
std::size_t | max_costs, | ||
const std::string & | group_name, | ||
std::set< collision_detection::CostSource > & | costs, | ||
double | overlap_fraction = 0.9 |
||
) | const |
Get the top max_costs cost sources for a specified trajectory, but only for group group_name. The resulting costs are stored in costs.
Definition at line 2204 of file planning_scene.cpp.
void planning_scene::PlanningScene::getCostSources | ( | const robot_state::RobotState & | state, |
std::size_t | max_costs, | ||
std::set< collision_detection::CostSource > & | costs | ||
) | const |
Get the top max_costs cost sources for a specified state. The resulting costs are stored in costs.
Definition at line 2238 of file planning_scene.cpp.
void planning_scene::PlanningScene::getCostSources | ( | const robot_state::RobotState & | state, |
std::size_t | max_costs, | ||
const std::string & | group_name, | ||
std::set< collision_detection::CostSource > & | costs | ||
) | const |
Get the top max_costs cost sources for a specified state, but only for group group_name. The resulting costs are stored in costs.
Definition at line 2244 of file planning_scene.cpp.
|
inline |
Get the state at which the robot is assumed to be.
Definition at line 148 of file planning_scene.h.
robot_state::RobotState & planning_scene::PlanningScene::getCurrentStateNonConst | ( | ) |
Get the state at which the robot is assumed to be.
Definition at line 641 of file planning_scene.cpp.
robot_state::RobotStatePtr planning_scene::PlanningScene::getCurrentStateUpdated | ( | const moveit_msgs::RobotState & | update | ) | const |
Get a copy of the current state with components overwritten by the state message update.
Definition at line 652 of file planning_scene.cpp.
const Eigen::Affine3d & planning_scene::PlanningScene::getFrameTransform | ( | const std::string & | id | ) | const |
Get the transform corresponding to the frame id. This will be known if id is a link name, an attached body id or a collision object. Return identity when no transform is available. Use knowsFrameTransform() to test if this function will be successful or not.
Definition at line 1803 of file planning_scene.cpp.
const Eigen::Affine3d & planning_scene::PlanningScene::getFrameTransform | ( | const std::string & | id | ) |
Get the transform corresponding to the frame id. This will be known if id is a link name, an attached body id or a collision object. Return identity when no transform is available. Use knowsFrameTransform() to test if this function will be successful or not. Because this function is non-const, the current state transforms are also updated, if needed.
Definition at line 1808 of file planning_scene.cpp.
|
inline |
Get the transform corresponding to the frame id. This will be known if id is a link name, an attached body id or a collision object. Return identity when no transform is available. Use knowsFrameTransform() to test if this function will be successful or not. This function also updates the link transforms of state.
Definition at line 203 of file planning_scene.h.
const Eigen::Affine3d & planning_scene::PlanningScene::getFrameTransform | ( | const robot_state::RobotState & | state, |
const std::string & | id | ||
) | const |
Get the transform corresponding to the frame id. This will be known if id is a link name, an attached body id or a collision object. Return identity when no transform is available. Use knowsFrameTransform() to test if this function will be successful or not.
Definition at line 1816 of file planning_scene.cpp.
void planning_scene::PlanningScene::getKnownObjectColors | ( | ObjectColorMap & | kc | ) | const |
Definition at line 1929 of file planning_scene.cpp.
void planning_scene::PlanningScene::getKnownObjectTypes | ( | ObjectTypeMap & | kc | ) | const |
Definition at line 1895 of file planning_scene.cpp.
|
inline |
Get the predicate that decides whether motion segments are considered valid or invalid for reasons beyond ones covered by collision checking and constraint evaluation.
Definition at line 811 of file planning_scene.h.
|
inline |
Get the name of the planning scene. This is empty by default.
Definition at line 105 of file planning_scene.h.
const std_msgs::ColorRGBA & planning_scene::PlanningScene::getObjectColor | ( | const std::string & | id | ) | const |
Definition at line 1915 of file planning_scene.cpp.
void planning_scene::PlanningScene::getObjectColorMsgs | ( | std::vector< moveit_msgs::ObjectColor > & | object_colors | ) | const |
Construct a vector of messages (object_colors) with the colors of the objects from the planning_scene.
Definition at line 901 of file planning_scene.cpp.
const object_recognition_msgs::ObjectType & planning_scene::PlanningScene::getObjectType | ( | const std::string & | id | ) | const |
Definition at line 1868 of file planning_scene.cpp.
bool planning_scene::PlanningScene::getOctomapMsg | ( | octomap_msgs::OctomapWithPose & | octomap | ) | const |
Construct a message (octomap) with the octomap data from the planning_scene.
