GenericPacketMathFunctions.h
Go to the documentation of this file.
1 // This file is part of Eigen, a lightweight C++ template library
2 // for linear algebra.
3 //
4 // Copyright (C) 2007 Julien Pommier
5 // Copyright (C) 2014 Pedro Gonnet (pedro.gonnet@gmail.com)
6 // Copyright (C) 2009-2019 Gael Guennebaud <gael.guennebaud@inria.fr>
7 //
8 // This Source Code Form is subject to the terms of the Mozilla
9 // Public License v. 2.0. If a copy of the MPL was not distributed
10 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
11 
12 /* The exp and log functions of this file initially come from
13  * Julien Pommier's sse math library: http://gruntthepeon.free.fr/ssemath/
14  */
15 
16 #ifndef EIGEN_ARCH_GENERIC_PACKET_MATH_FUNCTIONS_H
17 #define EIGEN_ARCH_GENERIC_PACKET_MATH_FUNCTIONS_H
18 
19 namespace Eigen {
20 namespace internal {
21 
22 // Creates a Scalar integer type with same bit-width.
23 template<typename T> struct make_integer;
24 template<> struct make_integer<float> { typedef numext::int32_t type; };
25 template<> struct make_integer<double> { typedef numext::int64_t type; };
26 template<> struct make_integer<half> { typedef numext::int16_t type; };
27 template<> struct make_integer<bfloat16> { typedef numext::int16_t type; };
28 
29 template<typename Packet> EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC
31  typedef typename unpacket_traits<Packet>::type Scalar;
32  typedef typename unpacket_traits<Packet>::integer_packet PacketI;
33  enum { mantissa_bits = numext::numeric_limits<Scalar>::digits - 1};
34  return pcast<PacketI, Packet>(plogical_shift_right<mantissa_bits>(preinterpret<PacketI>(pabs(a))));
35 }
36 
37 // Safely applies frexp, correctly handles denormals.
38 // Assumes IEEE floating point format.
39 template<typename Packet> EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC
40 Packet pfrexp_generic(const Packet& a, Packet& exponent) {
41  typedef typename unpacket_traits<Packet>::type Scalar;
43  enum {
44  TotalBits = sizeof(Scalar) * CHAR_BIT,
45  MantissaBits = numext::numeric_limits<Scalar>::digits - 1,
46  ExponentBits = int(TotalBits) - int(MantissaBits) - 1
47  };
48 
49  EIGEN_CONSTEXPR ScalarUI scalar_sign_mantissa_mask =
50  ~(((ScalarUI(1) << int(ExponentBits)) - ScalarUI(1)) << int(MantissaBits)); // ~0x7f800000
51  const Packet sign_mantissa_mask = pset1frombits<Packet>(static_cast<ScalarUI>(scalar_sign_mantissa_mask));
52  const Packet half = pset1<Packet>(Scalar(0.5));
53  const Packet zero = pzero(a);
54  const Packet normal_min = pset1<Packet>((numext::numeric_limits<Scalar>::min)()); // Minimum normal value, 2^-126
55 
56  // To handle denormals, normalize by multiplying by 2^(int(MantissaBits)+1).
57  const Packet is_denormal = pcmp_lt(pabs(a), normal_min);
58  EIGEN_CONSTEXPR ScalarUI scalar_normalization_offset = ScalarUI(int(MantissaBits) + 1); // 24
59  // The following cannot be constexpr because bfloat16(uint16_t) is not constexpr.
60  const Scalar scalar_normalization_factor = Scalar(ScalarUI(1) << int(scalar_normalization_offset)); // 2^24
61  const Packet normalization_factor = pset1<Packet>(scalar_normalization_factor);
62  const Packet normalized_a = pselect(is_denormal, pmul(a, normalization_factor), a);
63 
64  // Determine exponent offset: -126 if normal, -126-24 if denormal
65  const Scalar scalar_exponent_offset = -Scalar((ScalarUI(1)<<(int(ExponentBits)-1)) - ScalarUI(2)); // -126
66  Packet exponent_offset = pset1<Packet>(scalar_exponent_offset);
67  const Packet normalization_offset = pset1<Packet>(-Scalar(scalar_normalization_offset)); // -24
68  exponent_offset = pselect(is_denormal, padd(exponent_offset, normalization_offset), exponent_offset);
69 
70  // Determine exponent and mantissa from normalized_a.
71  exponent = pfrexp_generic_get_biased_exponent(normalized_a);
72  // Zero, Inf and NaN return 'a' unmodified, exponent is zero
73  // (technically the exponent is unspecified for inf/NaN, but GCC/Clang set it to zero)
74  const Scalar scalar_non_finite_exponent = Scalar((ScalarUI(1) << int(ExponentBits)) - ScalarUI(1)); // 255
75  const Packet non_finite_exponent = pset1<Packet>(scalar_non_finite_exponent);
76  const Packet is_zero_or_not_finite = por(pcmp_eq(a, zero), pcmp_eq(exponent, non_finite_exponent));
77  const Packet m = pselect(is_zero_or_not_finite, a, por(pand(normalized_a, sign_mantissa_mask), half));
78  exponent = pselect(is_zero_or_not_finite, zero, padd(exponent, exponent_offset));
79  return m;
80 }
81 
82 // Safely applies ldexp, correctly handles overflows, underflows and denormals.
83 // Assumes IEEE floating point format.
84 template<typename Packet> EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC
85 Packet pldexp_generic(const Packet& a, const Packet& exponent) {
86  // We want to return a * 2^exponent, allowing for all possible integer
87  // exponents without overflowing or underflowing in intermediate
88  // computations.
89  //
90  // Since 'a' and the output can be denormal, the maximum range of 'exponent'
91  // to consider for a float is:
92  // -255-23 -> 255+23
93  // Below -278 any finite float 'a' will become zero, and above +278 any
94  // finite float will become inf, including when 'a' is the smallest possible
95  // denormal.
96  //
97  // Unfortunately, 2^(278) cannot be represented using either one or two
98  // finite normal floats, so we must split the scale factor into at least
99  // three parts. It turns out to be faster to split 'exponent' into four
100  // factors, since [exponent>>2] is much faster to compute that [exponent/3].
101  //
102  // Set e = min(max(exponent, -278), 278);
103  // b = floor(e/4);
104  // out = ((((a * 2^(b)) * 2^(b)) * 2^(b)) * 2^(e-3*b))
105  //
106  // This will avoid any intermediate overflows and correctly handle 0, inf,
107  // NaN cases.
108  typedef typename unpacket_traits<Packet>::integer_packet PacketI;
109  typedef typename unpacket_traits<Packet>::type Scalar;
110  typedef typename unpacket_traits<PacketI>::type ScalarI;
111  enum {
112  TotalBits = sizeof(Scalar) * CHAR_BIT,
113  MantissaBits = numext::numeric_limits<Scalar>::digits - 1,
114  ExponentBits = int(TotalBits) - int(MantissaBits) - 1
115  };
116 
117  const Packet max_exponent = pset1<Packet>(Scalar((ScalarI(1)<<int(ExponentBits)) + ScalarI(int(MantissaBits) - 1))); // 278
118  const PacketI bias = pset1<PacketI>((ScalarI(1)<<(int(ExponentBits)-1)) - ScalarI(1)); // 127
119  const PacketI e = pcast<Packet, PacketI>(pmin(pmax(exponent, pnegate(max_exponent)), max_exponent));
120  PacketI b = parithmetic_shift_right<2>(e); // floor(e/4);
121  Packet c = preinterpret<Packet>(plogical_shift_left<int(MantissaBits)>(padd(b, bias))); // 2^b
122  Packet out = pmul(pmul(pmul(a, c), c), c); // a * 2^(3b)
123  b = psub(psub(psub(e, b), b), b); // e - 3b
124  c = preinterpret<Packet>(plogical_shift_left<int(MantissaBits)>(padd(b, bias))); // 2^(e-3*b)
125  out = pmul(out, c);
126  return out;
127 }
128 
129 // Explicitly multiplies
130 // a * (2^e)
131 // clamping e to the range
132 // [NumTraits<Scalar>::min_exponent()-2, NumTraits<Scalar>::max_exponent()]
133 //
134 // This is approx 7x faster than pldexp_impl, but will prematurely over/underflow
135 // if 2^e doesn't fit into a normal floating-point Scalar.
136 //
137 // Assumes IEEE floating point format
138 template<typename Packet>
143  enum {
144  TotalBits = sizeof(Scalar) * CHAR_BIT,
145  MantissaBits = numext::numeric_limits<Scalar>::digits - 1,
147  };
148 
150  Packet run(const Packet& a, const Packet& exponent) {
151  const Packet bias = pset1<Packet>(Scalar((ScalarI(1)<<(int(ExponentBits)-1)) - ScalarI(1))); // 127
152  const Packet limit = pset1<Packet>(Scalar((ScalarI(1)<<int(ExponentBits)) - ScalarI(1))); // 255
153  // restrict biased exponent between 0 and 255 for float.
154  const PacketI e = pcast<Packet, PacketI>(pmin(pmax(padd(exponent, bias), pzero(limit)), limit)); // exponent + 127
155  // return a * (2^e)
156  return pmul(a, preinterpret<Packet>(plogical_shift_left<int(MantissaBits)>(e)));
157  }
158 };
159 
160 // Natural or base 2 logarithm.
161 // Computes log(x) as log(2^e * m) = C*e + log(m), where the constant C =log(2)
162 // and m is in the range [sqrt(1/2),sqrt(2)). In this range, the logarithm can
163 // be easily approximated by a polynomial centered on m=1 for stability.
164 // TODO(gonnet): Further reduce the interval allowing for lower-degree
165 // polynomial interpolants -> ... -> profit!
166 template <typename Packet, bool base2>
170 {
171  Packet x = _x;
172 
173  const Packet cst_1 = pset1<Packet>(1.0f);
174  const Packet cst_neg_half = pset1<Packet>(-0.5f);
175  // The smallest non denormalized float number.
176  const Packet cst_min_norm_pos = pset1frombits<Packet>( 0x00800000u);
177  const Packet cst_minus_inf = pset1frombits<Packet>( 0xff800000u);
178  const Packet cst_pos_inf = pset1frombits<Packet>( 0x7f800000u);
179 
180  // Polynomial coefficients.
181  const Packet cst_cephes_SQRTHF = pset1<Packet>(0.707106781186547524f);
182  const Packet cst_cephes_log_p0 = pset1<Packet>(7.0376836292E-2f);
183  const Packet cst_cephes_log_p1 = pset1<Packet>(-1.1514610310E-1f);
184  const Packet cst_cephes_log_p2 = pset1<Packet>(1.1676998740E-1f);
185  const Packet cst_cephes_log_p3 = pset1<Packet>(-1.2420140846E-1f);
186  const Packet cst_cephes_log_p4 = pset1<Packet>(+1.4249322787E-1f);
187  const Packet cst_cephes_log_p5 = pset1<Packet>(-1.6668057665E-1f);
188  const Packet cst_cephes_log_p6 = pset1<Packet>(+2.0000714765E-1f);
189  const Packet cst_cephes_log_p7 = pset1<Packet>(-2.4999993993E-1f);
190  const Packet cst_cephes_log_p8 = pset1<Packet>(+3.3333331174E-1f);
191 
192  // Truncate input values to the minimum positive normal.
193  x = pmax(x, cst_min_norm_pos);
194 
195  Packet e;
196  // extract significant in the range [0.5,1) and exponent
197  x = pfrexp(x,e);
198 
199  // part2: Shift the inputs from the range [0.5,1) to [sqrt(1/2),sqrt(2))
200  // and shift by -1. The values are then centered around 0, which improves
201  // the stability of the polynomial evaluation.
202  // if( x < SQRTHF ) {
203  // e -= 1;
204  // x = x + x - 1.0;
205  // } else { x = x - 1.0; }
206  Packet mask = pcmp_lt(x, cst_cephes_SQRTHF);
207  Packet tmp = pand(x, mask);
208  x = psub(x, cst_1);
209  e = psub(e, pand(cst_1, mask));
210  x = padd(x, tmp);
211 
212  Packet x2 = pmul(x, x);
213  Packet x3 = pmul(x2, x);
214 
215  // Evaluate the polynomial approximant of degree 8 in three parts, probably
216  // to improve instruction-level parallelism.
217  Packet y, y1, y2;
218  y = pmadd(cst_cephes_log_p0, x, cst_cephes_log_p1);
219  y1 = pmadd(cst_cephes_log_p3, x, cst_cephes_log_p4);
220  y2 = pmadd(cst_cephes_log_p6, x, cst_cephes_log_p7);
221  y = pmadd(y, x, cst_cephes_log_p2);
222  y1 = pmadd(y1, x, cst_cephes_log_p5);
223  y2 = pmadd(y2, x, cst_cephes_log_p8);
224  y = pmadd(y, x3, y1);
225  y = pmadd(y, x3, y2);
226  y = pmul(y, x3);
227 
228  y = pmadd(cst_neg_half, x2, y);
229  x = padd(x, y);
230 
231  // Add the logarithm of the exponent back to the result of the interpolation.
