InverseSize4.h
Go to the documentation of this file.
1 // This file is part of Eigen, a lightweight C++ template library
2 // for linear algebra.
3 //
4 // Copyright (C) 2001 Intel Corporation
5 // Copyright (C) 2010 Gael Guennebaud <gael.guennebaud@inria.fr>
6 // Copyright (C) 2009 Benoit Jacob <jacob.benoit.1@gmail.com>
7 //
8 // This Source Code Form is subject to the terms of the Mozilla
9 // Public License v. 2.0. If a copy of the MPL was not distributed
10 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
11 //
12 // The algorithm below is a reimplementation of former \src\LU\Inverse_SSE.h using PacketMath.
13 // inv(M) = M#/|M|, where inv(M), M# and |M| denote the inverse of M,
14 // adjugate of M and determinant of M respectively. M# is computed block-wise
15 // using specific formulae. For proof, see:
16 // https://lxjk.github.io/2017/09/03/Fast-4x4-Matrix-Inverse-with-SSE-SIMD-Explained.html
17 // Variable names are adopted from \src\LU\Inverse_SSE.h.
18 //
19 // The SSE code for the 4x4 float and double matrix inverse in former (deprecated) \src\LU\Inverse_SSE.h
20 // comes from the following Intel's library:
21 // http://software.intel.com/en-us/articles/optimized-matrix-library-for-use-with-the-intel-pentiumr-4-processors-sse2-instructions/
22 //
23 // Here is the respective copyright and license statement:
24 //
25 // Copyright (c) 2001 Intel Corporation.
26 //
27 // Permition is granted to use, copy, distribute and prepare derivative works
28 // of this library for any purpose and without fee, provided, that the above
29 // copyright notice and this statement appear in all copies.
30 // Intel makes no representations about the suitability of this software for
31 // any purpose, and specifically disclaims all warranties.
32 // See LEGAL.TXT for all the legal information.
33 //
34 // TODO: Unify implementations of different data types (i.e. float and double).
35 #ifndef EIGEN_INVERSE_SIZE_4_H
36 #define EIGEN_INVERSE_SIZE_4_H
37 
38 namespace Eigen
39 {
40 namespace internal
41 {
42 template <typename MatrixType, typename ResultType>
43 struct compute_inverse_size4<Architecture::Target, float, MatrixType, ResultType>
44 {
45  enum
46  {
47  MatrixAlignment = traits<MatrixType>::Alignment,
48  ResultAlignment = traits<ResultType>::Alignment,
49  StorageOrdersMatch = (MatrixType::Flags & RowMajorBit) == (ResultType::Flags & RowMajorBit)
50  };
51  typedef typename conditional<(MatrixType::Flags & LinearAccessBit), MatrixType const &, typename MatrixType::PlainObject>::type ActualMatrixType;
52 
53  static void run(const MatrixType &mat, ResultType &result)
54  {
56 
57  const float* data = matrix.data();
58  const Index stride = matrix.innerStride();
59  Packet4f _L1 = ploadt<Packet4f,MatrixAlignment>(data);
60  Packet4f _L2 = ploadt<Packet4f,MatrixAlignment>(data + stride*4);
61  Packet4f _L3 = ploadt<Packet4f,MatrixAlignment>(data + stride*8);
62  Packet4f _L4 = ploadt<Packet4f,MatrixAlignment>(data + stride*12);
63 
64  // Four 2x2 sub-matrices of the input matrix
65  // input = [[A, B],
66  // [C, D]]
67  Packet4f A, B, C, D;
68 
69  if (!StorageOrdersMatch)
70  {
71  A = vec4f_unpacklo(_L1, _L2);
72  B = vec4f_unpacklo(_L3, _L4);
73  C = vec4f_unpackhi(_L1, _L2);
74  D = vec4f_unpackhi(_L3, _L4);
75  }
76  else
77  {
78  A = vec4f_movelh(_L1, _L2);
79  B = vec4f_movehl(_L2, _L1);
80  C = vec4f_movelh(_L3, _L4);
81  D = vec4f_movehl(_L4, _L3);
82  }
83 
84  Packet4f AB, DC;
85 
86  // AB = A# * B, where A# denotes the adjugate of A, and * denotes matrix product.