Definition at line 879 of file planning_scene.cpp.
|
inline |
Get the parent scene (whith respect to which the diffs are maintained). This may be empty.
Definition at line 135 of file planning_scene.h.
|
inline |
Get the frame in which planning is performed.
Definition at line 165 of file planning_scene.h.
void planning_scene::PlanningScene::getPlanningSceneDiffMsg | ( | moveit_msgs::PlanningScene & | scene | ) | const |
Fill the message scene with the differences between this instance of PlanningScene with respect to the parent. If there is no parent, everything is considered to be a diff and the function behaves like getPlanningSceneMsg()
Definition at line 699 of file planning_scene.cpp.
void planning_scene::PlanningScene::getPlanningSceneMsg | ( | moveit_msgs::PlanningScene & | scene | ) | const |
Construct a message (scene) with all the necessary data so that the scene can be later reconstructed to be exactly the same using setPlanningSceneMsg()
Definition at line 916 of file planning_scene.cpp.
void planning_scene::PlanningScene::getPlanningSceneMsg | ( | moveit_msgs::PlanningScene & | scene, |
const moveit_msgs::PlanningSceneComponents & | comp | ||
) | const |
Construct a message (scene) with the data requested in comp. If all options in comp are filled, this will be a complete planning scene message.
Definition at line 937 of file planning_scene.cpp.
|
inline |
Get the kinematic model for which the planning scene is maintained.
Definition at line 141 of file planning_scene.h.
|
inline |
Get the predicate that decides whether states are considered valid or invalid for reasons beyond ones covered by collision checking and constraint evaluation.
Definition at line 797 of file planning_scene.h.
|
inline |
Get the set of fixed transforms from known frames to the planning frame.
Definition at line 172 of file planning_scene.h.
const robot_state::Transforms & planning_scene::PlanningScene::getTransforms | ( | ) |
Get the set of fixed transforms from known frames to the planning frame. This variant is non-const and also updates the current state.
Definition at line 682 of file planning_scene.cpp.
robot_state::Transforms & planning_scene::PlanningScene::getTransformsNonConst | ( | ) |
Get the set of fixed transforms from known frames to the planning frame.
Definition at line 688 of file planning_scene.cpp.
|
inline |
Get the representation of the world.
Definition at line 279 of file planning_scene.h.
|
inline |
Definition at line 286 of file planning_scene.h.
bool planning_scene::PlanningScene::hasObjectColor | ( | const std::string & | id | ) | const |
Definition at line 1905 of file planning_scene.cpp.
bool planning_scene::PlanningScene::hasObjectType | ( | const std::string & | id | ) | const |
Definition at line 1858 of file planning_scene.cpp.
|
private |
Definition at line 151 of file planning_scene.cpp.
|
static |
Check if a message includes any information about a planning scene, or it is just a default, empty message.
Definition at line 99 of file planning_scene.cpp.
|
static |
Check if a message includes any information about a planning scene world, or it is just a default, empty message.
Definition at line 117 of file planning_scene.cpp.
|
static |
Check if a message includes any information about a robot state, or it is just a default, empty message.
Definition at line 105 of file planning_scene.cpp.
bool planning_scene::PlanningScene::isPathValid | ( | const moveit_msgs::RobotState & | start_state, |
const moveit_msgs::RobotTrajectory & | trajectory, | ||
const std::string & | group = "" , |
||
bool | verbose = false , |
||
std::vector< std::size_t > * | invalid_index = NULL |
||
) | const |
Check if a given path is valid. Each state is checked for validity (collision avoidance and feasibility)
Definition at line 2075 of file planning_scene.cpp.
bool planning_scene::PlanningScene::isPathValid | ( | const moveit_msgs::RobotState & | start_state, |
const moveit_msgs::RobotTrajectory & | trajectory, | ||
const moveit_msgs::Constraints & | path_constraints, | ||
const std::string & | group = "" , |
||
bool | verbose = false , |
||
std::vector< std::size_t > * | invalid_index = NULL |
||
) | const |
Check if a given path is valid. Each state is checked for validity (collision avoidance, feasibility and constraint satisfaction). It is also checked that the goal constraints are satisfied by the last state on the passed in trajectory.