232  if (base2) {
233  const Packet cst_log2e = pset1<Packet>(static_cast<float>(EIGEN_LOG2E));
234  x = pmadd(x, cst_log2e, e);
235  } else {
236  const Packet cst_ln2 = pset1<Packet>(static_cast<float>(EIGEN_LN2));
237  x = pmadd(e, cst_ln2, x);
238  }
239 
240  Packet invalid_mask = pcmp_lt_or_nan(_x, pzero(_x));
241  Packet iszero_mask = pcmp_eq(_x,pzero(_x));
242  Packet pos_inf_mask = pcmp_eq(_x,cst_pos_inf);
243  // Filter out invalid inputs, i.e.:
244  // - negative arg will be NAN
245  // - 0 will be -INF
246  // - +INF will be +INF
247  return pselect(iszero_mask, cst_minus_inf,
248  por(pselect(pos_inf_mask,cst_pos_inf,x), invalid_mask));
249 }
250 
251 template <typename Packet>
255 {
256  return plog_impl_float<Packet, /* base2 */ false>(_x);
257 }
258 
259 template <typename Packet>
263 {
264  return plog_impl_float<Packet, /* base2 */ true>(_x);
265 }
266 
267 /* Returns the base e (2.718...) or base 2 logarithm of x.
268  * The argument is separated into its exponent and fractional parts.
269  * The logarithm of the fraction in the interval [sqrt(1/2), sqrt(2)],
270  * is approximated by
271  *
272  * log(1+x) = x - 0.5 x**2 + x**3 P(x)/Q(x).
273  *
274  * for more detail see: http://www.netlib.org/cephes/
275  */
276 template <typename Packet, bool base2>
280 {
281  Packet x = _x;
282 
283  const Packet cst_1 = pset1<Packet>(1.0);
284  const Packet cst_neg_half = pset1<Packet>(-0.5);
285  // The smallest non denormalized double.
286  const Packet cst_min_norm_pos = pset1frombits<Packet>( static_cast<uint64_t>(0x0010000000000000ull));
287  const Packet cst_minus_inf = pset1frombits<Packet>( static_cast<uint64_t>(0xfff0000000000000ull));
288  const Packet cst_pos_inf = pset1frombits<Packet>( static_cast<uint64_t>(0x7ff0000000000000ull));
289 
290 
291  // Polynomial Coefficients for log(1+x) = x - x**2/2 + x**3 P(x)/Q(x)
292  // 1/sqrt(2) <= x < sqrt(2)
293  const Packet cst_cephes_SQRTHF = pset1<Packet>(0.70710678118654752440E0);
294  const Packet cst_cephes_log_p0 = pset1<Packet>(1.01875663804580931796E-4);
295  const Packet cst_cephes_log_p1 = pset1<Packet>(4.97494994976747001425E-1);
296  const Packet cst_cephes_log_p2 = pset1<Packet>(4.70579119878881725854E0);
297  const Packet cst_cephes_log_p3 = pset1<Packet>(1.44989225341610930846E1);
298  const Packet cst_cephes_log_p4 = pset1<Packet>(1.79368678507819816313E1);
299  const Packet cst_cephes_log_p5 = pset1<Packet>(7.70838733755885391666E0);
300 
301  const Packet cst_cephes_log_q0 = pset1<Packet>(1.0);
302  const Packet cst_cephes_log_q1 = pset1<Packet>(1.12873587189167450590E1);
303  const Packet cst_cephes_log_q2 = pset1<Packet>(4.52279145837532221105E1);
304  const Packet cst_cephes_log_q3 = pset1<Packet>(8.29875266912776603211E1);
305  const Packet cst_cephes_log_q4 = pset1<Packet>(7.11544750618563894466E1);
306  const Packet cst_cephes_log_q5 = pset1<Packet>(2.31251620126765340583E1);
307 
308  // Truncate input values to the minimum positive normal.
309  x = pmax(x, cst_min_norm_pos);
310 
311  Packet e;
312  // extract significant in the range [0.5,1) and exponent
313  x = pfrexp(x,e);
314 
315  // Shift the inputs from the range [0.5,1) to [sqrt(1/2),sqrt(2))
316  // and shift by -1. The values are then centered around 0, which improves
317  // the stability of the polynomial evaluation.
318  // if( x < SQRTHF ) {
319  // e -= 1;
320  // x = x + x - 1.0;
321  // } else { x = x - 1.0; }
322  Packet mask = pcmp_lt(x, cst_cephes_SQRTHF);
323  Packet tmp = pand(x, mask);
324  x = psub(x, cst_1);
325  e = psub(e, pand(cst_1, mask));
326  x = padd(x, tmp);
327 
328  Packet x2 = pmul(x, x);
329  Packet x3 = pmul(x2, x);
330 
331  // Evaluate the polynomial approximant , probably to improve instruction-level parallelism.
332  // y = x - 0.5*x^2 + x^3 * polevl( x, P, 5 ) / p1evl( x, Q, 5 ) );
333  Packet y, y1, y_;
334  y = pmadd(cst_cephes_log_p0, x, cst_cephes_log_p1);
335  y1 = pmadd(cst_cephes_log_p3, x, cst_cephes_log_p4);
336  y = pmadd(y, x, cst_cephes_log_p2);
337  y1 = pmadd(y1, x, cst_cephes_log_p5);
338  y_ = pmadd(y, x3, y1);
339 
340  y = pmadd(cst_cephes_log_q0, x, cst_cephes_log_q1);
341  y1 = pmadd(cst_cephes_log_q3, x, cst_cephes_log_q4);
342  y = pmadd(y, x, cst_cephes_log_q2);
343  y1 = pmadd(y1, x, cst_cephes_log_q5);
344  y = pmadd(y, x3, y1);
345 
346  y_ = pmul(y_, x3);
347  y = pdiv(y_, y);
348 
349  y = pmadd(cst_neg_half, x2, y);
350  x = padd(x, y);
351 
352  // Add the logarithm of the exponent back to the result of the interpolation.
353  if (base2) {
354  const Packet cst_log2e = pset1<Packet>(static_cast<double>(EIGEN_LOG2E));
355  x = pmadd(x, cst_log2e, e);
356  } else {
357  const Packet cst_ln2 = pset1<Packet>(static_cast<double>(EIGEN_LN2));
358  x = pmadd(e, cst_ln2, x);
359  }
360 
361  Packet invalid_mask = pcmp_lt_or_nan(_x, pzero(_x));
362  Packet iszero_mask = pcmp_eq(_x,pzero(_x));
363  Packet pos_inf_mask = pcmp_eq(_x,cst_pos_inf);
364  // Filter out invalid inputs, i.e.:
365  // - negative arg will be NAN
366  // - 0 will be -INF
367  // - +INF will be +INF
368  return pselect(iszero_mask, cst_minus_inf,
369  por(pselect(pos_inf_mask,cst_pos_inf,x), invalid_mask));
370 }
371 
372 template <typename Packet>
376 {
377  return plog_impl_double<Packet, /* base2 */ false>(_x);
378 }
379 
380 template <typename Packet>
384 {
385  return plog_impl_double<Packet, /* base2 */ true>(_x);
386 }
387 
391 template<typename Packet>
393 {
394  typedef typename unpacket_traits<Packet>::type ScalarType;
395  const Packet one = pset1<Packet>(ScalarType(1));
396  Packet xp1 = padd(x, one);
397  Packet small_mask = pcmp_eq(xp1, one);
398  Packet log1 = plog(xp1);
399  Packet inf_mask = pcmp_eq(xp1, log1);
400  Packet log_large = pmul(x, pdiv(log1, psub(xp1, one)));
401  return pselect(por(small_mask, inf_mask), x, log_large);
402 }
403 
407 template<typename Packet>
409 {
410  typedef typename unpacket_traits<Packet>::type ScalarType;
411  const Packet one = pset1<Packet>(ScalarType(1));
412  const Packet neg_one = pset1<Packet>(ScalarType(-1));
413  Packet u = pexp(x);
414  Packet one_mask = pcmp_eq(u, one);
415  Packet u_minus_one = psub(u, one);
416  Packet neg_one_mask = pcmp_eq(u_minus_one, neg_one);
417  Packet logu = plog(u);
418  // The following comparison is to catch the case where
419  // exp(x) = +inf. It is written in this way to avoid having
420  // to form the constant +inf, which depends on the packet
421  // type.
422  Packet pos_inf_mask = pcmp_eq(logu, u);
423  Packet expm1 = pmul(u_minus_one, pdiv(x, logu));
424  expm1 = pselect(pos_inf_mask, u, expm1);
425  return pselect(one_mask,
426  x,
427  pselect(neg_one_mask,
428  neg_one,
429  expm1));
430 }
431 
432 
433 // Exponential function. Works by writing "x = m*log(2) + r" where
434 // "m = floor(x/log(2)+1/2)" and "r" is the remainder. The result is then
435 // "exp(x) = 2^m*exp(r)" where exp(r) is in the range [-1,1).
436 template <typename Packet>
440 {
441  const Packet cst_1 = pset1<Packet>(1.0f);
442  const Packet cst_half = pset1<Packet>(0.5f);
443  const Packet cst_exp_hi = pset1<Packet>( 88.723f);
444  const Packet cst_exp_lo = pset1<Packet>(-88.723f);
445 
446  const Packet cst_cephes_LOG2EF = pset1<Packet>(1.44269504088896341f);
447  const Packet cst_cephes_exp_p0 = pset1<Packet>(1.9875691500E-4f);
448  const Packet cst_cephes_exp_p1 = pset1<Packet>(1.3981999507E-3f);
449  const Packet cst_cephes_exp_p2 = pset1<Packet>(8.3334519073E-3f);
450  const Packet cst_cephes_exp_p3 = pset1<Packet>(4.1665795894E-2f);
451  const Packet cst_cephes_exp_p4 = pset1<Packet>(1.6666665459E-1f);
452  const Packet cst_cephes_exp_p5 = pset1<Packet>(5.0000001201E-1f);
453 
454  // Clamp x.
455  Packet x = pmax(pmin(_x, cst_exp_hi), cst_exp_lo);
456 
457  // Express exp(x) as exp(m*ln(2) + r), start by extracting
458  // m = floor(x/ln(2) + 0.5).
459  Packet m = pfloor(pmadd(x, cst_cephes_LOG2EF, cst_half));
460 
461  // Get r = x - m*ln(2). If no FMA instructions are available, m*ln(2) is
462  // subtracted out in two parts, m*C1+m*C2 = m*ln(2), to avoid accumulating
463  // truncation errors.
464  const Packet cst_cephes_exp_C1 = pset1<Packet>(-0.693359375f);
465  const Packet cst_cephes_exp_C2 = pset1<Packet>(2.12194440e-4f);
466  Packet r = pmadd(m, cst_cephes_exp_C1, x);
467  r = pmadd(m, cst_cephes_exp_C2, r);
468 
469  Packet r2 = pmul(r, r);
470  Packet r3 = pmul(r2, r);
471 
472  // Evaluate the polynomial approximant,improved by instruction-level parallelism.
473  Packet y, y1, y2;
474  y = pmadd(cst_cephes_exp_p0, r, cst_cephes_exp_p1);
475  y1 = pmadd(cst_cephes_exp_p3, r, cst_cephes_exp_p4);
476  y2 = padd(r, cst_1);
477  y = pmadd(y, r, cst_cephes_exp_p2);
478  y1 = pmadd(y1, r, cst_cephes_exp_p5);
479  y = pmadd(y, r3, y1);
480  y = pmadd(y, r2, y2);
481 
482  // Return 2^m * exp(r).
483  // TODO: replace pldexp with faster implementation since y in [-1, 1).
484  return pmax(pldexp(y,m), _x);
485 }
486 
487 template <typename Packet>
491 {
492  Packet x = _x;
493 
494  const Packet cst_1 = pset1<Packet>(1.0);
495  const Packet cst_2 = pset1<Packet>(2.0);
496  const Packet cst_half = pset1<Packet>(0.5);
497 
498  const Packet cst_exp_hi = pset1<Packet>(709.784);
499  const Packet cst_exp_lo = pset1<Packet>(-709.784);
500 
501  const Packet cst_cephes_LOG2EF = pset1<Packet>(1.4426950408889634073599);
502  const Packet cst_cephes_exp_p0 = pset1<Packet>(1.26177193074810590878e-4);
503  const Packet cst_cephes_exp_p1 = pset1<Packet>(3.02994407707441961300e-2);
504  const Packet cst_cephes_exp_p2 = pset1<Packet>(9.99999999999999999910e-1);
505  const Packet cst_cephes_exp_q0 = pset1<Packet>(3.00198505138664455042e-6);
506  const Packet cst_cephes_exp_q1 = pset1<Packet>(2.52448340349684104192e-3);
507  const Packet cst_cephes_exp_q2 = pset1<Packet>(2.27265548208155028766e-1);
508  const Packet cst_cephes_exp_q3 = pset1<Packet>(2.00000000000000000009e0);
509  const Packet cst_cephes_exp_C1 = pset1<Packet>(0.693145751953125);
510  const Packet cst_cephes_exp_C2 = pset1<Packet>(1.42860682030941723212e-6);
511 
512  Packet tmp, fx;
513 
514  // clamp x
515  x = pmax(pmin(x, cst_exp_hi), cst_exp_lo);
516  // Express exp(x) as exp(g + n*log(2)).
517  fx = pmadd(cst_cephes_LOG2EF, x, cst_half);
518 
519  // Get the integer modulus of log(2), i.e. the "n" described above.
520  fx = pfloor(fx);
521 
522  // Get the remainder modulo log(2), i.e. the "g" described above. Subtract
523  // n*log(2) out in two steps, i.e. n*C1 + n*C2, C1+C2=log2 to get the last
524  // digits right.