87  AB = pmul(vec4f_swizzle2(A, A, 3, 3, 0, 0), B);
88  AB = psub(AB, pmul(vec4f_swizzle2(A, A, 1, 1, 2, 2), vec4f_swizzle2(B, B, 2, 3, 0, 1)));
89 
90  // DC = D#*C
91  DC = pmul(vec4f_swizzle2(D, D, 3, 3, 0, 0), C);
92  DC = psub(DC, pmul(vec4f_swizzle2(D, D, 1, 1, 2, 2), vec4f_swizzle2(C, C, 2, 3, 0, 1)));
93 
94  // determinants of the sub-matrices
95  Packet4f dA, dB, dC, dD;
96 
97  dA = pmul(vec4f_swizzle2(A, A, 3, 3, 1, 1), A);
98  dA = psub(dA, vec4f_movehl(dA, dA));
99 
100  dB = pmul(vec4f_swizzle2(B, B, 3, 3, 1, 1), B);
101  dB = psub(dB, vec4f_movehl(dB, dB));
102 
103  dC = pmul(vec4f_swizzle2(C, C, 3, 3, 1, 1), C);
104  dC = psub(dC, vec4f_movehl(dC, dC));
105 
106  dD = pmul(vec4f_swizzle2(D, D, 3, 3, 1, 1), D);
107  dD = psub(dD, vec4f_movehl(dD, dD));
108 
109  Packet4f d, d1, d2;
110 
111  d = pmul(vec4f_swizzle2(DC, DC, 0, 2, 1, 3), AB);
112  d = padd(d, vec4f_movehl(d, d));
113  d = padd(d, vec4f_swizzle2(d, d, 1, 0, 0, 0));
114  d1 = pmul(dA, dD);
115  d2 = pmul(dB, dC);
116 
117  // determinant of the input matrix, det = |A||D| + |B||C| - trace(A#*B*D#*C)
118  Packet4f det = vec4f_duplane(psub(padd(d1, d2), d), 0);
119 
120  // reciprocal of the determinant of the input matrix, rd = 1/det
121  Packet4f rd = pdiv(pset1<Packet4f>(1.0f), det);
122 
123  // Four sub-matrices of the inverse
124  Packet4f iA, iB, iC, iD;
125 
126  // iD = D*|A| - C*A#*B
127  iD = pmul(vec4f_swizzle2(C, C, 0, 0, 2, 2), vec4f_movelh(AB, AB));
128  iD = padd(iD, pmul(vec4f_swizzle2(C, C, 1, 1, 3, 3), vec4f_movehl(AB, AB)));
129  iD = psub(pmul(D, vec4f_duplane(dA, 0)), iD);
130 
131  // iA = A*|D| - B*D#*C
132  iA = pmul(vec4f_swizzle2(B, B, 0, 0, 2, 2), vec4f_movelh(DC, DC));
133  iA = padd(iA, pmul(vec4f_swizzle2(B, B, 1, 1, 3, 3), vec4f_movehl(DC, DC)));
134  iA = psub(pmul(A, vec4f_duplane(dD, 0)), iA);
135 
136  // iB = C*|B| - D * (A#B)# = C*|B| - D*B#*A
137  iB = pmul(D, vec4f_swizzle2(AB, AB, 3, 0, 3, 0));
138  iB = psub(iB, pmul(vec4f_swizzle2(D, D, 1, 0, 3, 2), vec4f_swizzle2(AB, AB, 2, 1, 2, 1)));
139  iB = psub(pmul(C, vec4f_duplane(dB, 0)), iB);
140 
141  // iC = B*|C| - A * (D#C)# = B*|C| - A*C#*D
142  iC = pmul(A, vec4f_swizzle2(DC, DC, 3, 0, 3, 0));
143  iC = psub(iC, pmul(vec4f_swizzle2(A, A, 1, 0, 3, 2), vec4f_swizzle2(DC, DC, 2, 1, 2, 1)));
144  iC = psub(pmul(B, vec4f_duplane(dC, 0)), iC);
145 
146  const float sign_mask[4] = {0.0f, numext::bit_cast<float>(0x80000000u), numext::bit_cast<float>(0x80000000u), 0.0f};
147  const Packet4f p4f_sign_PNNP = ploadu<Packet4f>(sign_mask);
148  rd = pxor(rd, p4f_sign_PNNP);
149  iA = pmul(iA, rd);
