geo_alignedbox.cpp
Go to the documentation of this file.
1 // This file is part of Eigen, a lightweight C++ template library
2 // for linear algebra.
3 //
4 // Copyright (C) 2008-2009 Gael Guennebaud <gael.guennebaud@inria.fr>
5 //
6 // This Source Code Form is subject to the terms of the Mozilla
7 // Public License v. 2.0. If a copy of the MPL was not distributed
8 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
9 
10 #include "main.h"
11 #include <Eigen/Geometry>
12 
13 using namespace std;
14 
15 // NOTE the following workaround was needed on some 32 bits builds to kill extra precision of x87 registers.
16 // It seems that it is not needed anymore, but let's keep it here, just in case...
17 
18 template<typename T> EIGEN_DONT_INLINE
19 void kill_extra_precision(T& /* x */) {
20  // This one worked but triggered a warning:
21  /* eigen_assert((void*)(&x) != (void*)0); */
22  // An alternative could be:
23  /* volatile T tmp = x; */
24  /* x = tmp; */
25 }
26 
27 
28 template<typename BoxType> void alignedbox(const BoxType& box)
29 {
30  /* this test covers the following files:
31  AlignedBox.h
32  */
33  typedef typename BoxType::Scalar Scalar;
34  typedef NumTraits<Scalar> ScalarTraits;
35  typedef typename ScalarTraits::Real RealScalar;
37 
38  const Index dim = box.dim();
39 
40  VectorType p0 = VectorType::Random(dim);
41  VectorType p1 = VectorType::Random(dim);
42  while( p1 == p0 ){
43  p1 = VectorType::Random(dim); }
44  RealScalar s1 = internal::random<RealScalar>(0,1);
45 
46  BoxType b0(dim);
47  BoxType b1(VectorType::Random(dim),VectorType::Random(dim));
48  BoxType b2;
49 
53 
54  b0.extend(p0);
55  b0.extend(p1);
56  VERIFY(b0.contains(p0*s1+(Scalar(1)-s1)*p1));
57  VERIFY(b0.contains(b0.center()));
58  VERIFY_IS_APPROX(b0.center(),(p0+p1)/Scalar(2));
59 
60  (b2 = b0).extend(b1);
61  VERIFY(b2.contains(b0));
62  VERIFY(b2.contains(b1));
63  VERIFY_IS_APPROX(b2.clamp(b0), b0);
64 
65  // intersection
66  BoxType box1(VectorType::Random(dim));
67  box1.extend(VectorType::Random(dim));
68  BoxType box2(VectorType::Random(dim));
69  box2.extend(VectorType::Random(dim));
70 
71  VERIFY(box1.intersects(box2) == !box1.intersection(box2).isEmpty());
72 
73  // alignment -- make sure there is no memory alignment assertion
74  BoxType *bp0 = new BoxType(dim);
75  BoxType *bp1 = new BoxType(dim);
76  bp0->extend(*bp1);
77  delete bp0;
78  delete bp1;
79 
80  // sampling
81  for( int i=0; i<10; ++i )
82  {
83  VectorType r = b0.sample();
84  VERIFY(b0.contains(r));
85  }
86 
87 }
88 
89 template<typename BoxType> void alignedboxTranslatable(const BoxType& box)
90 {
91  typedef typename BoxType::Scalar Scalar;
95 
96  alignedbox(box);
97 
98  const VectorType Ones = VectorType::Ones();
99  const VectorType UnitX = VectorType::UnitX();
100  const Index dim = box.dim();
101 
102  // box((-1, -1, -1), (1, 1, 1))
103  BoxType a(-Ones, Ones);
104 
105  VERIFY_IS_APPROX(a.sizes(), Ones * Scalar(2));
106 
107  BoxType b = a;