525  tmp = pmul(fx, cst_cephes_exp_C1);
526  Packet z = pmul(fx, cst_cephes_exp_C2);
527  x = psub(x, tmp);
528  x = psub(x, z);
529 
530  Packet x2 = pmul(x, x);
531 
532  // Evaluate the numerator polynomial of the rational interpolant.
533  Packet px = cst_cephes_exp_p0;
534  px = pmadd(px, x2, cst_cephes_exp_p1);
535  px = pmadd(px, x2, cst_cephes_exp_p2);
536  px = pmul(px, x);
537 
538  // Evaluate the denominator polynomial of the rational interpolant.
539  Packet qx = cst_cephes_exp_q0;
540  qx = pmadd(qx, x2, cst_cephes_exp_q1);
541  qx = pmadd(qx, x2, cst_cephes_exp_q2);
542  qx = pmadd(qx, x2, cst_cephes_exp_q3);
543 
544  // I don't really get this bit, copied from the SSE2 routines, so...
545  // TODO(gonnet): Figure out what is going on here, perhaps find a better
546  // rational interpolant?
547  x = pdiv(px, psub(qx, px));
548  x = pmadd(cst_2, x, cst_1);
549 
550  // Construct the result 2^n * exp(g) = e * x. The max is used to catch
551  // non-finite values in the input.
552  // TODO: replace pldexp with faster implementation since x in [-1, 1).
553  return pmax(pldexp(x,fx), _x);
554 }
555 
556 // The following code is inspired by the following stack-overflow answer:
557 // https://stackoverflow.com/questions/30463616/payne-hanek-algorithm-implementation-in-c/30465751#30465751
558 // It has been largely optimized:
559 // - By-pass calls to frexp.
560 // - Aligned loads of required 96 bits of 2/pi. This is accomplished by
561 // (1) balancing the mantissa and exponent to the required bits of 2/pi are
562 // aligned on 8-bits, and (2) replicating the storage of the bits of 2/pi.
563 // - Avoid a branch in rounding and extraction of the remaining fractional part.
564 // Overall, I measured a speed up higher than x2 on x86-64.
565 inline float trig_reduce_huge (float xf, int *quadrant)
566 {
571 
572  const double pio2_62 = 3.4061215800865545e-19; // pi/2 * 2^-62
573  const uint64_t zero_dot_five = uint64_t(1) << 61; // 0.5 in 2.62-bit fixed-point foramt
574 
575  // 192 bits of 2/pi for Payne-Hanek reduction
576  // Bits are introduced by packet of 8 to enable aligned reads.
577  static const uint32_t two_over_pi [] =
578  {
579  0x00000028, 0x000028be, 0x0028be60, 0x28be60db,
580  0xbe60db93, 0x60db9391, 0xdb939105, 0x9391054a,
581  0x91054a7f, 0x054a7f09, 0x4a7f09d5, 0x7f09d5f4,
582  0x09d5f47d, 0xd5f47d4d, 0xf47d4d37, 0x7d4d3770,
583  0x4d377036, 0x377036d8, 0x7036d8a5, 0x36d8a566,
584  0xd8a5664f, 0xa5664f10, 0x664f10e4, 0x4f10e410,
585  0x10e41000, 0xe4100000
586  };
587 
588  uint32_t xi = numext::bit_cast<uint32_t>(xf);
589  // Below, -118 = -126 + 8.
590  // -126 is to get the exponent,
591  // +8 is to enable alignment of 2/pi's bits on 8 bits.
592  // This is possible because the fractional part of x as only 24 meaningful bits.
593  uint32_t e = (xi >> 23) - 118;
594  // Extract the mantissa and shift it to align it wrt the exponent
595  xi = ((xi & 0x007fffffu)| 0x00800000u) << (e & 0x7);
596 
597  uint32_t i = e >> 3;
598  uint32_t twoopi_1 = two_over_pi[i-1];
599  uint32_t twoopi_2 = two_over_pi[i+3];
600  uint32_t twoopi_3 = two_over_pi[i+7];
601 
602  // Compute x * 2/pi in 2.62-bit fixed-point format.
603  uint64_t p;
604  p = uint64_t(xi) * twoopi_3;
605  p = uint64_t(xi) * twoopi_2 + (p >> 32);
606  p = (uint64_t(xi * twoopi_1) << 32) + p;
607 
608  // Round to nearest: add 0.5 and extract integral part.
609  uint64_t q = (p + zero_dot_five) >> 62;
610  *quadrant = int(q);
611  // Now it remains to compute "r = x - q*pi/2" with high accuracy,
612  // since we have p=x/(pi/2) with high accuracy, we can more efficiently compute r as:
613  // r = (p-q)*pi/2,
614  // where the product can be be carried out with sufficient accuracy using double precision.
615  p -= q<<62;
616  return float(double(int64_t(p)) * pio2_62);
617 }
618 
619 template<bool ComputeSine,typename Packet>
622 #if EIGEN_GNUC_AT_LEAST(4,4) && EIGEN_COMP_GNUC_STRICT
623 __attribute__((optimize("-fno-unsafe-math-optimizations")))
624 #endif
626 {
627  typedef typename unpacket_traits<Packet>::integer_packet PacketI;
628 
629  const Packet cst_2oPI = pset1<Packet>(0.636619746685028076171875f); // 2/PI
630  const Packet cst_rounding_magic = pset1<Packet>(12582912); // 2^23 for rounding
631  const PacketI csti_1 = pset1<PacketI>(1);
632  const Packet cst_sign_mask = pset1frombits<Packet>(0x80000000u);
633 
634  Packet x = pabs(_x);
635 
636  // Scale x by 2/Pi to find x's octant.
637  Packet y = pmul(x, cst_2oPI);
638 
639  // Rounding trick:
640  Packet y_round = padd(y, cst_rounding_magic);
642  PacketI y_int = preinterpret<PacketI>(y_round); // last 23 digits represent integer (if abs(x)<2^24)
643  y = psub(y_round, cst_rounding_magic); // nearest integer to x*4/pi
644 
645  // Reduce x by y octants to get: -Pi/4 <= x <= +Pi/4
646  // using "Extended precision modular arithmetic"
647  #if defined(EIGEN_HAS_SINGLE_INSTRUCTION_MADD)
648  // This version requires true FMA for high accuracy
649  // It provides a max error of 1ULP up to (with absolute_error < 5.9605e-08):
650  const float huge_th = ComputeSine ? 117435.992f : 71476.0625f;
651  x = pmadd(y, pset1<Packet>(-1.57079601287841796875f), x);
652  x = pmadd(y, pset1<Packet>(-3.1391647326017846353352069854736328125e-07f), x);
653  x = pmadd(y, pset1<Packet>(-5.390302529957764765544681040410068817436695098876953125e-15f), x);
654  #else
655  // Without true FMA, the previous set of coefficients maintain 1ULP accuracy
656  // up to x<15.7 (for sin), but accuracy is immediately lost for x>15.7.
657  // We thus use one more iteration to maintain 2ULPs up to reasonably large inputs.
658 
659  // The following set of coefficients maintain 1ULP up to 9.43 and 14.16 for sin and cos respectively.
660  // and 2 ULP up to:
661  const float huge_th = ComputeSine ? 25966.f : 18838.f;
662  x = pmadd(y, pset1<Packet>(-1.5703125), x); // = 0xbfc90000
664  x = pmadd(y, pset1<Packet>(-0.000483989715576171875), x); // = 0xb9fdc000
666  x = pmadd(y, pset1<Packet>(1.62865035235881805419921875e-07), x); // = 0x342ee000
667  x = pmadd(y, pset1<Packet>(5.5644315544167710640977020375430583953857421875e-11), x); // = 0x2e74b9ee
668 
669  // For the record, the following set of coefficients maintain 2ULP up
670  // to a slightly larger range:
671  // const float huge_th = ComputeSine ? 51981.f : 39086.125f;
672  // but it slightly fails to maintain 1ULP for two values of sin below pi.
673  // x = pmadd(y, pset1<Packet>(-3.140625/2.), x);
674  // x = pmadd(y, pset1<Packet>(-0.00048351287841796875), x);
675  // x = pmadd(y, pset1<Packet>(-3.13855707645416259765625e-07), x);
676  // x = pmadd(y, pset1<Packet>(-6.0771006282767103812147979624569416046142578125e-11), x);
677 
678  // For the record, with only 3 iterations it is possible to maintain
679  // 1 ULP up to 3PI (maybe more) and 2ULP up to 255.
680  // The coefficients are: 0xbfc90f80, 0xb7354480, 0x2e74b9ee
681  #endif
682 
683  if(predux_any(pcmp_le(pset1<Packet>(huge_th),pabs(_x))))
684  {
685  const int PacketSize = unpacket_traits<Packet>::size;
686  EIGEN_ALIGN_TO_BOUNDARY(sizeof(Packet)) float vals[PacketSize];
687  EIGEN_ALIGN_TO_BOUNDARY(sizeof(Packet)) float x_cpy[PacketSize];
688  EIGEN_ALIGN_TO_BOUNDARY(sizeof(Packet)) int y_int2[PacketSize];
689  pstoreu(vals, pabs(_x));
690  pstoreu(x_cpy, x);
691  pstoreu(y_int2, y_int);
692  for(int k=0; k<PacketSize;++k)
693  {
694  float val = vals[k];
695  if(val>=huge_th && (numext::isfinite)(val))
696  x_cpy[k] = trig_reduce_huge(val,&y_int2[k]);
697  }
698  x = ploadu<Packet>(x_cpy);
699  y_int = ploadu<PacketI>(y_int2);
700  }
701 
702  // Compute the sign to apply to the polynomial.
703  // sin: sign = second_bit(y_int) xor signbit(_x)
704  // cos: sign = second_bit(y_int+1)
705  Packet sign_bit = ComputeSine ? pxor(_x, preinterpret<Packet>(plogical_shift_left<30>(y_int)))
706  : preinterpret<Packet>(plogical_shift_left<30>(padd(y_int,csti_1)));
707  sign_bit = pand(sign_bit, cst_sign_mask); // clear all but left most bit
708 
709  // Get the polynomial selection mask from the second bit of y_int
710  // We'll calculate both (sin and cos) polynomials and then select from the two.
711  Packet poly_mask = preinterpret<Packet>(pcmp_eq(pand(y_int, csti_1), pzero(y_int)));
712 
713  Packet x2 = pmul(x,x);
714 
715  // Evaluate the cos(x) polynomial. (-Pi/4 <= x <= Pi/4)
716  Packet y1 = pset1<Packet>(2.4372266125283204019069671630859375e-05f);
717  y1 = pmadd(y1, x2, pset1<Packet>(-0.00138865201734006404876708984375f ));
718  y1 = pmadd(y1, x2, pset1<Packet>(0.041666619479656219482421875f ));
719  y1 = pmadd(y1, x2, pset1<Packet>(-0.5f));
720  y1 = pmadd(y1, x2, pset1<Packet>(1.f));
721 
722  // Evaluate the sin(x) polynomial. (Pi/4 <= x <= Pi/4)
723  // octave/matlab code to compute those coefficients:
724  // x = (0:0.0001:pi/4)';
725  // A = [x.^3 x.^5 x.^7];
726  // w = ((1.-(x/(pi/4)).^2).^5)*2000+1; # weights trading relative accuracy
727  // c = (A'*diag(w)*A)\(A'*diag(w)*(sin(x)-x)); # weighted LS, linear coeff forced to 1
728  // printf('%.64f\n %.64f\n%.64f\n', c(3), c(2), c(1))
729  //
730  Packet y2 = pset1<Packet>(-0.0001959234114083702898469196984621021329076029360294342041015625f);
731  y2 = pmadd(y2, x2, pset1<Packet>( 0.0083326873655616851693794799871284340042620897293090820312500000f));
732  y2 = pmadd(y2, x2, pset1<Packet>(-0.1666666203982298255503735617821803316473960876464843750000000000f));
733  y2 = pmul(y2, x2);
734  y2 = pmadd(y2, x, x);
735 
736  // Select the correct result from the two polynomials.
737  y = ComputeSine ? pselect(poly_mask,y2,y1)
738  : pselect(poly_mask,y1,y2);
739 
740  // Update the sign and filter huge inputs
741  return pxor(y, sign_bit);
742 }
743 
744 template<typename Packet>
748 {
749  return psincos_float<true>(x);
750 }
751 
752 template<typename Packet>
756 {
757  return psincos_float<false>(x);
758 }
759 
760 
761 template<typename Packet>
765  typedef typename unpacket_traits<Packet>::type Scalar;
766  typedef typename Scalar::value_type RealScalar;
767  typedef typename unpacket_traits<Packet>::as_real RealPacket;
768 
769  // Computes the principal sqrt of the complex numbers in the input.
770  //
771  // For example, for packets containing 2 complex numbers stored in interleaved format
772  // a = [a0, a1] = [x0, y0, x1, y1],
773  // where x0 = real(a0), y0 = imag(a0) etc., this function returns
774  // b = [b0, b1] = [u0, v0, u1, v1],
775  // such that b0^2 = a0, b1^2 = a1.
776  //
777  // To derive the formula for the complex square roots, let's consider the equation for
778  // a single complex square root of the number x + i*y. We want to find real numbers
779  // u and v such that
780  // (u + i*v)^2 = x + i*y <=>
781  // u^2 - v^2 + i*2*u*v = x + i*v.
