52 template <
typename ITERATOR>
54 : Base(firstConditional, lastConditional) {}
57 template <
class CONTAINER>
59 push_back(conditionals);
64 template <
class DERIVEDCONDITIONAL>
72 template <
class DERIVEDCONDITIONAL>
74 std::initializer_list<std::shared_ptr<DERIVEDCONDITIONAL> >
conditionals)
83 bool equals(
const This& bn,
double tol = 1
e-9)
const;
87 const std::string&
s =
"",
170 std::pair<Matrix, Vector>
matrix()
const;
249 using Base::evaluate;
250 using Base::logProbability;
256 #ifdef GTSAM_ENABLE_BOOST_SERIALIZATION 258 friend class boost::serialization::access;
259 template<
class ARCHIVE>
260 void serialize(ARCHIVE & ar,
const unsigned int ) {
261 ar & BOOST_SERIALIZATION_BASE_OBJECT_NVP(Base);
BayesNet< GaussianConditional > Base
std::string serialize(const T &input)
serializes to a string
void determinant(const MatrixType &m)
double logDeterminant(const typename BAYESTREE::sharedClique &clique)
GaussianConditional ConditionalType
GaussianBayesNet(const CONTAINER &conditionals)
EIGEN_STRONG_INLINE Packet4f print(const Packet4f &a)
NonlinearFactorGraph graph
static const KeyFormatter DefaultKeyFormatter
static enum @1107 ordering
const KeyFormatter & formatter
Included from all GTSAM files.
std::shared_ptr< ConditionalType > sharedConditional
std::shared_ptr< This > shared_ptr
GaussianBayesNet(ITERATOR firstConditional, ITERATOR lastConditional)
double operator()(const VectorValues &x) const
Evaluate probability density, sugar.
Point3 optimize(const NonlinearFactorGraph &graph, const Values &values, Key landmarkKey)
Array< double, 1, 3 > e(1./3., 0.5, 2.)
Conditional Gaussian Base class.
std::function< std::string(Key)> KeyFormatter
Typedef for a function to format a key, i.e. to convert it to a string.
void print(const std::string &s="", const KeyFormatter &formatter=DefaultKeyFormatter) const override
print graph
GaussianBayesNet(const FactorGraph< DERIVEDCONDITIONAL > &graph)
const std::vector< GaussianConditional::shared_ptr > conditionals
Map< Matrix< T, Dynamic, Dynamic, ColMajor >, 0, OuterStride<> > matrix(T *data, int rows, int cols, int stride)
set noclip points set clip one set noclip two set bar set border lt lw set xdata set ydata set zdata set x2data set y2data set boxwidth set dummy x
GaussianBayesNet(std::initializer_list< std::shared_ptr< DERIVEDCONDITIONAL > > conditionals)