108  VectorType translate = Ones;
109  translate[0] = Scalar(2);
110  b.translate(translate);
111  // translate by (2, 1, 1) -> box((1, 0, 0), (3, 2, 2))
112 
113  VERIFY_IS_APPROX(b.sizes(), Ones * Scalar(2));
114  VERIFY_IS_APPROX((b.min)(), UnitX);
115  VERIFY_IS_APPROX((b.max)(), Ones * Scalar(2) + UnitX);
116 
117  // Test transform
118 
119  IsometryTransform tf = IsometryTransform::Identity();
120  tf.translation() = -translate;
121 
122  BoxType c = b.transformed(tf);
123  // translate by (-2, -1, -1) -> box((-1, -1, -1), (1, 1, 1))
124  VERIFY_IS_APPROX(c.sizes(), a.sizes());
125  VERIFY_IS_APPROX((c.min)(), (a.min)());
126  VERIFY_IS_APPROX((c.max)(), (a.max)());
127 
128  c.transform(tf);
129  // translate by (-2, -1, -1) -> box((-3, -2, -2), (-1, 0, 0))
130  VERIFY_IS_APPROX(c.sizes(), a.sizes());
131  VERIFY_IS_APPROX((c.min)(), Ones * Scalar(-2) - UnitX);
132  VERIFY_IS_APPROX((c.max)(), -UnitX);
133 
134  // Scaling
135 
136  AffineTransform atf = AffineTransform::Identity();
137  atf.scale(Scalar(3));
138  c.transform(atf);
139  // scale by 3 -> box((-9, -6, -6), (-3, 0, 0))
140  VERIFY_IS_APPROX(c.sizes(), Scalar(3) * a.sizes());
141  VERIFY_IS_APPROX((c.min)(), Ones * Scalar(-6) - UnitX * Scalar(3));
142  VERIFY_IS_APPROX((c.max)(), UnitX * Scalar(-3));
143 
144  atf = AffineTransform::Identity();
145  atf.scale(Scalar(-3));
146  c.transform(atf);
147  // scale by -3 -> box((27, 18, 18), (9, 0, 0))
148  VERIFY_IS_APPROX(c.sizes(), Scalar(9) * a.sizes());
149  VERIFY_IS_APPROX((c.min)(), UnitX * Scalar(9));
150  VERIFY_IS_APPROX((c.max)(), Ones * Scalar(18) + UnitX * Scalar(9));
151 
152  // Check identity transform within numerical precision.
153  BoxType transformedC = c.transformed(IsometryTransform::Identity());
154  VERIFY_IS_APPROX(transformedC, c);
155 
156  for (size_t i = 0; i < 10; ++i)
157  {
158  VectorType minCorner;
159  VectorType maxCorner;
160  for (Index d = 0; d < dim; ++d)
161  {
162  minCorner[d] = internal::random<Scalar>(-10,10);
163  maxCorner[d] = minCorner[d] + internal::random<Scalar>(0, 10);
164  }
165 
166  c = BoxType(minCorner, maxCorner);
167 
168  translate = VectorType::Random();
169  c.translate(translate);
170 
171  VERIFY_IS_APPROX((c.min)(), minCorner + translate);
172  VERIFY_IS_APPROX((c.max)(), maxCorner + translate);
173  }
174 }
175 
176 template<typename Scalar, typename Rotation>
177 Rotation rotate2D(Scalar angle) {
178  return Rotation2D<Scalar>(angle);
179 }
180 
181 template<typename Scalar, typename Rotation>
183  typedef typename NumTraits<Scalar>::NonInteger NonInteger;
185  template cast<Scalar>();
186 }
187 
188 template<typename Scalar, typename Rotation>
189 Rotation rotate3DZAxis(Scalar angle) {
190  return AngleAxis<Scalar>(angle, Matrix<Scalar, 3, 1>(0, 0, 1));
191 }
192 
193 template<typename Scalar, typename Rotation>
195  typedef typename NumTraits<Scalar>::NonInteger NonInteger;
196  return AngleAxis<NonInteger>(angle, Matrix<NonInteger, 3, 1>(0, 0, 1)).