782  // By equating the real and imaginary parts we get:
783  // u^2 - v^2 = x
784  // 2*u*v = y.
785  //
786  // For x >= 0, this has the numerically stable solution
787  // u = sqrt(0.5 * (x + sqrt(x^2 + y^2)))
788  // v = 0.5 * (y / u)
789  // and for x < 0,
790  // v = sign(y) * sqrt(0.5 * (-x + sqrt(x^2 + y^2)))
791  // u = 0.5 * (y / v)
792  //
793  // To avoid unnecessary over- and underflow, we compute sqrt(x^2 + y^2) as
794  // l = max(|x|, |y|) * sqrt(1 + (min(|x|, |y|) / max(|x|, |y|))^2) ,
795 
796  // In the following, without lack of generality, we have annotated the code, assuming
797  // that the input is a packet of 2 complex numbers.
798  //
799  // Step 1. Compute l = [l0, l0, l1, l1], where
800  // l0 = sqrt(x0^2 + y0^2), l1 = sqrt(x1^2 + y1^2)
801  // To avoid over- and underflow, we use the stable formula for each hypotenuse
802  // l0 = (min0 == 0 ? max0 : max0 * sqrt(1 + (min0/max0)**2)),
803  // where max0 = max(|x0|, |y0|), min0 = min(|x0|, |y0|), and similarly for l1.
804 
805  RealPacket a_abs = pabs(a.v); // [|x0|, |y0|, |x1|, |y1|]
806  RealPacket a_abs_flip = pcplxflip(Packet(a_abs)).v; // [|y0|, |x0|, |y1|, |x1|]
807  RealPacket a_max = pmax(a_abs, a_abs_flip);
808  RealPacket a_min = pmin(a_abs, a_abs_flip);
809  RealPacket a_min_zero_mask = pcmp_eq(a_min, pzero(a_min));
810  RealPacket a_max_zero_mask = pcmp_eq(a_max, pzero(a_max));
811  RealPacket r = pdiv(a_min, a_max);
812  const RealPacket cst_one = pset1<RealPacket>(RealScalar(1));
813  RealPacket l = pmul(a_max, psqrt(padd(cst_one, pmul(r, r)))); // [l0, l0, l1, l1]
814  // Set l to a_max if a_min is zero.
815  l = pselect(a_min_zero_mask, a_max, l);
816 
817  // Step 2. Compute [rho0, *, rho1, *], where
818  // rho0 = sqrt(0.5 * (l0 + |x0|)), rho1 = sqrt(0.5 * (l1 + |x1|))
819  // We don't care about the imaginary parts computed here. They will be overwritten later.
820  const RealPacket cst_half = pset1<RealPacket>(RealScalar(0.5));
821  Packet rho;
822  rho.v = psqrt(pmul(cst_half, padd(a_abs, l)));
823 
824  // Step 3. Compute [rho0, eta0, rho1, eta1], where
825  // eta0 = (y0 / l0) / 2, and eta1 = (y1 / l1) / 2.
826  // set eta = 0 of input is 0 + i0.
827  RealPacket eta = pandnot(pmul(cst_half, pdiv(a.v, pcplxflip(rho).v)), a_max_zero_mask);
828  RealPacket real_mask = peven_mask(a.v);
829  Packet positive_real_result;
830  // Compute result for inputs with positive real part.
831  positive_real_result.v = pselect(real_mask, rho.v, eta);
832 
833  // Step 4. Compute solution for inputs with negative real part:
834  // [|eta0|, sign(y0)*rho0, |eta1|, sign(y1)*rho1]
835  const RealScalar neg_zero = RealScalar(numext::bit_cast<float>(0x80000000u));
836  const RealPacket cst_imag_sign_mask = pset1<Packet>(Scalar(RealScalar(0.0), neg_zero)).v;
837  RealPacket imag_signs = pand(a.v, cst_imag_sign_mask);
838  Packet negative_real_result;
839  // Notice that rho is positive, so taking it's absolute value is a noop.
840  negative_real_result.v = por(pabs(pcplxflip(positive_real_result).v), imag_signs);
841 
842  // Step 5. Select solution branch based on the sign of the real parts.
843  Packet negative_real_mask;
844  negative_real_mask.v = pcmp_lt(pand(real_mask, a.v), pzero(a.v));
845  negative_real_mask.v = por(negative_real_mask.v, pcplxflip(negative_real_mask).v);
846  Packet result = pselect(negative_real_mask, negative_real_result, positive_real_result);
847 
848  // Step 6. Handle special cases for infinities:
849  // * If z is (x,+∞), the result is (+∞,+∞) even if x is NaN
850  // * If z is (x,-∞), the result is (+∞,-∞) even if x is NaN
851  // * If z is (-∞,y), the result is (0*|y|,+∞) for finite or NaN y
852  // * If z is (+∞,y), the result is (+∞,0*|y|) for finite or NaN y
853  const RealPacket cst_pos_inf = pset1<RealPacket>(NumTraits<RealScalar>::infinity());
854  Packet is_inf;
855  is_inf.v = pcmp_eq(a_abs, cst_pos_inf);
856  Packet is_real_inf;
857  is_real_inf.v = pand(is_inf.v, real_mask);
858  is_real_inf = por(is_real_inf, pcplxflip(is_real_inf));
859  // prepare packet of (+∞,0*|y|) or (0*|y|,+∞), depending on the sign of the infinite real part.
860  Packet real_inf_result;
861  real_inf_result.v = pmul(a_abs, pset1<Packet>(Scalar(RealScalar(1.0), RealScalar(0.0))).v);
862  real_inf_result.v = pselect(negative_real_mask.v, pcplxflip(real_inf_result).v, real_inf_result.v);
863  // prepare packet of (+∞,+∞) or (+∞,-∞), depending on the sign of the infinite imaginary part.
864  Packet is_imag_inf;
865  is_imag_inf.v = pandnot(is_inf.v, real_mask);
866  is_imag_inf = por(is_imag_inf, pcplxflip(is_imag_inf));
867  Packet imag_inf_result;
868  imag_inf_result.v = por(pand(cst_pos_inf, real_mask), pandnot(a.v, real_mask));
869 
870  return pselect(is_imag_inf, imag_inf_result,
871  pselect(is_real_inf, real_inf_result,result));
872 }
873 
874 // TODO(rmlarsen): The following set of utilities for double word arithmetic
875 // should perhaps be refactored as a separate file, since it would be generally
876 // useful for special function implementation etc. Writing the algorithms in
877 // terms if a double word type would also make the code more readable.
878 
879 // This function splits x into the nearest integer n and fractional part r,
880 // such that x = n + r holds exactly.
881 template<typename Packet>
883 void absolute_split(const Packet& x, Packet& n, Packet& r) {
884  n = pround(x);
885  r = psub(x, n);
886 }
887 
888 // This function computes the sum {s, r}, such that x + y = s_hi + s_lo
889 // holds exactly, and s_hi = fl(x+y), if |x| >= |y|.
890 template<typename Packet>
892 void fast_twosum(const Packet& x, const Packet& y, Packet& s_hi, Packet& s_lo) {
893  s_hi = padd(x, y);
894  const Packet t = psub(s_hi, x);
895  s_lo = psub(y, t);
896 }
897 
898 #ifdef EIGEN_HAS_SINGLE_INSTRUCTION_MADD
899 // This function implements the extended precision product of
900 // a pair of floating point numbers. Given {x, y}, it computes the pair
901 // {p_hi, p_lo} such that x * y = p_hi + p_lo holds exactly and
902 // p_hi = fl(x * y).
903 template<typename Packet>
905 void twoprod(const Packet& x, const Packet& y,
906  Packet& p_hi, Packet& p_lo) {
907  p_hi = pmul(x, y);
908  p_lo = pmadd(x, y, pnegate(p_hi));
909 }
910 
911 #else
912 
913 // This function implements the Veltkamp splitting. Given a floating point
914 // number x it returns the pair {x_hi, x_lo} such that x_hi + x_lo = x holds
915 // exactly and that half of the significant of x fits in x_hi.
916 // This is Algorithm 3 from Jean-Michel Muller, "Elementary Functions",
917 // 3rd edition, Birkh\"auser, 2016.
918 template<typename Packet>
920 void veltkamp_splitting(const Packet& x, Packet& x_hi, Packet& x_lo) {
921  typedef typename unpacket_traits<Packet>::type Scalar;
922  EIGEN_CONSTEXPR int shift = (NumTraits<Scalar>::digits() + 1) / 2;
923  const Scalar shift_scale = Scalar(uint64_t(1) << shift); // Scalar constructor not necessarily constexpr.
924  const Packet gamma = pmul(pset1<Packet>(shift_scale + Scalar(1)), x);
925  Packet rho = psub(x, gamma);
926  x_hi = padd(rho, gamma);
927  x_lo = psub(x, x_hi);
928 }
929 
930 // This function implements Dekker's algorithm for products x * y.
931 // Given floating point numbers {x, y} computes the pair
932 // {p_hi, p_lo} such that x * y = p_hi + p_lo holds exactly and
933 // p_hi = fl(x * y).
934 template<typename Packet>
936 void twoprod(const Packet& x, const Packet& y,
937  Packet& p_hi, Packet& p_lo) {
938  Packet x_hi, x_lo, y_hi, y_lo;
939  veltkamp_splitting(x, x_hi, x_lo);
940  veltkamp_splitting(y, y_hi, y_lo);
941 
942  p_hi = pmul(x, y);
943  p_lo = pmadd(x_hi, y_hi, pnegate(p_hi));
944  p_lo = pmadd(x_hi, y_lo, p_lo);
945  p_lo = pmadd(x_lo, y_hi, p_lo);
946  p_lo = pmadd(x_lo, y_lo, p_lo);
947 }
948 
949 #endif // EIGEN_HAS_SINGLE_INSTRUCTION_MADD
950 
951 
952 // This function implements Dekker's algorithm for the addition
953 // of two double word numbers represented by {x_hi, x_lo} and {y_hi, y_lo}.
954 // It returns the result as a pair {s_hi, s_lo} such that
955 // x_hi + x_lo + y_hi + y_lo = s_hi + s_lo holds exactly.
956 // This is Algorithm 5 from Jean-Michel Muller, "Elementary Functions",
957 // 3rd edition, Birkh\"auser, 2016.
958 template<typename Packet>
960  void twosum(const Packet& x_hi, const Packet& x_lo,
961  const Packet& y_hi, const Packet& y_lo,
962  Packet& s_hi, Packet& s_lo) {
963  const Packet x_greater_mask = pcmp_lt(pabs(y_hi), pabs(x_hi));
964  Packet r_hi_1, r_lo_1;
965  fast_twosum(x_hi, y_hi,r_hi_1, r_lo_1);
966  Packet r_hi_2, r_lo_2;
967  fast_twosum(y_hi, x_hi,r_hi_2, r_lo_2);
968  const Packet r_hi = pselect(x_greater_mask, r_hi_1, r_hi_2);
969 
970  const Packet s1 = padd(padd(y_lo, r_lo_1), x_lo);
971  const Packet s2 = padd(padd(x_lo, r_lo_2), y_lo);
972  const Packet s = pselect(x_greater_mask, s1, s2);
973 
974  fast_twosum(r_hi, s, s_hi, s_lo);
975 }
976 
977 // This is a version of twosum for double word numbers,
978 // which assumes that |x_hi| >= |y_hi|.
979 template<typename Packet>
981  void fast_twosum(const Packet& x_hi, const Packet& x_lo,
982  const Packet& y_hi, const Packet& y_lo,
983  Packet& s_hi, Packet& s_lo) {
984  Packet r_hi, r_lo;
985  fast_twosum(x_hi, y_hi, r_hi, r_lo);
986  const Packet s = padd(padd(y_lo, r_lo), x_lo);
987  fast_twosum(r_hi, s, s_hi, s_lo);
988 }
989 
990 // This is a version of twosum for adding a floating point number x to
991 // double word number {y_hi, y_lo} number, with the assumption
992 // that |x| >= |y_hi|.
993 template<typename Packet>
995 void fast_twosum(const Packet& x,
996  const Packet& y_hi, const Packet& y_lo,
997  Packet& s_hi, Packet& s_lo) {
998  Packet r_hi, r_lo;
999  fast_twosum(x, y_hi, r_hi, r_lo);
1000  const Packet s = padd(y_lo, r_lo);
1001  fast_twosum(r_hi, s, s_hi, s_lo);
1002 }
1003 
1004 // This function implements the multiplication of a double word
1005 // number represented by {x_hi, x_lo} by a floating point number y.
1006 // It returns the result as a pair {p_hi, p_lo} such that
1007 // (x_hi + x_lo) * y = p_hi + p_lo hold with a relative error
1008 // of less than 2*2^{-2p}, where p is the number of significand bit
1009 // in the floating point type.
1010 // This is Algorithm 7 from Jean-Michel Muller, "Elementary Functions",
1011 // 3rd edition, Birkh\"auser, 2016.
1012 template<typename Packet>
1014 void twoprod(const Packet& x_hi, const Packet& x_lo, const Packet& y,
1015  Packet& p_hi, Packet& p_lo) {
1016  Packet c_hi, c_lo1;
1017  twoprod(x_hi, y, c_hi, c_lo1);
1018  const Packet c_lo2 = pmul(x_lo, y);
1019  Packet t_hi, t_lo1;
1020  fast_twosum(c_hi, c_lo2, t_hi, t_lo1);
1021  const Packet t_lo2 = padd(t_lo1, c_lo1);
1022  fast_twosum(t_hi, t_lo2, p_hi, p_lo);
1023 }
1024 
1025 // This function implements the multiplication of two double word
1026 // numbers represented by {x_hi, x_lo} and {y_hi, y_lo}.