Definition at line 2084 of file planning_scene.cpp.
bool planning_scene::PlanningScene::isPathValid | ( | const moveit_msgs::RobotState & | start_state, |
const moveit_msgs::RobotTrajectory & | trajectory, | ||
const moveit_msgs::Constraints & | path_constraints, | ||
const moveit_msgs::Constraints & | goal_constraints, | ||
const std::string & | group = "" , |
||
bool | verbose = false , |
||
std::vector< std::size_t > * | invalid_index = NULL |
||
) | const |
Check if a given path is valid. Each state is checked for validity (collision avoidance, feasibility and constraint satisfaction). It is also checked that the goal constraints are satisfied by the last state on the passed in trajectory.
Definition at line 2093 of file planning_scene.cpp.
bool planning_scene::PlanningScene::isPathValid | ( | const moveit_msgs::RobotState & | start_state, |
const moveit_msgs::RobotTrajectory & | trajectory, | ||
const moveit_msgs::Constraints & | path_constraints, | ||
const std::vector< moveit_msgs::Constraints > & | goal_constraints, | ||
const std::string & | group = "" , |
||
bool | verbose = false , |
||
std::vector< std::size_t > * | invalid_index = NULL |
||
) | const |
Check if a given path is valid. Each state is checked for validity (collision avoidance, feasibility and constraint satisfaction). It is also checked that the goal constraints are satisfied by the last state on the passed in trajectory.
Definition at line 2103 of file planning_scene.cpp.
bool planning_scene::PlanningScene::isPathValid | ( | const robot_trajectory::RobotTrajectory & | trajectory, |
const moveit_msgs::Constraints & | path_constraints, | ||
const std::vector< moveit_msgs::Constraints > & | goal_constraints, | ||
const std::string & | group = "" , |
||
bool | verbose = false , |
||
std::vector< std::size_t > * | invalid_index = NULL |
||
) | const |
Check if a given path is valid. Each state is checked for validity (collision avoidance, feasibility and constraint satisfaction). It is also checked that the goal constraints are satisfied by the last state on the passed in trajectory.
Definition at line 2116 of file planning_scene.cpp.
bool planning_scene::PlanningScene::isPathValid | ( | const robot_trajectory::RobotTrajectory & | trajectory, |
const moveit_msgs::Constraints & | path_constraints, | ||
const moveit_msgs::Constraints & | goal_constraints, | ||
const std::string & | group = "" , |
||
bool | verbose = false , |
||
std::vector< std::size_t > * | invalid_index = NULL |
||
) | const |
Check if a given path is valid. Each state is checked for validity (collision avoidance, feasibility and constraint satisfaction). It is also checked that the goal constraints are satisfied by the last state on the passed in trajectory.
Definition at line 2173 of file planning_scene.cpp.
bool planning_scene::PlanningScene::isPathValid | ( | const robot_trajectory::RobotTrajectory & | trajectory, |
const moveit_msgs::Constraints & | path_constraints, | ||
const std::string & | group = "" , |
||
bool | verbose = false , |
||
std::vector< std::size_t > * | invalid_index = NULL |
||
) | const |
Check if a given path is valid. Each state is checked for validity (collision avoidance, feasibility and constraint satisfaction).
Definition at line 2182 of file planning_scene.cpp.
bool planning_scene::PlanningScene::isPathValid | ( | const robot_trajectory::RobotTrajectory & | trajectory, |
const std::string & | group = "" , |
||
bool | verbose = false , |
||
std::vector< std::size_t > * | invalid_index = NULL |
||
) | const |
Check if a given path is valid. Each state is checked for validity (collision avoidance and feasibility)
Definition at line 2190 of file planning_scene.cpp.
bool planning_scene::PlanningScene::isStateColliding | ( | const std::string & | group = "" , |
bool | verbose = false |
||
) |
Check if the current state is in collision (with the environment or self collision). If a group name is specified, collision checking is done for that group only. Since the function is non-const, the current state transforms are updated before the collision check.
Definition at line 1964 of file planning_scene.cpp.
|
inline |
Check if the current state is in collision (with the environment or self collision). If a group name is specified, collision checking is done for that group only. It is expected the current state transforms are up to date.
Definition at line 358 of file planning_scene.h.
|
inline |
Check if a given state is in collision (with the environment or self collision) If a group name is specified, collision checking is done for that group only. The link transforms for state are updated before the collision check.
