Public Member Functions | Private Member Functions | Private Attributes | List of all members
gtsam.examples.EqF.EqF Class Reference

Public Member Functions

def __init__ (self, np.ndarray Sigma, int n, int m)
 
def propagation (self, Input u, float dt)
 
State stateEstimate (self)
 
def update (self, Measurement y)
 

Private Member Functions

np.ndarray __inputMatrixBt (self)
 
np.ndarray __measurementMatrixC (self, Direction d, int idx)
 
np.ndarray __outputMatrixDt (self, int idx)
 
np.ndarray __stateMatrixA (self, Input u)
 
np.ndarray __stateTransitionMatrix (self, Input u, float dt)
 

Private Attributes

 __dof
 
 __Dphi0
 
 __InnovationLift
 
 __n_cal
 
 __n_sensor
 
 __Sigma
 
 __X_hat
 
 __xi_0
 

Detailed Description

Definition at line 559 of file EqF.py.

Constructor & Destructor Documentation

◆ __init__()

def gtsam.examples.EqF.EqF.__init__ (   self,
np.ndarray  Sigma,
int  n,
int  m 
)
Initialize EqF

:param Sigma: Initial covariance
:param n: Number of calibration states
:param m: Total number of available sensor

Definition at line 560 of file EqF.py.

Member Function Documentation

◆ __inputMatrixBt()

np.ndarray gtsam.examples.EqF.EqF.__inputMatrixBt (   self)
private
Return the Input matrix Bt

:return: numpy array representing the state matrix Bt

Definition at line 692 of file EqF.py.

◆ __measurementMatrixC()

np.ndarray gtsam.examples.EqF.EqF.__measurementMatrixC (   self,
Direction  d,
int  idx 
)
private
Return the measurement matrix C0 (Equation 14b)

:param d: Known direction
:param idx: index of the related calibration state
:return: numpy array representing the measurement matrix C0

Definition at line 710 of file EqF.py.

◆ __outputMatrixDt()

np.ndarray gtsam.examples.EqF.EqF.__outputMatrixDt (   self,
int  idx 
)
private
Return the measurement output matrix Dt

:param idx: index of the related calibration state
:return: numpy array representing the output matrix Dt

Definition at line 728 of file EqF.py.

◆ __stateMatrixA()

np.ndarray gtsam.examples.EqF.EqF.__stateMatrixA (   self,
Input  u 
)
private
Return the state matrix A0t (Equation 14a)

:param u: Input
:return: numpy array representing the state matrix A0t

Definition at line 646 of file EqF.py.

◆ __stateTransitionMatrix()

np.ndarray gtsam.examples.EqF.EqF.__stateTransitionMatrix (   self,
Input  u,
float  dt 
)
private
Return the state transition matrix Phi (Equation 17)

:param u: Input
:param dt: Delta time
:return: numpy array representing the state transition matrix Phi

Definition at line 667 of file EqF.py.

◆ propagation()

def gtsam.examples.EqF.EqF.propagation (   self,
Input  u,
float  dt 
)
Propagate the filter state

:param u: Angular velocity measurement from IMU
:param dt: delta time between timestamp of last propagation/update and timestamp of angular velocity measurement

Definition at line 599 of file EqF.py.

◆ stateEstimate()

State gtsam.examples.EqF.EqF.stateEstimate (   self)
Return estimated state

:return: Estimated state

Definition at line 592 of file EqF.py.

◆ update()

def gtsam.examples.EqF.EqF.update (   self,
Measurement  y 
)
Update the filter state

:param y: A  measurement

Definition at line 626 of file EqF.py.

Member Data Documentation

◆ __dof

gtsam.examples.EqF.EqF.__dof
private

Definition at line 568 of file EqF.py.

◆ __Dphi0

gtsam.examples.EqF.EqF.__Dphi0
private

Definition at line 589 of file EqF.py.

◆ __InnovationLift

gtsam.examples.EqF.EqF.__InnovationLift
private

Definition at line 590 of file EqF.py.

◆ __n_cal

gtsam.examples.EqF.EqF.__n_cal
private

Definition at line 569 of file EqF.py.

◆ __n_sensor

gtsam.examples.EqF.EqF.__n_sensor
private

Definition at line 570 of file EqF.py.

◆ __Sigma

gtsam.examples.EqF.EqF.__Sigma
private

Definition at line 587 of file EqF.py.

◆ __X_hat

gtsam.examples.EqF.EqF.__X_hat
private

Definition at line 586 of file EqF.py.

◆ __xi_0

gtsam.examples.EqF.EqF.__xi_0
private

Definition at line 588 of file EqF.py.


The documentation for this class was generated from the following file:


gtsam
Author(s):
autogenerated on Fri Mar 28 2025 03:16:21