1027 // It returns the result as a pair {p_hi, p_lo} such that
1028 // (x_hi + x_lo) * (y_hi + y_lo) = p_hi + p_lo holds with a relative error
1029 // of less than 2*2^{-2p}, where p is the number of significand bit
1030 // in the floating point type.
1031 template<typename Packet>
1033 void twoprod(const Packet& x_hi, const Packet& x_lo,
1034  const Packet& y_hi, const Packet& y_lo,
1035  Packet& p_hi, Packet& p_lo) {
1036  Packet p_hi_hi, p_hi_lo;
1037  twoprod(x_hi, x_lo, y_hi, p_hi_hi, p_hi_lo);
1038  Packet p_lo_hi, p_lo_lo;
1039  twoprod(x_hi, x_lo, y_lo, p_lo_hi, p_lo_lo);
1040  fast_twosum(p_hi_hi, p_hi_lo, p_lo_hi, p_lo_lo, p_hi, p_lo);
1041 }
1042 
1043 // This function computes the reciprocal of a floating point number
1044 // with extra precision and returns the result as a double word.
1045 template <typename Packet>
1046 void doubleword_reciprocal(const Packet& x, Packet& recip_hi, Packet& recip_lo) {
1047  typedef typename unpacket_traits<Packet>::type Scalar;
1048  // 1. Approximate the reciprocal as the reciprocal of the high order element.
1049  Packet approx_recip = prsqrt(x);
1050  approx_recip = pmul(approx_recip, approx_recip);
1051 
1052  // 2. Run one step of Newton-Raphson iteration in double word arithmetic
1053  // to get the bottom half. The NR iteration for reciprocal of 'a' is
1054  // x_{i+1} = x_i * (2 - a * x_i)
1055 
1056  // -a*x_i
1057  Packet t1_hi, t1_lo;
1058  twoprod(pnegate(x), approx_recip, t1_hi, t1_lo);
1059  // 2 - a*x_i
1060  Packet t2_hi, t2_lo;
1061  fast_twosum(pset1<Packet>(Scalar(2)), t1_hi, t2_hi, t2_lo);
1062  Packet t3_hi, t3_lo;
1063  fast_twosum(t2_hi, padd(t2_lo, t1_lo), t3_hi, t3_lo);
1064  // x_i * (2 - a * x_i)
1065  twoprod(t3_hi, t3_lo, approx_recip, recip_hi, recip_lo);
1066 }
1067 
1068 
1069 // This function computes log2(x) and returns the result as a double word.
1070 template <typename Scalar>
1072  template <typename Packet>
1074  void operator()(const Packet& x, Packet& log2_x_hi, Packet& log2_x_lo) {
1075  log2_x_hi = plog2(x);
1076  log2_x_lo = pzero(x);
1077  }
1078 };
1079 
1080 // This specialization uses a more accurate algorithm to compute log2(x) for
1081 // floats in [1/sqrt(2);sqrt(2)] with a relative accuracy of ~6.42e-10.
1082 // This additional accuracy is needed to counter the error-magnification
1083 // inherent in multiplying by a potentially large exponent in pow(x,y).
1084 // The minimax polynomial used was calculated using the Sollya tool.
1085 // See sollya.org.
1086 template <>
1088  template <typename Packet>
1090  void operator()(const Packet& z, Packet& log2_x_hi, Packet& log2_x_lo) {
1091  // The function log(1+x)/x is approximated in the interval
1092  // [1/sqrt(2)-1;sqrt(2)-1] by a degree 10 polynomial of the form
1093  // Q(x) = (C0 + x * (C1 + x * (C2 + x * (C3 + x * P(x))))),
1094  // where the degree 6 polynomial P(x) is evaluated in single precision,
1095  // while the remaining 4 terms of Q(x), as well as the final multiplication by x
1096  // to reconstruct log(1+x) are evaluated in extra precision using
1097  // double word arithmetic. C0 through C3 are extra precise constants
1098  // stored as double words.
1099  //
1100  // The polynomial coefficients were calculated using Sollya commands:
1101  // > n = 10;
1102  // > f = log2(1+x)/x;
1103  // > interval = [sqrt(0.5)-1;sqrt(2)-1];
1104  // > p = fpminimax(f,n,[|double,double,double,double,single...|],interval,relative,floating);
1105 
1106  const Packet p6 = pset1<Packet>( 9.703654795885e-2f);
1107  const Packet p5 = pset1<Packet>(-0.1690667718648f);
1108  const Packet p4 = pset1<Packet>( 0.1720575392246f);
1109  const Packet p3 = pset1<Packet>(-0.1789081543684f);
1110  const Packet p2 = pset1<Packet>( 0.2050433009862f);
1111  const Packet p1 = pset1<Packet>(-0.2404672354459f);
1112  const Packet p0 = pset1<Packet>( 0.2885761857032f);
1113 
1114  const Packet C3_hi = pset1<Packet>(-0.360674142838f);
1115  const Packet C3_lo = pset1<Packet>(-6.13283912543e-09f);
1116  const Packet C2_hi = pset1<Packet>(0.480897903442f);
1117  const Packet C2_lo = pset1<Packet>(-1.44861207474e-08f);
1118  const Packet C1_hi = pset1<Packet>(-0.721347510815f);
1119  const Packet C1_lo = pset1<Packet>(-4.84483164698e-09f);
1120  const Packet C0_hi = pset1<Packet>(1.44269502163f);
1121  const Packet C0_lo = pset1<Packet>(2.01711713999e-08f);
1122  const Packet one = pset1<Packet>(1.0f);
1123 
1124  const Packet x = psub(z, one);
1125  // Evaluate P(x) in working precision.
1126  // We evaluate it in multiple parts to improve instruction level
1127  // parallelism.
1128  Packet x2 = pmul(x,x);
1129  Packet p_even = pmadd(p6, x2, p4);
1130  p_even = pmadd(p_even, x2, p2);
1131  p_even = pmadd(p_even, x2, p0);
1132  Packet p_odd = pmadd(p5, x2, p3);
1133  p_odd = pmadd(p_odd, x2, p1);
1134  Packet p = pmadd(p_odd, x, p_even);
1135 
1136  // Now evaluate the low-order tems of Q(x) in double word precision.
1137  // In the following, due to the alternating signs and the fact that
1138  // |x| < sqrt(2)-1, we can assume that |C*_hi| >= q_i, and use
1139  // fast_twosum instead of the slower twosum.
1140  Packet q_hi, q_lo;
1141  Packet t_hi, t_lo;
1142  // C3 + x * p(x)
1143  twoprod(p, x, t_hi, t_lo);
1144  fast_twosum(C3_hi, C3_lo, t_hi, t_lo, q_hi, q_lo);
1145  // C2 + x * p(x)
1146  twoprod(q_hi, q_lo, x, t_hi, t_lo);
1147  fast_twosum(C2_hi, C2_lo, t_hi, t_lo, q_hi, q_lo);
1148  // C1 + x * p(x)
1149  twoprod(q_hi, q_lo, x, t_hi, t_lo);
1150  fast_twosum(C1_hi, C1_lo, t_hi, t_lo, q_hi, q_lo);
1151  // C0 + x * p(x)
1152  twoprod(q_hi, q_lo, x, t_hi, t_lo);
1153  fast_twosum(C0_hi, C0_lo, t_hi, t_lo, q_hi, q_lo);
1154 
1155  // log(z) ~= x * Q(x)
1156  twoprod(q_hi, q_lo, x, log2_x_hi, log2_x_lo);
1157  }
1158 };
1159 
1160 // This specialization uses a more accurate algorithm to compute log2(x) for
1161 // floats in [1/sqrt(2);sqrt(2)] with a relative accuracy of ~1.27e-18.
1162 // This additional accuracy is needed to counter the error-magnification
1163 // inherent in multiplying by a potentially large exponent in pow(x,y).
1164 // The minimax polynomial used was calculated using the Sollya tool.
1165 // See sollya.org.
1166 
1167 template <>
1168 struct accurate_log2<double> {
1169  template <typename Packet>
1171  void operator()(const Packet& x, Packet& log2_x_hi, Packet& log2_x_lo) {
1172  // We use a transformation of variables:
1173  // r = c * (x-1) / (x+1),
1174  // such that
1175  // log2(x) = log2((1 + r/c) / (1 - r/c)) = f(r).
1176  // The function f(r) can be approximated well using an odd polynomial
1177  // of the form
1178  // P(r) = ((Q(r^2) * r^2 + C) * r^2 + 1) * r,
1179  // For the implementation of log2<double> here, Q is of degree 6 with
1180  // coefficient represented in working precision (double), while C is a
1181  // constant represented in extra precision as a double word to achieve
1182  // full accuracy.
1183  //
1184  // The polynomial coefficients were computed by the Sollya script:
1185  //
1186  // c = 2 / log(2);
1187  // trans = c * (x-1)/(x+1);
1188  // itrans = (1+x/c)/(1-x/c);
1189  // interval=[trans(sqrt(0.5)); trans(sqrt(2))];
1190  // print(interval);
1191  // f = log2(itrans(x));
1192  // p=fpminimax(f,[|1,3,5,7,9,11,13,15,17|],[|1,DD,double...|],interval,relative,floating);
1193  const Packet q12 = pset1<Packet>(2.87074255468000586e-9);
1194  const Packet q10 = pset1<Packet>(2.38957980901884082e-8);
1195  const Packet q8 = pset1<Packet>(2.31032094540014656e-7);
1196  const Packet q6 = pset1<Packet>(2.27279857398537278e-6);
1197  const Packet q4 = pset1<Packet>(2.31271023278625638e-5);
1198  const Packet q2 = pset1<Packet>(2.47556738444535513e-4);
1199  const Packet q0 = pset1<Packet>(2.88543873228900172e-3);
1200  const Packet C_hi = pset1<Packet>(0.0400377511598501157);
1201  const Packet C_lo = pset1<Packet>(-4.77726582251425391e-19);
1202  const Packet one = pset1<Packet>(1.0);
1203 
1204  const Packet cst_2_log2e_hi = pset1<Packet>(2.88539008177792677);
1205  const Packet cst_2_log2e_lo = pset1<Packet>(4.07660016854549667e-17);
1206  // c * (x - 1)
1207  Packet num_hi, num_lo;
1208  twoprod(cst_2_log2e_hi, cst_2_log2e_lo, psub(x, one), num_hi, num_lo);
1209  // TODO(rmlarsen): Investigate if using the division algorithm by
1210  // Muller et al. is faster/more accurate.
1211  // 1 / (x + 1)
1212  Packet denom_hi, denom_lo;
1213  doubleword_reciprocal(padd(x, one), denom_hi, denom_lo);
1214  // r = c * (x-1) / (x+1),
1215  Packet r_hi, r_lo;
1216  twoprod(num_hi, num_lo, denom_hi, denom_lo, r_hi, r_lo);
1217  // r2 = r * r
1218  Packet r2_hi, r2_lo;
1219  twoprod(r_hi, r_lo, r_hi, r_lo, r2_hi, r2_lo);
1220  // r4 = r2 * r2
1221  Packet r4_hi, r4_lo;
1222  twoprod(r2_hi, r2_lo, r2_hi, r2_lo, r4_hi, r4_lo);
1223 
1224  // Evaluate Q(r^2) in working precision. We evaluate it in two parts
1225  // (even and odd in r^2) to improve instruction level parallelism.
1226  Packet q_even = pmadd(q12, r4_hi, q8);
1227  Packet q_odd = pmadd(q10, r4_hi, q6);
1228  q_even = pmadd(q_even, r4_hi, q4);
1229  q_odd = pmadd(q_odd, r4_hi, q2);
1230  q_even = pmadd(q_even, r4_hi, q0);
1231  Packet q = pmadd(q_odd, r2_hi, q_even);
1232 
1233  // Now evaluate the low order terms of P(x) in double word precision.
1234  // In the following, due to the increasing magnitude of the coefficients
1235  // and r being constrained to [-0.5, 0.5] we can use fast_twosum instead
1236  // of the slower twosum.
1237  // Q(r^2) * r^2
1238  Packet p_hi, p_lo;
1239  twoprod(r2_hi, r2_lo, q, p_hi, p_lo);
1240  // Q(r^2) * r^2 + C
1241  Packet p1_hi, p1_lo;
1242  fast_twosum(C_hi, C_lo, p_hi, p_lo, p1_hi, p1_lo);
1243  // (Q(r^2) * r^2 + C) * r^2
1244  Packet p2_hi, p2_lo;
1245  twoprod(r2_hi, r2_lo, p1_hi, p1_lo, p2_hi, p2_lo);
1246  // ((Q(r^2) * r^2 + C) * r^2 + 1)
1247  Packet p3_hi, p3_lo;
1248  fast_twosum(one, p2_hi, p2_lo, p3_hi, p3_lo);
1249 
1250  // log(z) ~= ((Q(r^2) * r^2 + C) * r^2 + 1) * r
1251  twoprod(p3_hi, p3_lo, r_hi, r_lo, log2_x_hi, log2_x_lo);
1252  }
1253 };
1254 
1255 // This function computes exp2(x) (i.e. 2**x).