197  toRotationMatrix().template cast<Scalar>();
198 }
199 
200 template<typename Scalar, typename Rotation>
201 Rotation rotate4DZWAxis(Scalar angle) {
203  result.block(0, 0, 3, 3) = rotate3DZAxis<Scalar, AngleAxisd>(angle).toRotationMatrix();
204  return result;
205 }
206 
207 template <typename MatrixType>
209 {
210  // algorithm from
211  // https://www.isprs-ann-photogramm-remote-sens-spatial-inf-sci.net/III-7/103/2016/isprs-annals-III-7-103-2016.pdf
212  const MatrixType rand = MatrixType::Random();
213  const MatrixType q = rand.householderQr().householderQ();
214  const JacobiSVD<MatrixType> svd = q.jacobiSvd(ComputeFullU | ComputeFullV);
215  const typename MatrixType::Scalar det = (svd.matrixU() * svd.matrixV().transpose()).determinant();
216  MatrixType diag = rand.Identity();
217  diag(MatrixType::RowsAtCompileTime - 1, MatrixType::ColsAtCompileTime - 1) = det;
218  const MatrixType rotation = svd.matrixU() * diag * svd.matrixV().transpose();
219  return rotation;
220 }
221 
222 template <typename Scalar, int Dim>
224 {
226  for(Index i=0; i<(1<<Dim); ++i)
227  {
228  for(Index j=0; j<Dim; ++j)
229  result(j,i) = (i & (1<<j)) ? min_(j) : max_(j);
230  }
231  return result;
232 }
233 
234 template<typename BoxType, typename Rotation> void alignedboxRotatable(
235  const BoxType& box,
236  Rotation (*rotate)(typename NumTraits<typename BoxType::Scalar>::NonInteger /*_angle*/))
237 {
239 
240  typedef typename BoxType::Scalar Scalar;
241  typedef typename NumTraits<Scalar>::NonInteger NonInteger;
245 
246  const VectorType Zero = VectorType::Zero();
247  const VectorType Ones = VectorType::Ones();
248  const VectorType UnitX = VectorType::UnitX();
249  const VectorType UnitY = VectorType::UnitY();
250  // this is vector (0, 0, -1, -1, -1, ...), i.e. with zeros at first and second dimensions
251  const VectorType UnitZ = Ones - UnitX - UnitY;
252 
253  // in this kind of comments the 3D case values will be illustrated
254  // box((-1, -1, -1), (1, 1, 1))
255  BoxType a(-Ones, Ones);
256 
257  // to allow templating this test for both 2D and 3D cases, we always set all
258  // but the first coordinate to the same value; so basically 3D case works as
259  // if you were looking at the scene from top
260 
261  VectorType minPoint = -2 * Ones;
262  minPoint[0] = -3;
263  VectorType maxPoint = Zero;
264  maxPoint[0] = -1;
265  BoxType c(minPoint, maxPoint);
266  // box((-3, -2, -2), (-1, 0, 0))
267 
268  IsometryTransform tf2 = IsometryTransform::Identity();
269  // for some weird reason the following statement has to be put separate from
270  // the following rotate call, otherwise precision problems arise...
271  Rotation rot = rotate(NonInteger(EIGEN_PI));
272  tf2.rotate(rot);
273 
274  c.transform(tf2);
275  // rotate by 180 deg around origin -> box((1, 0, -2), (3, 2, 0))
276 
277  VERIFY_IS_APPROX(c.sizes(), a.sizes());
278  VERIFY_IS_APPROX((c.min)(), UnitX - UnitZ * Scalar(2));
279  VERIFY_IS_APPROX((c.max)(), UnitX * Scalar(3) + UnitY * Scalar(2));
280 
281  rot = rotate(NonInteger(EIGEN_PI / 2));
282  tf2.setIdentity();
283  tf2.rotate(rot);
284 
285  c.transform(tf2);
286  // rotate by 90 deg around origin -> box((-2, 1, -2), (0, 3, 0))
287 
288  VERIFY_IS_APPROX(c.sizes(), a.sizes());
289  VERIFY_IS_APPROX((c.min)(), Ones * Scalar(-2) + UnitY * Scalar(3));
290  VERIFY_IS_APPROX((c.max)(), UnitY * Scalar(3));