Definition at line 367 of file planning_scene.h.
bool planning_scene::PlanningScene::isStateColliding | ( | const robot_state::RobotState & | state, |
const std::string & | group = "" , |
||
bool | verbose = false |
||
) | const |
Check if a given state is in collision (with the environment or self collision) If a group name is specified, collision checking is done for that group only. It is expected that the link transforms of state are up to date.
Definition at line 1972 of file planning_scene.cpp.
bool planning_scene::PlanningScene::isStateColliding | ( | const moveit_msgs::RobotState & | state, |
const std::string & | group = "" , |
||
bool | verbose = false |
||
) | const |
Check if a given state is in collision (with the environment or self collision) If a group name is specified, collision checking is done for that group only.
Definition at line 1957 of file planning_scene.cpp.
bool planning_scene::PlanningScene::isStateConstrained | ( | const moveit_msgs::RobotState & | state, |
const moveit_msgs::Constraints & | constr, | ||
bool | verbose = false |
||
) | const |
Check if a given state satisfies a set of constraints.
Definition at line 2000 of file planning_scene.cpp.
bool planning_scene::PlanningScene::isStateConstrained | ( | const robot_state::RobotState & | state, |
const moveit_msgs::Constraints & | constr, | ||
bool | verbose = false |
||
) | const |
Check if a given state satisfies a set of constraints.
Definition at line 2008 of file planning_scene.cpp.
bool planning_scene::PlanningScene::isStateConstrained | ( | const moveit_msgs::RobotState & | state, |
const kinematic_constraints::KinematicConstraintSet & | constr, | ||
bool | verbose = false |
||
) | const |
Check if a given state satisfies a set of constraints.
Definition at line 2020 of file planning_scene.cpp.
bool planning_scene::PlanningScene::isStateConstrained | ( | const robot_state::RobotState & | state, |
const kinematic_constraints::KinematicConstraintSet & | constr, | ||
bool | verbose = false |
||
) | const |
Check if a given state satisfies a set of constraints.
Definition at line 2028 of file planning_scene.cpp.
bool planning_scene::PlanningScene::isStateFeasible | ( | const moveit_msgs::RobotState & | state, |
bool | verbose = false |
||
) | const |
Check if a given state is feasible, in accordance to the feasibility predicate specified by setStateFeasibilityPredicate(). Returns true if no feasibility predicate was specified.
Definition at line 1982 of file planning_scene.cpp.
bool planning_scene::PlanningScene::isStateFeasible | ( | const robot_state::RobotState & | state, |
bool | verbose = false |
||
) | const |
Check if a given state is feasible, in accordance to the feasibility predicate specified by setStateFeasibilityPredicate(). Returns true if no feasibility predicate was specified.
Definition at line 1993 of file planning_scene.cpp.
bool planning_scene::PlanningScene::isStateValid | ( | const moveit_msgs::RobotState & | state, |
const std::string & | group = "" , |
||
bool | verbose = false |
||
) | const |
Check if a given state is valid. This means checking for collisions and feasibility.
Definition at line 2040 of file planning_scene.cpp.
bool planning_scene::PlanningScene::isStateValid | ( | const robot_state::RobotState & | state, |
const std::string & | group = "" , |
||
bool | verbose = false |
||
) | const |
Check if a given state is valid. This means checking for collisions and feasibility.
Definition at line 2034 of file planning_scene.cpp.
bool planning_scene::PlanningScene::isStateValid | ( | const moveit_msgs::RobotState & | state, |
const moveit_msgs::Constraints & | constr, | ||
const std::string & | group = "" , |
||
bool | verbose = false |
||
) | const |
Check if a given state is valid. This means checking for collisions, feasibility and whether the user specified validity conditions hold as well.
Definition at line 2046 of file planning_scene.cpp.
bool planning_scene::PlanningScene::isStateValid | ( | const robot_state::RobotState & | state, |
const moveit_msgs::Constraints & | constr, | ||
const std::string & | group = "" , |
||
bool | verbose = false |
||
) | const |
Check if a given state is valid. This means checking for collisions, feasibility and whether the user specified validity conditions hold as well.
Definition at line 2054 of file planning_scene.cpp.
bool planning_scene::PlanningScene::isStateValid | ( | const robot_state::RobotState & | state, |
const kinematic_constraints::KinematicConstraintSet & | constr, | ||
const std::string & | group = "" , |
||
bool | verbose = false |
||
) | const |
Check if a given state is valid. This means checking for collisions, feasibility and whether the user specified validity conditions hold as well.