1256 template <typename Scalar>
1258  template <typename Packet>
1261  // TODO(rmlarsen): Add a pexp2 packetop.
1262  return pexp(pmul(pset1<Packet>(Scalar(EIGEN_LN2)), x));
1263  }
1264 };
1265 
1266 // This specialization uses a faster algorithm to compute exp2(x) for floats
1267 // in [-0.5;0.5] with a relative accuracy of 1 ulp.
1268 // The minimax polynomial used was calculated using the Sollya tool.
1269 // See sollya.org.
1270 template <>
1272  template <typename Packet>
1275  // This function approximates exp2(x) by a degree 6 polynomial of the form
1276  // Q(x) = 1 + x * (C + x * P(x)), where the degree 4 polynomial P(x) is evaluated in
1277  // single precision, and the remaining steps are evaluated with extra precision using
1278  // double word arithmetic. C is an extra precise constant stored as a double word.
1279  //
1280  // The polynomial coefficients were calculated using Sollya commands:
1281  // > n = 6;
1282  // > f = 2^x;
1283  // > interval = [-0.5;0.5];
1284  // > p = fpminimax(f,n,[|1,double,single...|],interval,relative,floating);
1285 
1286  const Packet p4 = pset1<Packet>(1.539513905e-4f);
1287  const Packet p3 = pset1<Packet>(1.340007293e-3f);
1288  const Packet p2 = pset1<Packet>(9.618283249e-3f);
1289  const Packet p1 = pset1<Packet>(5.550328270e-2f);
1290  const Packet p0 = pset1<Packet>(0.2402264923f);
1291 
1292  const Packet C_hi = pset1<Packet>(0.6931471825f);
1293  const Packet C_lo = pset1<Packet>(2.36836577e-08f);
1294  const Packet one = pset1<Packet>(1.0f);
1295 
1296  // Evaluate P(x) in working precision.
1297  // We evaluate even and odd parts of the polynomial separately
1298  // to gain some instruction level parallelism.
1299  Packet x2 = pmul(x,x);
1300  Packet p_even = pmadd(p4, x2, p2);
1301  Packet p_odd = pmadd(p3, x2, p1);
1302  p_even = pmadd(p_even, x2, p0);
1303  Packet p = pmadd(p_odd, x, p_even);
1304 
1305  // Evaluate the remaining terms of Q(x) with extra precision using
1306  // double word arithmetic.
1307  Packet p_hi, p_lo;
1308  // x * p(x)
1309  twoprod(p, x, p_hi, p_lo);
1310  // C + x * p(x)
1311  Packet q1_hi, q1_lo;
1312  twosum(p_hi, p_lo, C_hi, C_lo, q1_hi, q1_lo);
1313  // x * (C + x * p(x))
1314  Packet q2_hi, q2_lo;
1315  twoprod(q1_hi, q1_lo, x, q2_hi, q2_lo);
1316  // 1 + x * (C + x * p(x))
1317  Packet q3_hi, q3_lo;
1318  // Since |q2_hi| <= sqrt(2)-1 < 1, we can use fast_twosum
1319  // for adding it to unity here.
1320  fast_twosum(one, q2_hi, q3_hi, q3_lo);
1321  return padd(q3_hi, padd(q2_lo, q3_lo));
1322  }
1323 };
1324 
1325 // in [-0.5;0.5] with a relative accuracy of 1 ulp.
1326 // The minimax polynomial used was calculated using the Sollya tool.
1327 // See sollya.org.
1328 template <>
1329 struct fast_accurate_exp2<double> {
1330  template <typename Packet>
1333  // This function approximates exp2(x) by a degree 10 polynomial of the form
1334  // Q(x) = 1 + x * (C + x * P(x)), where the degree 8 polynomial P(x) is evaluated in
1335  // single precision, and the remaining steps are evaluated with extra precision using
1336  // double word arithmetic. C is an extra precise constant stored as a double word.
1337  //
1338  // The polynomial coefficients were calculated using Sollya commands:
1339  // > n = 11;
1340  // > f = 2^x;
1341  // > interval = [-0.5;0.5];
1342  // > p = fpminimax(f,n,[|1,DD,double...|],interval,relative,floating);
1343 
1344  const Packet p9 = pset1<Packet>(4.431642109085495276e-10);
1345  const Packet p8 = pset1<Packet>(7.073829923303358410e-9);
1346  const Packet p7 = pset1<Packet>(1.017822306737031311e-7);
1347  const Packet p6 = pset1<Packet>(1.321543498017646657e-6);
1348  const Packet p5 = pset1<Packet>(1.525273342728892877e-5);
1349  const Packet p4 = pset1<Packet>(1.540353045780084423e-4);
1350  const Packet p3 = pset1<Packet>(1.333355814685869807e-3);
1351  const Packet p2 = pset1<Packet>(9.618129107593478832e-3);
1352  const Packet p1 = pset1<Packet>(5.550410866481961247e-2);
1353  const Packet p0 = pset1<Packet>(0.240226506959101332);
1354  const Packet C_hi = pset1<Packet>(0.693147180559945286);
1355  const Packet C_lo = pset1<Packet>(4.81927865669806721e-17);
1356  const Packet one = pset1<Packet>(1.0);
1357 
1358  // Evaluate P(x) in working precision.
1359  // We evaluate even and odd parts of the polynomial separately
1360  // to gain some instruction level parallelism.
1361  Packet x2 = pmul(x,x);
1362  Packet p_even = pmadd(p8, x2, p6);
1363  Packet p_odd = pmadd(p9, x2, p7);
1364  p_even = pmadd(p_even, x2, p4);
1365  p_odd = pmadd(p_odd, x2, p5);
1366  p_even = pmadd(p_even, x2, p2);
1367  p_odd = pmadd(p_odd, x2, p3);
1368  p_even = pmadd(p_even, x2, p0);
1369  p_odd = pmadd(p_odd, x2, p1);
1370  Packet p = pmadd(p_odd, x, p_even);
1371 
1372  // Evaluate the remaining terms of Q(x) with extra precision using
1373  // double word arithmetic.
1374  Packet p_hi, p_lo;
1375  // x * p(x)
1376  twoprod(p, x, p_hi, p_lo);
1377  // C + x * p(x)
1378  Packet q1_hi, q1_lo;
1379  twosum(p_hi, p_lo, C_hi, C_lo, q1_hi, q1_lo);
1380  // x * (C + x * p(x))
1381  Packet q2_hi, q2_lo;
1382  twoprod(q1_hi, q1_lo, x, q2_hi, q2_lo);
1383  // 1 + x * (C + x * p(x))
1384  Packet q3_hi, q3_lo;
1385  // Since |q2_hi| <= sqrt(2)-1 < 1, we can use fast_twosum
1386  // for adding it to unity here.
1387  fast_twosum(one, q2_hi, q3_hi, q3_lo);
1388  return padd(q3_hi, padd(q2_lo, q3_lo));
1389  }
1390 };
1391 
1392 // This function implements the non-trivial case of pow(x,y) where x is
1393 // positive and y is (possibly) non-integer.
1394 // Formally, pow(x,y) = exp2(y * log2(x)), where exp2(x) is shorthand for 2^x.
1395 // TODO(rmlarsen): We should probably add this as a packet up 'ppow', to make it
1396 // easier to specialize or turn off for specific types and/or backends.x
1397 template <typename Packet>
1399  typedef typename unpacket_traits<Packet>::type Scalar;
1400  // Split x into exponent e_x and mantissa m_x.
1401  Packet e_x;
1402  Packet m_x = pfrexp(x, e_x);
1403 
1404  // Adjust m_x to lie in [1/sqrt(2):sqrt(2)] to minimize absolute error in log2(m_x).
1405  EIGEN_CONSTEXPR Scalar sqrt_half = Scalar(0.70710678118654752440);
1406  const Packet m_x_scale_mask = pcmp_lt(m_x, pset1<Packet>(sqrt_half));
1407  m_x = pselect(m_x_scale_mask, pmul(pset1<Packet>(Scalar(2)), m_x), m_x);
1408  e_x = pselect(m_x_scale_mask, psub(e_x, pset1<Packet>(Scalar(1))), e_x);
1409 
1410  // Compute log2(m_x) with 6 extra bits of accuracy.
1411  Packet rx_hi, rx_lo;
1412  accurate_log2<Scalar>()(m_x, rx_hi, rx_lo);
1413 
1414  // Compute the two terms {y * e_x, y * r_x} in f = y * log2(x) with doubled
1415  // precision using double word arithmetic.
1416  Packet f1_hi, f1_lo, f2_hi, f2_lo;
1417  twoprod(e_x, y, f1_hi, f1_lo);
1418  twoprod(rx_hi, rx_lo, y, f2_hi, f2_lo);
1419  // Sum the two terms in f using double word arithmetic. We know
1420  // that |e_x| > |log2(m_x)|, except for the case where e_x==0.
1421  // This means that we can use fast_twosum(f1,f2).
1422  // In the case e_x == 0, e_x * y = f1 = 0, so we don't lose any
1423  // accuracy by violating the assumption of fast_twosum, because
1424  // it's a no-op.
1425  Packet f_hi, f_lo;
1426  fast_twosum(f1_hi, f1_lo, f2_hi, f2_lo, f_hi, f_lo);
1427 
1428  // Split f into integer and fractional parts.
1429  Packet n_z, r_z;
1430  absolute_split(f_hi, n_z, r_z);
1431  r_z = padd(r_z, f_lo);
1432  Packet n_r;
1433  absolute_split(r_z, n_r, r_z);
1434  n_z = padd(n_z, n_r);
1435 
1436  // We now have an accurate split of f = n_z + r_z and can compute
1437  // x^y = 2**{n_z + r_z) = exp2(r_z) * 2**{n_z}.
1438  // Since r_z is in [-0.5;0.5], we compute the first factor to high accuracy
1439  // using a specialized algorithm. Multiplication by the second factor can
1440  // be done exactly using pldexp(), since it is an integer power of 2.
1441  const Packet e_r = fast_accurate_exp2<Scalar>()(r_z);
1442  return pldexp(e_r, n_z);
1443 }
1444 
1445 // Generic implementation of pow(x,y).
1446 template<typename Packet>
1449 Packet generic_pow(const Packet& x, const Packet& y) {
1450  typedef typename unpacket_traits<Packet>::type Scalar;
1451 
1452  const Packet cst_pos_inf = pset1<Packet>(NumTraits<Scalar>::infinity());
1453  const Packet cst_zero = pset1<Packet>(Scalar(0));
1454  const Packet cst_one = pset1<Packet>(Scalar(1));
1455  const Packet cst_nan = pset1<Packet>(NumTraits<Scalar>::quiet_NaN());
1456 
1457  const Packet abs_x = pabs(x);
1458  // Predicates for sign and magnitude of x.
1459  const Packet x_is_zero = pcmp_eq(x, cst_zero);
1460  const Packet x_is_neg = pcmp_lt(x, cst_zero);
1461  const Packet abs_x_is_inf = pcmp_eq(abs_x, cst_pos_inf);
1462  const Packet abs_x_is_one = pcmp_eq(abs_x, cst_one);
1463  const Packet abs_x_is_gt_one = pcmp_lt(cst_one, abs_x);
1464  const Packet abs_x_is_lt_one = pcmp_lt(abs_x, cst_one);
1465  const Packet x_is_one = pandnot(abs_x_is_one, x_is_neg);
1466  const Packet x_is_neg_one = pand(abs_x_is_one, x_is_neg);
1467  const Packet x_is_nan = pandnot(ptrue(x), pcmp_eq(x, x));
1468 
1469  // Predicates for sign and magnitude of y.
1470  const Packet y_is_one = pcmp_eq(y, cst_one);
1471  const Packet y_is_zero = pcmp_eq(y, cst_zero);
1472  const Packet y_is_neg = pcmp_lt(y, cst_zero);
1473  const Packet y_is_pos = pandnot(ptrue(y), por(y_is_zero, y_is_neg));
1474  const Packet y_is_nan = pandnot(ptrue(y), pcmp_eq(y, y));
1475  const Packet abs_y_is_inf = pcmp_eq(pabs(y), cst_pos_inf);
1476  EIGEN_CONSTEXPR Scalar huge_exponent =
1479  const Packet abs_y_is_huge = pcmp_le(pset1<Packet>(huge_exponent), pabs(y));
1480 
1481  // Predicates for whether y is integer and/or even.
1482  const Packet y_is_int = pcmp_eq(pfloor(y), y);
1483  const Packet y_div_2 = pmul(y, pset1<Packet>(Scalar(0.5)));
1484  const Packet y_is_even = pcmp_eq(pround(y_div_2), y_div_2);
1485 
1486  // Predicates encoding special cases for the value of pow(x,y)
1487  const Packet invalid_negative_x = pandnot(pandnot(pandnot(x_is_neg, abs_x_is_inf),
1488  y_is_int),
1489  abs_y_is_inf);
1490  const Packet pow_is_one = por(por(x_is_one, y_is_zero),
1491  pand(x_is_neg_one,
1492  por(abs_y_is_inf, pandnot(y_is_even, invalid_negative_x))));
1493  const Packet pow_is_nan = por(invalid_negative_x, por(x_is_nan, y_is_nan));
1494  const Packet pow_is_zero = por(por(por(pand(x_is_zero, y_is_pos),
1495  pand(abs_x_is_inf, y_is_neg)),
1496  pand(pand(abs_x_is_lt_one, abs_y_is_huge),
1497  y_is_pos)),
1498  pand(pand(abs_x_is_gt_one, abs_y_is_huge),
1499  y_is_neg));
1500  const Packet pow_is_inf = por(por(por(pand(x_is_zero, y_is_neg),
1501  pand(abs_x_is_inf, y_is_pos)),
1502  pand(pand(abs_x_is_lt_one, abs_y_is_huge),
1503  y_is_neg)),
1504  pand(pand(abs_x_is_gt_one, abs_y_is_huge),
1505  y_is_pos));
1506 
1507  // General computation of pow(x,y) for positive x or negative x and integer y.