150  iB = pmul(iB, rd);
151  iC = pmul(iC, rd);
152  iD = pmul(iD, rd);
153 
154  Index res_stride = result.outerStride();
155  float *res = result.data();
156 
157  pstoret<float, Packet4f, ResultAlignment>(res + 0, vec4f_swizzle2(iA, iB, 3, 1, 3, 1));
158  pstoret<float, Packet4f, ResultAlignment>(res + res_stride, vec4f_swizzle2(iA, iB, 2, 0, 2, 0));
159  pstoret<float, Packet4f, ResultAlignment>(res + 2 * res_stride, vec4f_swizzle2(iC, iD, 3, 1, 3, 1));
160  pstoret<float, Packet4f, ResultAlignment>(res + 3 * res_stride, vec4f_swizzle2(iC, iD, 2, 0, 2, 0));
161  }
162 };
163 
164 #if !(defined EIGEN_VECTORIZE_NEON && !(EIGEN_ARCH_ARM64 && !EIGEN_APPLE_DOUBLE_NEON_BUG))
165 // same algorithm as above, except that each operand is split into
166 // halves for two registers to hold.
167 template <typename MatrixType, typename ResultType>
168 struct compute_inverse_size4<Architecture::Target, double, MatrixType, ResultType>
169 {
170  enum
171  {
172  MatrixAlignment = traits<MatrixType>::Alignment,
173  ResultAlignment = traits<ResultType>::Alignment,
174  StorageOrdersMatch = (MatrixType::Flags & RowMajorBit) == (ResultType::Flags & RowMajorBit)
175  };
176  typedef typename conditional<(MatrixType::Flags & LinearAccessBit),
177  MatrixType const &,
178  typename MatrixType::PlainObject>::type
180 
181  static void run(const MatrixType &mat, ResultType &result)
182  {
184 
185  // Four 2x2 sub-matrices of the input matrix, each is further divided into upper and lower
186  // row e.g. A1, upper row of A, A2, lower row of A
187  // input = [[A, B], = [[[A1, [B1,
188  // [C, D]] A2], B2]],
189  // [[C1, [D1,
190  // C2], D2]]]
191 
192  Packet2d A1, A2, B1, B2, C1, C2, D1, D2;
193 
194  const double* data = matrix.data();
195  const Index stride = matrix.innerStride();
196  if (StorageOrdersMatch)
197  {
198  A1 = ploadt<Packet2d,MatrixAlignment>(data + stride*0);
199  B1 = ploadt<Packet2d,MatrixAlignment>(data + stride*2);
200  A2 = ploadt<Packet2d,MatrixAlignment>(data + stride*4);
201  B2 = ploadt<Packet2d,MatrixAlignment>(data + stride*6);
202  C1 = ploadt<Packet2d,MatrixAlignment>(data + stride*8);
203  D1 = ploadt<Packet2d,MatrixAlignment>(data + stride*10);
204  C2 = ploadt<Packet2d,MatrixAlignment>(data + stride*12);
205  D2 = ploadt<Packet2d,MatrixAlignment>(data + stride*14);
206  }
207  else
208  {
209  Packet2d temp;
210  A1 = ploadt<Packet2d,MatrixAlignment>(data + stride*0);
211  C1 = ploadt<Packet2d,MatrixAlignment>(data + stride*2);
212  A2 = ploadt<Packet2d,MatrixAlignment>(data + stride*4);
213  C2 = ploadt<Packet2d,MatrixAlignment>(data + stride*6);