291 
292  // box((-1, -1, -1), (1, 1, 1))
293  AffineTransform atf = AffineTransform::Identity();
294  atf.linearExt()(0, 1) = Scalar(1);
295  c = BoxType(-Ones, Ones);
296  c.transform(atf);
297  // 45 deg shear in x direction -> box((-2, -1, -1), (2, 1, 1))
298 
299  VERIFY_IS_APPROX(c.sizes(), Ones * Scalar(2) + UnitX * Scalar(2));
300  VERIFY_IS_APPROX((c.min)(), -Ones - UnitX);
301  VERIFY_IS_APPROX((c.max)(), Ones + UnitX);
302 }
303 
304 template<typename BoxType, typename Rotation> void alignedboxNonIntegralRotatable(
305  const BoxType& box,
306  Rotation (*rotate)(typename NumTraits<typename BoxType::Scalar>::NonInteger /*_angle*/))
307 {
309 
310  typedef typename BoxType::Scalar Scalar;
311  typedef typename NumTraits<Scalar>::NonInteger NonInteger;
312  enum { Dim = BoxType::AmbientDimAtCompileTime };
314  typedef Matrix<Scalar, Dim, (1 << Dim)> CornersType;
315  typedef Transform<Scalar, Dim, Isometry> IsometryTransform;
316  typedef Transform<Scalar, Dim, Affine> AffineTransform;
317 
318  const Index dim = box.dim();
319  const VectorType Zero = VectorType::Zero();
320  const VectorType Ones = VectorType::Ones();
321 
322  VectorType minPoint = -2 * Ones;
323  minPoint[1] = 1;
324  VectorType maxPoint = Zero;
325  maxPoint[1] = 3;
326  BoxType c(minPoint, maxPoint);
327  // ((-2, 1, -2), (0, 3, 0))
328 
329  VectorType cornerBL = (c.min)();
330  VectorType cornerTR = (c.max)();
331  VectorType cornerBR = (c.min)(); cornerBR[0] = cornerTR[0];
332  VectorType cornerTL = (c.max)(); cornerTL[0] = cornerBL[0];
333 
334  NonInteger angle = NonInteger(EIGEN_PI/3);
335  Rotation rot = rotate(angle);
336  IsometryTransform tf2;
337  tf2.setIdentity();
338  tf2.rotate(rot);
339 
340  c.transform(tf2);
341  // rotate by 60 deg -> box((-3.59, -1.23, -2), (-0.86, 1.5, 0))
342 
343  cornerBL = tf2 * cornerBL;
344  cornerBR = tf2 * cornerBR;
345  cornerTL = tf2 * cornerTL;
346  cornerTR = tf2 * cornerTR;
347 
348  VectorType minCorner = Ones * Scalar(-2);
349  VectorType maxCorner = Zero;
350  minCorner[0] = (min)((min)(cornerBL[0], cornerBR[0]), (min)(cornerTL[0], cornerTR[0]));
351  maxCorner[0] = (max)((max)(cornerBL[0], cornerBR[0]), (max)(cornerTL[0], cornerTR[0]));
352  minCorner[1] = (min)((min)(cornerBL[1], cornerBR[1]), (min)(cornerTL[1], cornerTR[1]));
353  maxCorner[1] = (max)((max)(cornerBL[1], cornerBR[1]), (max)(cornerTL[1], cornerTR[1]));
354 
355  for (Index d = 2; d < dim; ++d)
356  VERIFY_IS_APPROX(c.sizes()[d], Scalar(2));
357 
358  VERIFY_IS_APPROX((c.min)(), minCorner);
359  VERIFY_IS_APPROX((c.max)(), maxCorner);
360 
361  VectorType minCornerValue = Ones * Scalar(-2);
362  VectorType maxCornerValue = Zero;
363  minCornerValue[0] = Scalar(Scalar(-sqrt(2*2 + 3*3)) * Scalar(cos(Scalar(atan(2.0/3.0)) - angle/2)));
364  minCornerValue[1] = Scalar(Scalar(-sqrt(1*1 + 2*2)) * Scalar(sin(Scalar(atan(2.0/1.0)) - angle/2)));
365  maxCornerValue[0] = Scalar(-sin(angle));
366  maxCornerValue[1] = Scalar(3 * cos(angle));
367  VERIFY_IS_APPROX((c.min)(), minCornerValue);
368  VERIFY_IS_APPROX((c.max)(), maxCornerValue);
369 
370  // randomized test - translate and rotate the box and compare to a box made of transformed vertices
371  for (size_t i = 0; i < 10; ++i)
372  {
373  for (Index d = 0; d < dim; ++d)
374  {
375  minCorner[d] = internal::random<Scalar>(-10,10);
376  maxCorner[d] = minCorner[d] + internal::random<Scalar>(0, 10);