Definition at line 2064 of file planning_scene.cpp.
bool planning_scene::PlanningScene::knowsFrameTransform | ( | const std::string & | id | ) | const |
Check if a transform to the frame id is known. This will be known if id is a link name, an attached body id or a collision object.
Definition at line 1838 of file planning_scene.cpp.
bool planning_scene::PlanningScene::knowsFrameTransform | ( | const robot_state::RobotState & | state, |
const std::string & | id | ||
) | const |
Check if a transform to the frame id is known. This will be known if id is a link name, an attached body id or a collision object.
Definition at line 1843 of file planning_scene.cpp.
void planning_scene::PlanningScene::loadGeometryFromStream | ( | std::istream & | in | ) |
Load the geometry of the planning scene from a stream.
Definition at line 1036 of file planning_scene.cpp.
void planning_scene::PlanningScene::loadGeometryFromStream | ( | std::istream & | in, |
const Eigen::Affine3d & | offset | ||
) |
Load the geometry of the planning scene from a stream at a certain location using offset.
Definition at line 1041 of file planning_scene.cpp.
|
private |
void planning_scene::PlanningScene::printKnownObjects | ( | std::ostream & | out | ) | const |
Outputs debug information about the planning scene contents.
Definition at line 2257 of file planning_scene.cpp.
bool planning_scene::PlanningScene::processAttachedCollisionObjectMsg | ( | const moveit_msgs::AttachedCollisionObject & | object | ) |
Definition at line 1403 of file planning_scene.cpp.
bool planning_scene::PlanningScene::processCollisionObjectMsg | ( | const moveit_msgs::CollisionObject & | object | ) |
Definition at line 1657 of file planning_scene.cpp.
void planning_scene::PlanningScene::processOctomapMsg | ( | const octomap_msgs::OctomapWithPose & | map | ) |
Definition at line 1347 of file planning_scene.cpp.
void planning_scene::PlanningScene::processOctomapMsg | ( | const octomap_msgs::Octomap & | map | ) |
Definition at line 1308 of file planning_scene.cpp.
void planning_scene::PlanningScene::processOctomapPtr | ( | const std::shared_ptr< const octomap::OcTree > & | octree, |
const Eigen::Affine3d & | t | ||
) |
Definition at line 1370 of file planning_scene.cpp.
bool planning_scene::PlanningScene::processPlanningSceneWorldMsg | ( | const moveit_msgs::PlanningSceneWorld & | world | ) |
Definition at line 1291 of file planning_scene.cpp.
void planning_scene::PlanningScene::propogateRobotPadding | ( | ) |
Copy scale and padding from active CollisionRobot to other CollisionRobots. This should be called after any changes are made to the scale or padding of the active CollisionRobot. This has no effect on the unpadded CollisionRobots.
Definition at line 256 of file planning_scene.cpp.
void planning_scene::PlanningScene::pushDiffs | ( | const PlanningScenePtr & | scene | ) |
If there is a parent specified for this scene, then the diffs with respect to that parent are applied to a specified planning scene, whatever that scene may be. If there is no parent specified, this function is a no-op.
Definition at line 457 of file planning_scene.cpp.
void planning_scene::PlanningScene::removeAllCollisionObjects | ( | ) |
Clear all collision objects in planning scene.
Definition at line 1335 of file planning_scene.cpp.
void planning_scene::PlanningScene::removeObjectColor | ( | const std::string & | id | ) |
Definition at line 1951 of file planning_scene.cpp.
void planning_scene::PlanningScene::removeObjectType | ( | const std::string & | id | ) |
Definition at line 1889 of file planning_scene.cpp.
void planning_scene::PlanningScene::saveGeometryToStream | ( | std::ostream & | out | ) | const |
Save the geometry of the planning scene to a stream, as plain text.
Definition at line 1004 of file planning_scene.cpp.
void planning_scene::PlanningScene::setActiveCollisionDetector | ( | const collision_detection::CollisionDetectorAllocatorPtr & | allocator, |
bool | exclusive = false |
||
) |
Set the type of collision detector to use. Calls addCollisionDetector() to add it if it has not already been added.
If exclusive is true then all other collision detectors will be removed and only this one will be available.
example: to use FCL collision call planning_scene->setActiveCollisionDetector(collision_detection::CollisionDetectorAllocatorFCL::create());
Definition at line 317 of file planning_scene.cpp.
bool planning_scene::PlanningScene::setActiveCollisionDetector | ( | const std::string & | collision_detector_name | ) |
Set the type of collision detector to use. This type must have already been added with addCollisionDetector().