214  temp = A1;
215  A1 = vec2d_unpacklo(A1, A2);
216  A2 = vec2d_unpackhi(temp, A2);
217 
218  temp = C1;
219  C1 = vec2d_unpacklo(C1, C2);
220  C2 = vec2d_unpackhi(temp, C2);
221 
222  B1 = ploadt<Packet2d,MatrixAlignment>(data + stride*8);
223  D1 = ploadt<Packet2d,MatrixAlignment>(data + stride*10);
224  B2 = ploadt<Packet2d,MatrixAlignment>(data + stride*12);
225  D2 = ploadt<Packet2d,MatrixAlignment>(data + stride*14);
226 
227  temp = B1;
228  B1 = vec2d_unpacklo(B1, B2);
229  B2 = vec2d_unpackhi(temp, B2);
230 
231  temp = D1;
232  D1 = vec2d_unpacklo(D1, D2);
233  D2 = vec2d_unpackhi(temp, D2);
234  }
235 
236  // determinants of the sub-matrices
237  Packet2d dA, dB, dC, dD;
238 
239  dA = vec2d_swizzle2(A2, A2, 1);
240  dA = pmul(A1, dA);
241  dA = psub(dA, vec2d_duplane(dA, 1));
242 
243  dB = vec2d_swizzle2(B2, B2, 1);
244  dB = pmul(B1, dB);
245  dB = psub(dB, vec2d_duplane(dB, 1));
246 
247  dC = vec2d_swizzle2(C2, C2, 1);
248  dC = pmul(C1, dC);
249  dC = psub(dC, vec2d_duplane(dC, 1));
250 
251  dD = vec2d_swizzle2(D2, D2, 1);
252  dD = pmul(D1, dD);
253  dD = psub(dD, vec2d_duplane(dD, 1));
254 
255  Packet2d DC1, DC2, AB1, AB2;
256 
257  // AB = A# * B, where A# denotes the adjugate of A, and * denotes matrix product.
258  AB1 = pmul(B1, vec2d_duplane(A2, 1));
259  AB2 = pmul(B2, vec2d_duplane(A1, 0));
260  AB1 = psub(AB1, pmul(B2, vec2d_duplane(A1, 1)));
261  AB2 = psub(AB2, pmul(B1, vec2d_duplane(A2, 0)));
262 
263  // DC = D#*C
264  DC1 = pmul(C1, vec2d_duplane(D2, 1));
265  DC2 = pmul(C2, vec2d_duplane(D1, 0));
266  DC1 = psub(DC1, pmul(C2, vec2d_duplane(D1, 1)));
267  DC2 = psub(DC2, pmul(C1, vec2d_duplane(D2, 0)));
268 
269  Packet2d d1, d2;
270 
271  // determinant of the input matrix, det = |A||D| + |B||C| - trace(A#*B*D#*C)
272  Packet2d det;
273 
274  // reciprocal of the determinant of the input matrix, rd = 1/det
275  Packet2d rd;
276 
277  d1 = pmul(AB1, vec2d_swizzle2(DC1, DC2, 0));
278  d2 = pmul(AB2, vec2d_swizzle2(DC1, DC2, 3));
279  rd = padd(d1, d2);
280  rd = padd(rd, vec2d_duplane(rd, 1));
281 
282  d1 = pmul(dA, dD);
283  d2 = pmul(dB, dC);
284 
285  det = padd(d1, d2);
286  det = psub(det, rd);
287  det = vec2d_duplane(det, 0);
288  rd = pdiv(pset1<Packet2d>(1.0), det);
289 
290  // rows of four sub-matrices of the inverse
291  Packet2d iA1, iA2, iB1, iB2, iC1, iC2, iD1, iD2;
292 
293  // iD = D*|A| - C*A#*B
294  iD1 = pmul(AB1, vec2d_duplane(C1, 0));
295  iD2 = pmul(AB1, vec2d_duplane(C2, 0));
296  iD1 = padd(iD1, pmul(AB2, vec2d_duplane(C1, 1)));
297  iD2 = padd(iD2, pmul(AB2, vec2d_duplane(C2, 1)));