377  }
378 
379  c = BoxType(minCorner, maxCorner);
380 
381  CornersType corners = boxGetCorners(minCorner, maxCorner);
382 
383  typename AffineTransform::LinearMatrixType rotation =
384  randomRotationMatrix<typename AffineTransform::LinearMatrixType>();
385 
386  tf2.setIdentity();
387  tf2.rotate(rotation);
388  tf2.translate(VectorType::Random());
389 
390  c.transform(tf2);
391  corners = tf2 * corners;
392 
393  minCorner = corners.rowwise().minCoeff();
394  maxCorner = corners.rowwise().maxCoeff();
395 
396  VERIFY_IS_APPROX((c.min)(), minCorner);
397  VERIFY_IS_APPROX((c.max)(), maxCorner);
398  }
399 
400  // randomized test - transform the box with a random affine matrix and compare to a box made of transformed vertices
401  for (size_t i = 0; i < 10; ++i)
402  {
403  for (Index d = 0; d < dim; ++d)
404  {
405  minCorner[d] = internal::random<Scalar>(-10,10);
406  maxCorner[d] = minCorner[d] + internal::random<Scalar>(0, 10);
407  }
408 
409  c = BoxType(minCorner, maxCorner);
410 
411  CornersType corners = boxGetCorners(minCorner, maxCorner);
412 
413  AffineTransform atf = AffineTransform::Identity();
414  atf.linearExt() = AffineTransform::LinearPart::Random();
415  atf.translate(VectorType::Random());
416 
417  c.transform(atf);
418  corners = atf * corners;
419 
420  minCorner = corners.rowwise().minCoeff();
421  maxCorner = corners.rowwise().maxCoeff();
422 
423  VERIFY_IS_APPROX((c.min)(), minCorner);
424  VERIFY_IS_APPROX((c.max)(), maxCorner);
425  }
426 }
427 
428 template<typename BoxType>
429 void alignedboxCastTests(const BoxType& box)
430 {
431  // casting
432  typedef typename BoxType::Scalar Scalar;
434 
435  const Index dim = box.dim();
436 
437  VectorType p0 = VectorType::Random(dim);
438  VectorType p1 = VectorType::Random(dim);
439 
440  BoxType b0(dim);
441 
442  b0.extend(p0);
443  b0.extend(p1);
444 
445  const int Dim = BoxType::AmbientDimAtCompileTime;
446  typedef typename GetDifferentType<Scalar>::type OtherScalar;
447  AlignedBox<OtherScalar,Dim> hp1f = b0.template cast<OtherScalar>();
448  VERIFY_IS_APPROX(hp1f.template cast<Scalar>(),b0);
449  AlignedBox<Scalar,Dim> hp1d = b0.template cast<Scalar>();
450  VERIFY_IS_APPROX(hp1d.template cast<Scalar>(),b0);
451 }
452 
453 
455 {
456  Vector2f m; m << -1.0f, -2.0f;
457  Vector2f M; M << 1.0f, 5.0f;
458 
459  typedef AlignedBox2f BoxType;
460  BoxType box( m, M );
461 
462  Vector2f sides = M-m;
463  VERIFY_IS_APPROX(sides, box.sizes() );
464  VERIFY_IS_APPROX(sides[1], box.sizes()[1] );
465  VERIFY_IS_APPROX(sides[1], box.sizes().maxCoeff() );
466  VERIFY_IS_APPROX(sides[0], box.sizes().minCoeff() );
467 
468  VERIFY_IS_APPROX( 14.0f, box.volume() );
469  VERIFY_IS_APPROX( 53.0f, box.diagonal().squaredNorm() );
470  VERIFY_IS_APPROX( std::sqrt( 53.0f ), box.diagonal().norm() );
471 
472  VERIFY_IS_APPROX( m, box.corner( BoxType::BottomLeft ) );
473  VERIFY_IS_APPROX( M, box.corner( BoxType::TopRight ) );
474  Vector2f bottomRight; bottomRight << M[0], m[1];
475  Vector2f topLeft; topLeft << m[0], M[1];
476  VERIFY_IS_APPROX( bottomRight, box.corner( BoxType::BottomRight ) );
477  VERIFY_IS_APPROX( topLeft, box.corner( BoxType::TopLeft ) );
478 }
479 
480 
482 {
483  Vector3i m; m << -1, -2, 0;
484  Vector3i M; M << 1, 5, 3;
485 
486  typedef AlignedBox3i BoxType;
487  BoxType box( m, M );
488 
489  Vector3i sides = M-m;
