16 return (
int)(max*(rand()/(RAND_MAX+1.0)));
21 return min + (rand() / (double)RAND_MAX) * (max -
min);
38 do { r = drand48(); }
while (r == 0.0);
40 do { r = drand48(); }
while (r == 0.0);
41 x2 = 2.0 * drand48() - 1.0;
43 }
while(w > 1.0 || w==0.0);
45 return(sigma * x2 * sqrt(-2.0*log(w)/w));
71 return exp(-.5*delta*delta/sigmaSquare)/sqrt(2*M_PI*sigmaSquare);
78 return -.5*delta*delta/sigmaSquare-.5*log(2*M_PI*sigmaSquare);
99 static gsl_eigen_symmv_workspace * m_eigenspace=NULL;
100 static gsl_matrix * m_cmat=NULL;
101 static gsl_matrix * m_evec=NULL;
102 static gsl_vector * m_eval=NULL;
103 static gsl_vector * m_noise=NULL;
104 static gsl_vector * m_pnoise=NULL;
106 if (m_eigenspace==NULL){
107 m_eigenspace=gsl_eigen_symmv_alloc(3);
108 m_cmat=gsl_matrix_alloc(3,3);
109 m_evec=gsl_matrix_alloc(3,3);
110 m_eval=gsl_vector_alloc(3);
111 m_noise=gsl_vector_alloc(3);
112 m_pnoise=gsl_vector_alloc(3);
115 gsl_matrix_set(m_cmat,0,0,cov.
xx); gsl_matrix_set(m_cmat,0,1,cov.
xy); gsl_matrix_set(m_cmat,0,2,cov.
xt);
116 gsl_matrix_set(m_cmat,1,0,cov.
xy); gsl_matrix_set(m_cmat,1,1,cov.
yy); gsl_matrix_set(m_cmat,1,2,cov.
yt);
117 gsl_matrix_set(m_cmat,2,0,cov.
xt); gsl_matrix_set(m_cmat,2,1,cov.
yt); gsl_matrix_set(m_cmat,2,2,cov.
tt);
118 gsl_eigen_symmv (m_cmat, m_eval, m_evec, m_eigenspace);
119 for (
int i=0; i<3; i++){
120 eval[i]=gsl_vector_get(m_eval,i);
121 for (
int j=0; j<3; j++)
122 evec[i][j]=gsl_matrix_get(m_evec,i,j);
127 static gsl_matrix * m_rmat=NULL;
128 static gsl_matrix * m_vmat=NULL;
129 static gsl_matrix * m_result=NULL;
131 m_rmat=gsl_matrix_alloc(3,3);
132 m_vmat=gsl_matrix_alloc(3,3);
133 m_result=gsl_matrix_alloc(3,3);
138 gsl_matrix_set(m_rmat,0,0, c ); gsl_matrix_set(m_rmat,0,1, -s); gsl_matrix_set(m_rmat,0,2, 0.);
139 gsl_matrix_set(m_rmat,1,0, s ); gsl_matrix_set(m_rmat,1,1, c); gsl_matrix_set(m_rmat,1,2, 0.);
140 gsl_matrix_set(m_rmat,2,0, 0.); gsl_matrix_set(m_rmat,2,1, 0.); gsl_matrix_set(m_rmat,2,2, 1.);
142 for (
unsigned int i=0; i<3; i++)
143 for (
unsigned int j=0; j<3; j++)
144 gsl_matrix_set(m_vmat,i,j,evec[i][j]);
145 gsl_blas_dgemm (CblasNoTrans, CblasNoTrans, 1., m_rmat, m_vmat, 0., m_result);
147 for (
int i=0; i<3; i++){
148 for (
int j=0; j<3; j++)
149 ecov.
evec[i][j]=gsl_matrix_get(m_result,i,j);
155 static gsl_matrix * m_evec=NULL;
156 static gsl_vector * m_noise=NULL;
157 static gsl_vector * m_pnoise=NULL;
159 m_evec=gsl_matrix_alloc(3,3);
160 m_noise=gsl_vector_alloc(3);
161 m_pnoise=gsl_vector_alloc(3);
163 for (
int i=0; i<3; i++){
164 for (
int j=0; j<3; j++)
165 gsl_matrix_set(m_evec,i,j, evec[i][j]);
167 for (
int i=0; i<3; i++){
171 gsl_vector_set(m_pnoise,i, v);
173 gsl_blas_dgemv (CblasNoTrans, 1., m_evec, m_pnoise, 0, m_noise);
174 OrientedPoint ret(gsl_vector_get(m_noise,0),gsl_vector_get(m_noise,1),gsl_vector_get(m_noise,2));
185 v1 = covariance.evec[0][0]*q.
x+covariance.evec[1][0]*q.
y+covariance.evec[2][0]*q.
theta;
186 v2 = covariance.evec[0][1]*q.
x+covariance.evec[1][1]*q.
y+covariance.evec[2][1]*q.
theta;
187 v3 = covariance.evec[0][2]*q.
x+covariance.evec[1][2]*q.
y+covariance.evec[2][2]*q.
theta;
196 std::vector<double>::const_iterator w=weights.begin();
197 for (std::vector<OrientedPoint>::const_iterator p=poses.begin(); p!=poses.end(); p++){
213 for (std::vector<OrientedPoint>::const_iterator p=poses.begin(); p!=poses.end(); p++){
216 cov.
xx+=*w*delta.
x*delta.
x;
217 cov.
yy+=*w*delta.
y*delta.
y;
219 cov.
xy+=*w*delta.
x*delta.
y;
232 this->covariance=ecov;
240 for (std::vector<OrientedPoint>::const_iterator p=poses.begin(); p!=poses.end(); p++){
254 for (std::vector<OrientedPoint>::const_iterator p=poses.begin(); p!=poses.end(); p++){
257 cov.
xx+=delta.
x*delta.
x;
258 cov.
yy+=delta.
y*delta.
y;
260 cov.
xy+=delta.
x*delta.
y;
272 this->covariance=ecov;
const char *const *argv double delta
double UTILS_EXPORT sampleUniformDouble(double min, double max)
point< T > min(const point< T > &p1, const point< T > &p2)
Covariance3 operator+(const Covariance3 &cov) const
OrientedPoint sample() const
double UTILS_EXPORT sampleGaussian(double sigma, unsigned long int S=0)
point< T > max(const point< T > &p1, const point< T > &p2)
double UTILS_EXPORT evalGaussian(double sigmaSquare, double delta)
void computeFromSamples(const std::vector< OrientedPoint > &poses)
double UTILS_EXPORT eval(const OrientedPoint &p) const
double UTILS_EXPORT evalLogGaussian(double sigmaSquare, double delta)
int UTILS_EXPORT sampleUniformInt(int max)
double pf_ran_gaussian(double sigma)
orientedpoint< double, double > OrientedPoint
EigenCovariance3 rotate(double angle) const