298  dA = vec2d_duplane(dA, 0);
299  iD1 = psub(pmul(D1, dA), iD1);
300  iD2 = psub(pmul(D2, dA), iD2);
301 
302  // iA = A*|D| - B*D#*C
303  iA1 = pmul(DC1, vec2d_duplane(B1, 0));
304  iA2 = pmul(DC1, vec2d_duplane(B2, 0));
305  iA1 = padd(iA1, pmul(DC2, vec2d_duplane(B1, 1)));
306  iA2 = padd(iA2, pmul(DC2, vec2d_duplane(B2, 1)));
307  dD = vec2d_duplane(dD, 0);
308  iA1 = psub(pmul(A1, dD), iA1);
309  iA2 = psub(pmul(A2, dD), iA2);
310 
311  // iB = C*|B| - D * (A#B)# = C*|B| - D*B#*A
312  iB1 = pmul(D1, vec2d_swizzle2(AB2, AB1, 1));
313  iB2 = pmul(D2, vec2d_swizzle2(AB2, AB1, 1));
314  iB1 = psub(iB1, pmul(vec2d_swizzle2(D1, D1, 1), vec2d_swizzle2(AB2, AB1, 2)));
315  iB2 = psub(iB2, pmul(vec2d_swizzle2(D2, D2, 1), vec2d_swizzle2(AB2, AB1, 2)));
316  dB = vec2d_duplane(dB, 0);
317  iB1 = psub(pmul(C1, dB), iB1);
318  iB2 = psub(pmul(C2, dB), iB2);
319 
320  // iC = B*|C| - A * (D#C)# = B*|C| - A*C#*D
321  iC1 = pmul(A1, vec2d_swizzle2(DC2, DC1, 1));
322  iC2 = pmul(A2, vec2d_swizzle2(DC2, DC1, 1));
323  iC1 = psub(iC1, pmul(vec2d_swizzle2(A1, A1, 1), vec2d_swizzle2(DC2, DC1, 2)));
324  iC2 = psub(iC2, pmul(vec2d_swizzle2(A2, A2, 1), vec2d_swizzle2(DC2, DC1, 2)));
325  dC = vec2d_duplane(dC, 0);
326  iC1 = psub(pmul(B1, dC), iC1);
327  iC2 = psub(pmul(B2, dC), iC2);
328 
329  const double sign_mask1[2] = {0.0, numext::bit_cast<double>(0x8000000000000000ull)};
330  const double sign_mask2[2] = {numext::bit_cast<double>(0x8000000000000000ull), 0.0};
331  const Packet2d sign_PN = ploadu<Packet2d>(sign_mask1);
332  const Packet2d sign_NP = ploadu<Packet2d>(sign_mask2);
333  d1 = pxor(rd, sign_PN);
334  d2 = pxor(rd, sign_NP);
335 
336  Index res_stride = result.outerStride();
337  double *res = result.data();
338  pstoret<double, Packet2d, ResultAlignment>(res + 0, pmul(vec2d_swizzle2(iA2, iA1, 3), d1));
339  pstoret<double, Packet2d, ResultAlignment>(res + res_stride, pmul(vec2d_swizzle2(iA2, iA1, 0), d2));
340  pstoret<double, Packet2d, ResultAlignment>(res + 2, pmul(vec2d_swizzle2(iB2, iB1, 3), d1));
341  pstoret<double, Packet2d, ResultAlignment>(res + res_stride + 2, pmul(vec2d_swizzle2(iB2, iB1, 0), d2));
342  pstoret<double, Packet2d, ResultAlignment>(res + 2 * res_stride, pmul(vec2d_swizzle2(iC2, iC1, 3), d1));
343  pstoret<double, Packet2d, ResultAlignment>(res + 3 * res_stride, pmul(vec2d_swizzle2(iC2, iC1, 0), d2));
344  pstoret<double, Packet2d, ResultAlignment>(res + 2 * res_stride + 2, pmul(vec2d_swizzle2(iD2, iD1, 3), d1));
345  pstoret<double, Packet2d, ResultAlignment>(res + 3 * res_stride + 2, pmul(vec2d_swizzle2(iD2, iD1, 0), d2));
346  }