490  VERIFY_IS_APPROX(sides, box.sizes() );
491  VERIFY_IS_APPROX(sides[1], box.sizes()[1] );
492  VERIFY_IS_APPROX(sides[1], box.sizes().maxCoeff() );
493  VERIFY_IS_APPROX(sides[0], box.sizes().minCoeff() );
494 
495  VERIFY_IS_APPROX( 42, box.volume() );
496  VERIFY_IS_APPROX( 62, box.diagonal().squaredNorm() );
497 
498  VERIFY_IS_APPROX( m, box.corner( BoxType::BottomLeftFloor ) );
499  VERIFY_IS_APPROX( M, box.corner( BoxType::TopRightCeil ) );
500  Vector3i bottomRightFloor; bottomRightFloor << M[0], m[1], m[2];
501  Vector3i topLeftFloor; topLeftFloor << m[0], M[1], m[2];
502  VERIFY_IS_APPROX( bottomRightFloor, box.corner( BoxType::BottomRightFloor ) );
503  VERIFY_IS_APPROX( topLeftFloor, box.corner( BoxType::TopLeftFloor ) );
504 }
505 
506 
507 EIGEN_DECLARE_TEST(geo_alignedbox)
508 {
509  for(int i = 0; i < g_repeat; i++)
510  {
511  CALL_SUBTEST_1( (alignedboxNonIntegralRotatable<AlignedBox2f, Rotation2Df>(AlignedBox2f(), &rotate2D)) );
512  CALL_SUBTEST_2( alignedboxCastTests(AlignedBox2f()) );
513 
514  CALL_SUBTEST_3( (alignedboxNonIntegralRotatable<AlignedBox3f, AngleAxisf>(AlignedBox3f(), &rotate3DZAxis)) );
515  CALL_SUBTEST_4( alignedboxCastTests(AlignedBox3f()) );
516 
517  CALL_SUBTEST_5( (alignedboxNonIntegralRotatable<AlignedBox4d, Matrix4d>(AlignedBox4d(), &rotate4DZWAxis)) );
518  CALL_SUBTEST_6( alignedboxCastTests(AlignedBox4d()) );
519 
520  CALL_SUBTEST_7( alignedboxTranslatable(AlignedBox1d()) );
521  CALL_SUBTEST_8( alignedboxCastTests(AlignedBox1d()) );
522 
523  CALL_SUBTEST_9( alignedboxTranslatable(AlignedBox1i()) );
524  CALL_SUBTEST_10( (alignedboxRotatable<AlignedBox2i, Matrix2i>(AlignedBox2i(), &rotate2DIntegral<int, Matrix2i>)) );
525  CALL_SUBTEST_11( (alignedboxRotatable<AlignedBox3i, Matrix3i>(AlignedBox3i(), &rotate3DZAxisIntegral<int, Matrix3i>)) );
526 
528  }
531 }
Matrix3f m
void alignedboxRotatable(const BoxType &box, Rotation(*rotate)(typename NumTraits< typename BoxType::Scalar >::NonInteger))
int EIGEN_BLAS_FUNC() rot(int *n, RealScalar *px, int *incx, RealScalar *py, int *incy, RealScalar *pc, RealScalar *ps)
SCALAR Scalar
Definition: bench_gemm.cpp:46
#define CALL_SUBTEST_12(FUNC)
void alignedboxCastTests(const BoxType &box)
cout<< "Here is the matrix m:"<< endl<< m<< endl;JacobiSVD< MatrixXf > svd(m, ComputeThinU|ComputeThinV)
#define CALL_SUBTEST_9(FUNC)
#define max(a, b)
Definition: datatypes.h:20
#define CALL_SUBTEST_6(FUNC)
#define CALL_SUBTEST_4(FUNC)
Matrix< RealScalar, Dynamic, Dynamic > M
Definition: bench_gemm.cpp:51
Jet< T, N > cos(const Jet< T, N > &f)
Definition: jet.h:426
Rotation rotate2DIntegral(typename NumTraits< Scalar >::NonInteger angle)
Scalar * b
Definition: benchVecAdd.cpp:17
Vector3f p1
void alignedbox(const BoxType &box)
#define EIGEN_PI
Matrix diag(const std::vector< Matrix > &Hs)
Definition: Matrix.cpp:206
#define min(a, b)
Definition: datatypes.h:19
#define CALL_SUBTEST_13(FUNC)
#define CALL_SUBTEST_3(FUNC)
void determinant(const MatrixType &m)
Definition: determinant.cpp:14
#define CALL_SUBTEST_7(FUNC)
Scalar Scalar * c
Definition: benchVecAdd.cpp:17
Vector2 b2(4, -5)
#define CALL_SUBTEST_11(FUNC)
Jet< T, N > sin(const Jet< T, N > &f)
Definition: jet.h:439
void alignedboxTranslatable(const BoxType &box)
Rotation rotate2D(Scalar angle)
#define CALL_SUBTEST_14(FUNC)
Definition: BFloat16.h:88
MatrixXf MatrixType
Vector3f p0
An axis aligned box.