1508  const Packet negate_pow_abs = pandnot(x_is_neg, y_is_even);
1509  const Packet pow_abs = generic_pow_impl(abs_x, y);
1510  return pselect(y_is_one, x,
1511  pselect(pow_is_one, cst_one,
1512  pselect(pow_is_nan, cst_nan,
1513  pselect(pow_is_inf, cst_pos_inf,
1514  pselect(pow_is_zero, cst_zero,
1515  pselect(negate_pow_abs, pnegate(pow_abs), pow_abs))))));
1516 }
1517 
1518 
1519 
1520 /* polevl (modified for Eigen)
1521  *
1522  * Evaluate polynomial
1523  *
1524  *
1525  *
1526  * SYNOPSIS:
1527  *
1528  * int N;
1529  * Scalar x, y, coef[N+1];
1530  *
1531  * y = polevl<decltype(x), N>( x, coef);
1532  *
1533  *
1534  *
1535  * DESCRIPTION:
1536  *
1537  * Evaluates polynomial of degree N:
1538  *
1539  * 2 N
1540  * y = C + C x + C x +...+ C x
1541  * 0 1 2 N
1542  *
1543  * Coefficients are stored in reverse order:
1544  *
1545  * coef[0] = C , ..., coef[N] = C .
1546  * N 0
1547  *
1548  * The function p1evl() assumes that coef[N] = 1.0 and is
1549  * omitted from the array. Its calling arguments are
1550  * otherwise the same as polevl().
1551  *
1552  *
1553  * The Eigen implementation is templatized. For best speed, store
1554  * coef as a const array (constexpr), e.g.
1555  *
1556  * const double coef[] = {1.0, 2.0, 3.0, ...};
1557  *
1558  */
1559 template <typename Packet, int N>
1560 struct ppolevl {
1562  EIGEN_STATIC_ASSERT((N > 0), YOU_MADE_A_PROGRAMMING_MISTAKE);
1563  return pmadd(ppolevl<Packet, N-1>::run(x, coeff), x, pset1<Packet>(coeff[N]));
1564  }
1565 };
1566 
1567 template <typename Packet>
1568 struct ppolevl<Packet, 0> {
1571  return pset1<Packet>(coeff[0]);
1572  }
1573 };
1574 
1575 /* chbevl (modified for Eigen)
1576  *
1577  * Evaluate Chebyshev series
1578  *
1579  *
1580  *
1581  * SYNOPSIS:
1582  *
1583  * int N;
1584  * Scalar x, y, coef[N], chebevl();
1585  *
1586  * y = chbevl( x, coef, N );
1587  *
1588  *
1589  *
1590  * DESCRIPTION:
1591  *
1592  * Evaluates the series
1593  *
1594  * N-1
1595  * - '
1596  * y = > coef[i] T (x/2)
1597  * - i
1598  * i=0
1599  *
1600  * of Chebyshev polynomials Ti at argument x/2.
1601  *
1602  * Coefficients are stored in reverse order, i.e. the zero
1603  * order term is last in the array. Note N is the number of
1604  * coefficients, not the order.
1605  *
1606  * If coefficients are for the interval a to b, x must
1607  * have been transformed to x -> 2(2x - b - a)/(b-a) before
1608  * entering the routine. This maps x from (a, b) to (-1, 1),
1609  * over which the Chebyshev polynomials are defined.
1610  *
1611  * If the coefficients are for the inverted interval, in
1612  * which (a, b) is mapped to (1/b, 1/a), the transformation
1613  * required is x -> 2(2ab/x - b - a)/(b-a). If b is infinity,
1614  * this becomes x -> 4a/x - 1.
1615  *
1616  *
1617  *
1618  * SPEED:
1619  *
1620  * Taking advantage of the recurrence properties of the
1621  * Chebyshev polynomials, the routine requires one more
1622  * addition per loop than evaluating a nested polynomial of
1623  * the same degree.
1624  *
1625  */
1626 
1627 template <typename Packet, int N>
1628 struct pchebevl {
1631  typedef typename unpacket_traits<Packet>::type Scalar;
1632  Packet b0 = pset1<Packet>(coef[0]);
1633  Packet b1 = pset1<Packet>(static_cast<Scalar>(0.f));
1634  Packet b2;
1635 
1636  for (int i = 1; i < N; i++) {
1637  b2 = b1;
1638  b1 = b0;
1639  b0 = psub(pmadd(x, b1, pset1<Packet>(coef[i])), b2);
1640  }
1641 
1642  return pmul(pset1<Packet>(static_cast<Scalar>(0.5f)), psub(b0, b2));
1643  }
1644 };
1645 
1646 } // end namespace internal
1647 } // end namespace Eigen
1648 
1649 #endif // EIGEN_ARCH_GENERIC_PACKET_MATH_FUNCTIONS_H
gtsam.examples.DogLegOptimizerExample.int
int
Definition: DogLegOptimizerExample.py:111
Eigen::internal::pldexp
EIGEN_STRONG_INLINE Packet8h pldexp(const Packet8h &a, const Packet8h &exponent)
Definition: Eigen/src/Core/arch/AVX/MathFunctions.h:196
Eigen::internal::pcmp_eq
EIGEN_STRONG_INLINE Packet2cf pcmp_eq(const Packet2cf &a, const Packet2cf &b)
Definition: AltiVec/Complex.h:231
EIGEN_DEVICE_FUNC
#define EIGEN_DEVICE_FUNC
Definition: Macros.h:976
Eigen::internal::ppolevl::run
static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Packet run(const Packet &x, const typename unpacket_traits< Packet >::type coeff[])
Definition: GenericPacketMathFunctions.h:1561
Eigen
Namespace containing all symbols from the Eigen library.
Definition: jet.h:637
Eigen::internal::psqrt
EIGEN_STRONG_INLINE Packet4f psqrt(const Packet4f &a)
Definition: MSA/PacketMath.h:723
Eigen::internal::plog_impl_float
EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS EIGEN_UNUSED Packet plog_impl_float(const Packet _x)
Definition: GenericPacketMathFunctions.h:169
simple_graph::b1
Vector2 b1(2, -1)
Eigen::internal::pldexp_fast_impl::ExponentBits
@ ExponentBits
Definition: GenericPacketMathFunctions.h:146
Eigen::internal::pchebevl::run
static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Packet run(Packet x, const typename unpacket_traits< Packet >::type coef[])
Definition: GenericPacketMathFunctions.h:1630
Eigen::numext::int16_t
::int16_t int16_t
Definition: Meta.h:55
Eigen::internal::pstoreu
EIGEN_DEVICE_FUNC void pstoreu(Scalar *to, const Packet &from)
Definition: GenericPacketMath.h:700
Eigen::internal::pldexp_fast_impl::MantissaBits
@ MantissaBits
Definition: GenericPacketMathFunctions.h:145
s
RealScalar s
Definition: level1_cplx_impl.h:126
Eigen::internal::pldexp_fast_impl::Scalar
unpacket_traits< Packet >::type Scalar
Definition: GenericPacketMathFunctions.h:141
e
Array< double, 1, 3 > e(1./3., 0.5, 2.)
Eigen::internal::pldexp_fast_impl::run
static EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC Packet run(const Packet &a, const Packet &exponent)
Definition: GenericPacketMathFunctions.h:150
screwPose2::xi
Vector xi
Definition: testPose2.cpp:148
optimize
int optimize(const SfmData &db, const NonlinearFactorGraph &graph, const Values &initial, bool separateCalibration=false)
Definition: timeSFMBAL.h:64
p5
KeyInt p5(x5, 5)
Eigen::internal::twoprod
EIGEN_STRONG_INLINE void twoprod(const Packet &x, const Packet &y, Packet &p_hi, Packet &p_lo)
Definition: GenericPacketMathFunctions.h:936
Eigen::internal::peven_mask
EIGEN_STRONG_INLINE Packet8f peven_mask(const Packet8f &)
Definition: AVX/PacketMath.h:252
Packet
internal::packet_traits< Scalar >::type Packet
Definition: benchmark-blocking-sizes.cpp:54
Eigen::numext::isfinite
EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE bool() isfinite(const Eigen::bfloat16 &h)
Definition: BFloat16.h:671
uint32_t
unsigned int uint32_t
Definition: ms_stdint.h:85
r2
static const double r2
Definition: testSmartRangeFactor.cpp:32
fx
const double fx
Definition: testSmartStereoFactor_iSAM2.cpp:47
c
Scalar Scalar * c
Definition: benchVecAdd.cpp:17
b
Scalar * b
Definition: benchVecAdd.cpp:17
Eigen::internal::accurate_log2< float >::operator()
EIGEN_STRONG_INLINE void operator()(const Packet &z, Packet &log2_x_hi, Packet &log2_x_lo)
Definition: GenericPacketMathFunctions.h:1090
Eigen::internal::pcmp_lt
EIGEN_STRONG_INLINE Packet4f pcmp_lt(const Packet4f &a, const Packet4f &b)
Definition: AltiVec/PacketMath.h:868
Eigen::numext::uint32_t
::uint32_t uint32_t
Definition: Meta.h:56
simple_graph::b2
Vector2 b2(4, -5)
x
set noclip points set clip one set noclip two set bar set border lt lw set xdata set ydata set zdata set x2data set y2data set boxwidth set dummy x
Definition: gnuplot_common_settings.hh:12
Eigen::internal::pexp_float
EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS EIGEN_UNUSED Packet pexp_float(const Packet _x)
Definition: GenericPacketMathFunctions.h:439
Eigen::internal::__attribute__
svint32_t PacketXi __attribute__((arm_sve_vector_bits(EIGEN_ARM64_SVE_VL)))
Definition: SVE/PacketMath.h:33
biased_x_rotation::bias
const Vector3 bias(1, 2, 3)
Eigen::internal::pround
EIGEN_DECLARE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS Packet pround(const Packet &a)
Definition: GenericPacketMath.h:826
EIGEN_CONSTEXPR
#define EIGEN_CONSTEXPR
Definition: Macros.h:787
Eigen::internal::plog_float
EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS EIGEN_UNUSED Packet plog_float(const Packet _x)
Definition: GenericPacketMathFunctions.h:254
type
Definition: pytypes.h:1525
Eigen::internal::generic_pow_impl
EIGEN_STRONG_INLINE Packet generic_pow_impl(const Packet &x, const Packet &y)
Definition: GenericPacketMathFunctions.h:1398
Eigen::numext::int64_t
::int64_t int64_t
Definition: Meta.h:59
Eigen::internal::pdiv
EIGEN_DEVICE_FUNC Packet pdiv(const Packet &a, const Packet &b)
Definition: GenericPacketMath.h:244
Eigen::internal::pldexp_fast_impl::TotalBits
@ TotalBits
Definition: GenericPacketMathFunctions.h:144
Eigen::internal::pldexp_fast_impl::ScalarI
unpacket_traits< PacketI >::type ScalarI
Definition: GenericPacketMathFunctions.h:142
Eigen::internal::make_integer< half >::type
numext::int16_t type
Definition: GenericPacketMathFunctions.h:26
result
Values result
Definition: OdometryOptimize.cpp:8
Eigen::internal::plog_double
EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS EIGEN_UNUSED Packet plog_double(const Packet _x)
Definition: GenericPacketMathFunctions.h:375
x3
Pose3 x3(Rot3::Ypr(M_PI/4.0, 0.0, 0.0), l2)
Eigen::bfloat16
Definition: BFloat16.h:58
Eigen::internal::pxor
EIGEN_STRONG_INLINE Packet8h pxor(const Packet8h &a, const Packet8h &b)
Definition: AVX/PacketMath.h:1047
Eigen::numext::uint64_t
::uint64_t uint64_t
Definition: Meta.h:58
Eigen::internal::pchebevl
Definition: GenericPacketMathFunctions.h:1628
n
int n
Definition: BiCGSTAB_simple.cpp:1
simple::p2
static Point3 p2
Definition: testInitializePose3.cpp:51
Eigen::internal::plog2_float
EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS EIGEN_UNUSED Packet plog2_float(const Packet _x)
Definition: GenericPacketMathFunctions.h:262
Eigen::internal::make_integer< bfloat16 >::type
numext::int16_t type
Definition: GenericPacketMathFunctions.h:27
Eigen::internal::fast_accurate_exp2
Definition: GenericPacketMathFunctions.h:1257
Eigen::internal::plogical_shift_left
EIGEN_STRONG_INLINE Packet4i plogical_shift_left(const Packet4i &a)
Definition: AltiVec/PacketMath.h:1191
y1
double y1(double x)
Definition: j1.c:199
Eigen::internal::twosum
EIGEN_STRONG_INLINE void twosum(const Packet &x_hi, const Packet &x_lo, const Packet &y_hi, const Packet &y_lo, Packet &s_hi, Packet &s_lo)
Definition: GenericPacketMathFunctions.h:960
expm1
double expm1(double x)
Definition: unity.c:106
Eigen::internal::make_integer< double >::type
numext::int64_t type
Definition: GenericPacketMathFunctions.h:25
Eigen::internal::pfrexp
EIGEN_STRONG_INLINE Packet8h pfrexp(const Packet8h &a, Packet8h &exponent)
Definition: Eigen/src/Core/arch/AVX/MathFunctions.h:188