347 };
348 #endif
349 } // namespace internal
350 } // namespace Eigen
351 #endif
Eigen::internal::vec4f_unpackhi
EIGEN_STRONG_INLINE Packet4f vec4f_unpackhi(const Packet4f &a, const Packet4f &b)
Definition: NEON/PacketMath.h:133
Eigen::internal::pset1< Packet2d >
EIGEN_STRONG_INLINE Packet2d pset1< Packet2d >(const double &from)
Definition: MSA/PacketMath.h:872
Eigen::internal::compute_inverse_size4< Architecture::Target, double, MatrixType, ResultType >::run
static void run(const MatrixType &mat, ResultType &result)
Definition: InverseSize4.h:181
vec2d_duplane
#define vec2d_duplane(a, p)
Definition: SSE/PacketMath.h:106
Eigen
Namespace containing all symbols from the Eigen library.
Definition: jet.h:637
D
MatrixXcd D
Definition: EigenSolver_EigenSolver_MatrixType.cpp:14
Eigen::internal::vec2d_unpackhi
EIGEN_STRONG_INLINE Packet2d vec2d_unpackhi(const Packet2d &a, const Packet2d &b)
Definition: SSE/PacketMath.h:102
Eigen::internal::Packet4f
__vector float Packet4f
Definition: AltiVec/PacketMath.h:30
d
static const double d[K][N]
Definition: igam.h:11
MatrixType
MatrixXf MatrixType
Definition: benchmark-blocking-sizes.cpp:52
C1
static double C1
Definition: ellpk.c:93
Eigen::RowMajorBit
const unsigned int RowMajorBit
Definition: Constants.h:66
B
Definition: test_numpy_dtypes.cpp:299
type
Definition: pytypes.h:1525
Eigen::internal::pdiv
EIGEN_DEVICE_FUNC Packet pdiv(const Packet &a, const Packet &b)
Definition: GenericPacketMath.h:244
Eigen::internal::ploadu< Packet2d >
EIGEN_STRONG_INLINE Packet2d ploadu< Packet2d >(const double *from)
Definition: MSA/PacketMath.h:1004
C2
Definition: test_operator_overloading.cpp:98
mat
MatrixXf mat
Definition: Tutorial_AdvancedInitialization_CommaTemporary.cpp:1
res
cout<< "Here is the matrix m:"<< endl<< m<< endl;Matrix< ptrdiff_t, 3, 1 > res
Definition: PartialRedux_count.cpp:3
Eigen::internal::ploadu< Packet4f >
EIGEN_STRONG_INLINE Packet4f ploadu< Packet4f >(const float *from)
Definition: AltiVec/PacketMath.h:968
C2
static double C2[]
Definition: shichi.c:141
result
Values result
Definition: OdometryOptimize.cpp:8
Eigen::internal::pxor
EIGEN_STRONG_INLINE Packet8h pxor(const Packet8h &a, const Packet8h &b)
Definition: AVX/PacketMath.h:1047
Eigen::internal::true_type
Definition: Meta.h:96
Eigen::internal::vec4f_unpacklo
EIGEN_STRONG_INLINE Packet4f vec4f_unpacklo(const Packet4f &a, const Packet4f &b)
Definition: NEON/PacketMath.h:129
A
Definition: test_numpy_dtypes.cpp:298
data
int data[]
Definition: Map_placement_new.cpp:1
Eigen::Architecture::Target
@ Target
Definition: Constants.h:492
C1
Definition: test_operator_overloading.cpp:97