#define CALL_SUBTEST_10(FUNC)
#define EIGEN_DONT_INLINE
Definition: Macros.h:940
EIGEN_DEVICE_FUNC const AtanReturnType atan() const
#define VERIFY_IS_APPROX(a, b)
#define CALL_SUBTEST_1(FUNC)
Values result
Rotation rotate3DZAxis(Scalar angle)
static EIGEN_DEVICE_FUNC Matrix< Scalar, 2, 2 > toRotationMatrix(const Scalar &s)
Definition: RotationBase.h:182
static int g_repeat
Definition: main.h:169
EIGEN_DEFAULT_DENSE_INDEX_TYPE Index
The Index type as used for the API.
Definition: Meta.h:74
P rotate(const T &r, const P &pt)
Definition: lieProxies.h:47
Point2(* f)(const Point3 &, OptionalJacobian< 2, 3 >)
#define CALL_SUBTEST_8(FUNC)
void alignedboxNonIntegralRotatable(const BoxType &box, Rotation(*rotate)(typename NumTraits< typename BoxType::Scalar >::NonInteger))
EIGEN_DEVICE_FUNC const Scalar & q
EIGEN_DECLARE_TEST(geo_alignedbox)
Rotation rotate3DZAxisIntegral(typename NumTraits< Scalar >::NonInteger angle)
GTSAM_EXPORT Matrix3 topLeft(const SO4 &Q, OptionalJacobian< 9, 6 > H)
Definition: SO4.cpp:206
NumTraits< Scalar >::Real RealScalar
Definition: bench_gemm.cpp:47
mp::number< mp::cpp_dec_float< 100 >, mp::et_on > Real
Represents a rotation/orientation in a 2 dimensional space.
#define CALL_SUBTEST_5(FUNC)
#define VERIFY(a)
Definition: main.h:380
Two-sided Jacobi SVD decomposition of a rectangular matrix.
MatrixType randomRotationMatrix()
void corners(const MatrixType &m)
Definition: corners.cpp:16
#define CALL_SUBTEST_2(FUNC)
Jet< T, N > sqrt(const Jet< T, N > &f)
Definition: jet.h:418
void specificTest1()
Matrix< Scalar, Dim,(1<< Dim)> boxGetCorners(const Matrix< Scalar, Dim, 1 > &min_, const Matrix< Scalar, Dim, 1 > &max_)
EIGEN_DONT_INLINE void kill_extra_precision(T &)
Point3 rotate(const Point3 &p, OptionalJacobian< 3, 3 > H1={}, OptionalJacobian< 3, 3 > H2={}) const
Definition: Rot3M.cpp:148
The matrix class, also used for vectors and row-vectors.
Rot3 rotation(const Pose3 &pose, OptionalJacobian< 3, 6 > H)
void specificTest2()
Represents a 3D rotation as a rotation angle around an arbitrary 3D axis.
Represents an homogeneous transformation in a N dimensional space.
std::ptrdiff_t j
Rotation rotate4DZWAxis(Scalar angle)
Vector2 b1(2, -1)


gtsam
Author(s):
autogenerated on Tue Jul 4 2023 02:34:17