EIGEN_UNUSED_VARIABLE
#define EIGEN_UNUSED_VARIABLE(var)
Definition: Macros.h:1076
Eigen::internal::fast_accurate_exp2< double >::operator()
EIGEN_STRONG_INLINE Packet operator()(const Packet &x)
Definition: GenericPacketMathFunctions.h:1332
Eigen::internal::veltkamp_splitting
EIGEN_STRONG_INLINE void veltkamp_splitting(const Packet &x, Packet &x_hi, Packet &x_lo)
Definition: GenericPacketMathFunctions.h:920
Eigen::internal::doubleword_reciprocal
void doubleword_reciprocal(const Packet &x, Packet &recip_hi, Packet &recip_lo)
Definition: GenericPacketMathFunctions.h:1046
int64_t
signed __int64 int64_t
Definition: ms_stdint.h:94
Eigen::numext::q
EIGEN_DEVICE_FUNC const Scalar & q
Definition: SpecialFunctionsImpl.h:1984
Eigen::internal::fast_accurate_exp2::operator()
EIGEN_STRONG_INLINE Packet operator()(const Packet &x)
Definition: GenericPacketMathFunctions.h:1260
Eigen::internal::absolute_split
EIGEN_STRONG_INLINE void absolute_split(const Packet &x, Packet &n, Packet &r)
Definition: GenericPacketMathFunctions.h:883
Eigen::internal::pnegate
EIGEN_STRONG_INLINE Packet2cf pnegate(const Packet2cf &a)
Definition: AltiVec/Complex.h:166
Eigen::internal::trig_reduce_huge
float trig_reduce_huge(float xf, int *quadrant)
Definition: GenericPacketMathFunctions.h:565
EIGEN_LN2
#define EIGEN_LN2
Definition: Eigen/src/Core/MathFunctions.h:18
Eigen::internal::unpacket_traits
Definition: GenericPacketMath.h:132
l
static const Line3 l(Rot3(), 1, 1)
Eigen::internal::pselect
EIGEN_STRONG_INLINE Packet4f pselect(const Packet4f &mask, const Packet4f &a, const Packet4f &b)
Definition: AltiVec/PacketMath.h:917
Eigen::internal::psqrt_complex
EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS EIGEN_UNUSED Packet psqrt_complex(const Packet &a)
Definition: GenericPacketMathFunctions.h:764
zero
EIGEN_DONT_INLINE Scalar zero()
Definition: svd_common.h:296
EIGEN_STRONG_INLINE
#define EIGEN_STRONG_INLINE
Definition: Macros.h:917
Eigen::internal::pmax
EIGEN_DEVICE_FUNC Packet pmax(const Packet &a, const Packet &b)
Definition: GenericPacketMath.h:524
r3
static const double r3
Definition: testSmartRangeFactor.cpp:32
EIGEN_OPTIMIZATION_BARRIER
#define EIGEN_OPTIMIZATION_BARRIER(X)
Definition: Macros.h:1144
Eigen::internal::pcmp_lt_or_nan
EIGEN_STRONG_INLINE Packet4f pcmp_lt_or_nan(const Packet4f &a, const Packet4f &b)
Definition: AltiVec/PacketMath.h:870
EIGEN_LOG2E
#define EIGEN_LOG2E
Definition: Eigen/src/Core/MathFunctions.h:17
Eigen::internal::plog2
EIGEN_DECLARE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS Packet plog2(const Packet &a)
Definition: GenericPacketMath.h:808
simple::p3
static Point3 p3
Definition: testInitializePose3.cpp:53
Eigen::internal::pand
EIGEN_STRONG_INLINE Packet8h pand(const Packet8h &a, const Packet8h &b)
Definition: AVX/PacketMath.h:1050
Eigen::internal::Packet
Definition: ZVector/PacketMath.h:47
Eigen::internal::psub
EIGEN_DEVICE_FUNC Packet psub(const Packet &a, const Packet &b)
Definition: GenericPacketMath.h:222
pybind_wrapper_test_script.z
z
Definition: pybind_wrapper_test_script.py:61
m
Matrix3f m
Definition: AngleAxis_mimic_euler.cpp:1
Eigen::Triplet< double >
Eigen::internal::Packet1cd::v
Packet2d v
Definition: MSA/Complex.h:410
gamma
#define gamma
Definition: mconf.h:85
Eigen::internal::pexp
EIGEN_DECLARE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS Packet pexp(const Packet &a)
Definition: GenericPacketMath.h:788
Eigen::internal::pldexp_fast_impl::PacketI
unpacket_traits< Packet >::integer_packet PacketI
Definition: GenericPacketMathFunctions.h:140
Eigen::internal::psincos_float
EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS EIGEN_UNUSED Packet psincos_float(const Packet &_x)
Definition: GenericPacketMathFunctions.h:625
out
std::ofstream out("Result.txt")
p1
Vector3f p1
Definition: MatrixBase_all.cpp:2
p4
KeyInt p4(x4, 4)
E
DiscreteKey E(5, 2)
Eigen::internal::predux_any
EIGEN_STRONG_INLINE bool predux_any(const Packet4f &x)
Definition: AltiVec/PacketMath.h:1765
Eigen::internal::accurate_log2
Definition: GenericPacketMathFunctions.h:1071
tree::f
Point2(* f)(const Point3 &, OptionalJacobian< 2, 3 >)
Definition: testExpression.cpp:218
Eigen::internal::accurate_log2::operator()
EIGEN_STRONG_INLINE void operator()(const Packet &x, Packet &log2_x_hi, Packet &log2_x_lo)
Definition: GenericPacketMathFunctions.h:1074
Eigen::internal::pzero
EIGEN_STRONG_INLINE Packet8f pzero(const Packet8f &)
Definition: AVX/PacketMath.h:247
RealScalar
NumTraits< Scalar >::Real RealScalar
Definition: bench_gemm.cpp:47
a
ArrayXXi a
Definition: Array_initializer_list_23_cxx11.cpp:1
Eigen::internal::pmul
EIGEN_DEVICE_FUNC Packet pmul(const Packet &a, const Packet &b)
Definition: GenericPacketMath.h:237
EIGEN_STATIC_ASSERT
#define EIGEN_STATIC_ASSERT(CONDITION, MSG)
Definition: StaticAssert.h:127
Eigen::internal::pcos_float
EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS EIGEN_UNUSED Packet pcos_float(const Packet &x)
Definition: GenericPacketMathFunctions.h:755
Eigen::internal::generic_plog1p
Packet generic_plog1p(const Packet &x)
Definition: GenericPacketMathFunctions.h:392
Eigen::internal::pldexp_fast_impl
Definition: GenericPacketMathFunctions.h:139
p0
Vector3f p0
Definition: MatrixBase_all.cpp:2
Eigen::internal::y
const Scalar & y
Definition: Eigen/src/Core/MathFunctions.h:821
Eigen::internal::pmadd
EIGEN_STRONG_INLINE Packet4f pmadd(const Packet4f &a, const Packet4f &b, const Packet4f &c)
Definition: AltiVec/PacketMath.h:827
Eigen::internal::plog
EIGEN_DECLARE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS Packet plog(const Packet &a)
Definition: GenericPacketMath.h:796
p
float * p
Definition: Tutorial_Map_using.cpp:9
Eigen::internal::pabs
EIGEN_STRONG_INLINE Packet4f pabs(const Packet4f &a)
Definition: AltiVec/PacketMath.h:1176
v
Array< int, Dynamic, 1 > v
Definition: Array_initializer_list_vector_cxx11.cpp:1
Eigen::internal::accurate_log2< double >::operator()
EIGEN_STRONG_INLINE void operator()(const Packet &x, Packet &log2_x_hi, Packet &log2_x_lo)
Definition: GenericPacketMathFunctions.h:1171
Eigen::internal::pcplxflip
EIGEN_STRONG_INLINE Packet1cd pcplxflip(const Packet1cd &x)
Definition: MSA/Complex.h:620
Eigen::internal::padd
EIGEN_DEVICE_FUNC Packet padd(const Packet &a, const Packet &b)
Definition: GenericPacketMath.h:215
Eigen::internal::pmin
EIGEN_DEVICE_FUNC Packet pmin(const Packet &a, const Packet &b)
Definition: GenericPacketMath.h:512
min
#define min(a, b)
Definition: datatypes.h:19
Eigen::internal::psin_float
EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS EIGEN_UNUSED Packet psin_float(const Packet &x)
Definition: GenericPacketMathFunctions.h:747
Eigen::internal::plog2_double
EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS EIGEN_UNUSED Packet plog2_double(const Packet _x)
Definition: GenericPacketMathFunctions.h:383
Eigen::internal::ppolevl< Packet, 0 >::run
static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Packet run(const Packet &x, const typename unpacket_traits< Packet >::type coeff[])
Definition: GenericPacketMathFunctions.h:1569
Eigen::internal::plog_impl_double
EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS EIGEN_UNUSED Packet plog_impl_double(const Packet _x)
Definition: GenericPacketMathFunctions.h:279
Eigen::internal::fast_accurate_exp2< float >::operator()
EIGEN_STRONG_INLINE Packet operator()(const Packet &x)
Definition: GenericPacketMathFunctions.h:1274
gtsam.examples.DogLegOptimizerExample.float
float
Definition: DogLegOptimizerExample.py:113
Eigen::internal::por
EIGEN_STRONG_INLINE Packet8h por(const Packet8h &a, const Packet8h &b)
Definition: AVX/PacketMath.h:1042
Eigen::internal::ppolevl
Definition: GenericPacketMathFunctions.h:1560
EIGEN_UNUSED
#define EIGEN_UNUSED
Definition: Macros.h:1067
uint64_t
unsigned __int64 uint64_t
Definition: ms_stdint.h:95
N
#define N
Definition: igam.h:9
internal
Definition: BandTriangularSolver.h:13
Eigen::internal::pexp_double
EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS EIGEN_UNUSED Packet pexp_double(const Packet _x)
Definition: GenericPacketMathFunctions.h:490
Eigen::internal::make_integer
Definition: GenericPacketMathFunctions.h:23
Eigen::internal::prsqrt
EIGEN_STRONG_INLINE Packet4f prsqrt(const Packet4f &a)
Definition: MSA/PacketMath.h:730
Eigen::internal::pldexp_generic
EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC Packet pldexp_generic(const Packet &a, const Packet &exponent)
Definition: GenericPacketMathFunctions.h:85
Eigen::internal::generic_expm1
Packet generic_expm1(const Packet &x)
Definition: GenericPacketMathFunctions.h:408
Eigen::half
Definition: Half.h:142
align_3::t
Point2 t(10, 10)
Eigen::internal::generic_pow
EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS EIGEN_UNUSED Packet generic_pow(const Packet &x, const Packet &y)
Definition: GenericPacketMathFunctions.h:1449
Eigen::internal::pandnot
EIGEN_STRONG_INLINE Packet8h pandnot(const Packet8h &a, const Packet8h &b)
Definition: AVX/PacketMath.h:1053
Eigen::internal::pfrexp_generic_get_biased_exponent
EIGEN_STRONG_INLINE Packet4d pfrexp_generic_get_biased_exponent(const Packet4d &a)
Definition: AVX/PacketMath.h:743
Eigen::internal::fast_twosum
EIGEN_STRONG_INLINE void fast_twosum(const Packet &x, const Packet &y, Packet &s_hi, Packet &s_lo)
Definition: GenericPacketMathFunctions.h:892
Eigen::internal::make_integer< float >::type
numext::int32_t type
Definition: GenericPacketMathFunctions.h:24
Eigen::internal::pcmp_le
EIGEN_STRONG_INLINE Packet4f pcmp_le(const Packet4f &a, const Packet4f &b)
Definition: AltiVec/PacketMath.h:867
Eigen::NumTraits
Holds information about the various numeric (i.e. scalar) types allowed by Eigen.
Definition: NumTraits.h:232
x2
Pose3 x2(Rot3::Ypr(0.0, 0.0, 0.0), l2)
i
int i
Definition: BiCGSTAB_step_by_step.cpp:9
Eigen::internal::make_unsigned
Definition: Meta.h:182
Eigen::internal::pfloor
EIGEN_DECLARE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS Packet pfloor(const Packet &a)
Definition: GenericPacketMath.h:830
EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS
#define EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS
Definition: Macros.h:985
E1
E1
Definition: test_numpy_dtypes.cpp:102
Eigen::internal::ptrue
EIGEN_STRONG_INLINE Packet8h ptrue(const Packet8h &a)
Definition: AVX/PacketMath.h:978
Eigen::numext::int32_t
::int32_t int32_t
Definition: Meta.h:57
Scalar
SCALAR Scalar
Definition: bench_gemm.cpp:46
Eigen::internal::pfrexp_generic
EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC Packet pfrexp_generic(const Packet &a, Packet &exponent)
Definition: GenericPacketMathFunctions.h:40
px
RealScalar RealScalar * px
Definition: level1_cplx_impl.h:28


gtsam
Author(s):
autogenerated on Sat Nov 16 2024 04:02:21