Eigen::internal::pset1< Packet4f >
EIGEN_STRONG_INLINE Packet4f pset1< Packet4f >(const float &from)
Definition: AltiVec/PacketMath.h:547
A2
static const double A2[]
Definition: expn.h:7
Eigen::internal::compute_inverse_size4< Architecture::Target, float, MatrixType, ResultType >::run
static void run(const MatrixType &mat, ResultType &result)
Definition: InverseSize4.h:53
Eigen::internal::compute_inverse_size4
Definition: InverseImpl.h:234
Eigen::internal::psub
EIGEN_DEVICE_FUNC Packet psub(const Packet &a, const Packet &b)
Definition: GenericPacketMath.h:222
Eigen::internal::vec4f_movelh
EIGEN_STRONG_INLINE Packet4f vec4f_movelh(const Packet4f &a, const Packet4f &b)
Definition: NEON/PacketMath.h:121
Eigen::internal::vec4f_movehl
EIGEN_STRONG_INLINE Packet4f vec4f_movehl(const Packet4f &a, const Packet4f &b)
Definition: NEON/PacketMath.h:125
vec4f_duplane
#define vec4f_duplane(a, p)
Definition: NEON/PacketMath.h:137
matrix
Map< Matrix< T, Dynamic, Dynamic, ColMajor >, 0, OuterStride<> > matrix(T *data, int rows, int cols, int stride)
Definition: gtsam/3rdparty/Eigen/blas/common.h:110
tree::f
Point2(* f)(const Point3 &, OptionalJacobian< 2, 3 >)
Definition: testExpression.cpp:218
test_docs.d2
d2
Definition: test_docs.py:29
Eigen::LinearAccessBit
const unsigned int LinearAccessBit
Definition: Constants.h:130
C
Matrix< Scalar, Dynamic, Dynamic > C
Definition: bench_gemm.cpp:50
Eigen::internal::pmul
EIGEN_DEVICE_FUNC Packet pmul(const Packet &a, const Packet &b)
Definition: GenericPacketMath.h:237
Eigen::internal::traits
Definition: ForwardDeclarations.h:17
Eigen::internal::Packet2d
v2f64 Packet2d
Definition: MSA/PacketMath.h:820
Eigen::internal::conditional
Definition: Meta.h:109
A1
static const double A1[]
Definition: expn.h:6
Eigen::internal::padd
EIGEN_DEVICE_FUNC Packet padd(const Packet &a, const Packet &b)
Definition: GenericPacketMath.h:215
vec2d_swizzle2
#define vec2d_swizzle2(a, b, mask)
Definition: SSE/PacketMath.h:95
gtsam.examples.DogLegOptimizerExample.float
float
Definition: DogLegOptimizerExample.py:113
internal
Definition: BandTriangularSolver.h:13
Eigen::internal::vec4f_swizzle2
EIGEN_STRONG_INLINE Packet4f vec4f_swizzle2(const Packet4f &a, const Packet4f &b, int p, int q, int r, int s)
Definition: NEON/PacketMath.h:117
Eigen::internal::vec2d_unpacklo
EIGEN_STRONG_INLINE Packet2d vec2d_unpacklo(const Packet2d &a, const Packet2d &b)
Definition: SSE/PacketMath.h:98
Eigen::Index
EIGEN_DEFAULT_DENSE_INDEX_TYPE Index
The Index type as used for the API.
Definition: Meta.h:74


gtsam
Author(s):
autogenerated on Tue Jan 7 2025 04:02:28