Returns true on success, false if collision_detector_name is not the name of a collision detector that has been previously added with addCollisionDetector().
Definition at line 342 of file planning_scene.cpp.
void planning_scene::PlanningScene::setAttachedBodyUpdateCallback | ( | const robot_state::AttachedBodyCallback & | callback | ) |
Set the callback to be triggered when changes are made to the current scene state.
Definition at line 659 of file planning_scene.cpp.
void planning_scene::PlanningScene::setCollisionObjectUpdateCallback | ( | const collision_detection::World::ObserverCallbackFn & | callback | ) |
Set the callback to be triggered when changes are made to the current scene world.
Definition at line 666 of file planning_scene.cpp.
void planning_scene::PlanningScene::setCurrentState | ( | const moveit_msgs::RobotState & | state | ) |
Set the current robot state to be state. If not all joint values are specified, the previously maintained joint values are kept.
Definition at line 1092 of file planning_scene.cpp.
void planning_scene::PlanningScene::setCurrentState | ( | const robot_state::RobotState & | state | ) |
Set the current robot state.
Definition at line 1124 of file planning_scene.cpp.
|
inline |
Specify a predicate that decides whether motion segments are considered valid or invalid for reasons beyond ones covered by collision checking and constraint evaluation.
Definition at line 804 of file planning_scene.h.
|
inline |
Set the name of the planning scene.
Definition at line 111 of file planning_scene.h.
void planning_scene::PlanningScene::setObjectColor | ( | const std::string & | id, |
const std_msgs::ColorRGBA & | color | ||
) |
Definition at line 1939 of file planning_scene.cpp.
void planning_scene::PlanningScene::setObjectType | ( | const std::string & | id, |
const object_recognition_msgs::ObjectType & | type | ||
) |
Definition at line 1882 of file planning_scene.cpp.
bool planning_scene::PlanningScene::setPlanningSceneDiffMsg | ( | const moveit_msgs::PlanningScene & | scene | ) |
Apply changes to this planning scene as diffs, even if the message itself is not marked as being a diff (is_diff member). A parent is not required to exist. However, the existing data in the planning instance is not cleared. Data from the message is only appended (and in cases such as e.g., the robot state, is overwritten).
Definition at line 1199 of file planning_scene.cpp.
bool planning_scene::PlanningScene::setPlanningSceneMsg | ( | const moveit_msgs::PlanningScene & | scene | ) |
Set this instance of a planning scene to be the same as the one serialized in the scene message, even if the message itself is marked as being a diff (is_diff member)
Definition at line 1258 of file planning_scene.cpp.
|
inline |
Specify a predicate that decides whether states are considered valid or invalid for reasons beyond ones covered by collision checking and constraint evaluation. This is useful for setting up problem specific constraints (e.g., stability)
Definition at line 790 of file planning_scene.h.
bool planning_scene::PlanningScene::usePlanningSceneMsg | ( | const moveit_msgs::PlanningScene & | scene | ) |
Call setPlanningSceneMsg() or setPlanningSceneDiffMsg() depending on how the is_diff member of the message is set.
Definition at line 1300 of file planning_scene.cpp.
|
friend |
Definition at line 991 of file planning_scene.h.
|
private |
Definition at line 1020 of file planning_scene.h.
|
private |
Definition at line 1018 of file planning_scene.h.
|
private |
Definition at line 1017 of file planning_scene.h.
|
private |
Definition at line 1006 of file planning_scene.h.
|
private |
Definition at line 1014 of file planning_scene.h.
|
private |
Definition at line 1015 of file planning_scene.h.
|
static |
Definition at line 100 of file planning_scene.h.
|
private |
Definition at line 1009 of file planning_scene.h.
|
private |
Definition at line 1003 of file planning_scene.h.
|
private |
Definition at line 1005 of file planning_scene.h.
|
private |
Definition at line 1023 of file planning_scene.h.
|
private |
Definition at line 999 of file planning_scene.h.
|
private |
Definition at line 1025 of file planning_scene.h.
|
private |
Definition at line 1028 of file planning_scene.h.
|
static |
Definition at line 99 of file planning_scene.h.
|
private |
Definition at line 1001 of file planning_scene.h.
|
private |
Definition at line 1022 of file planning_scene.h.
|
private |
Definition at line 1011 of file planning_scene.h.
|
private |
Definition at line 1012 of file planning_scene.h.
|
private |
Definition at line 1013 of file planning_scene.h.