Parameters.h
Go to the documentation of this file.
1 /*
2 Copyright (c) 2010-2016, Mathieu Labbe - IntRoLab - Universite de Sherbrooke
3 All rights reserved.
4 
5 Redistribution and use in source and binary forms, with or without
6 modification, are permitted provided that the following conditions are met:
7  * Redistributions of source code must retain the above copyright
8  notice, this list of conditions and the following disclaimer.
9  * Redistributions in binary form must reproduce the above copyright
10  notice, this list of conditions and the following disclaimer in the
11  documentation and/or other materials provided with the distribution.
12  * Neither the name of the Universite de Sherbrooke nor the
13  names of its contributors may be used to endorse or promote products
14  derived from this software without specific prior written permission.
15 
16 THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
17 ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
18 WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
19 DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY
20 DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
21 (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
22 LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
23 ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
24 (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
25 SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
26 */
27 
28 #ifndef PARAMETERS_H_
29 #define PARAMETERS_H_
30 
31 // default parameters
32 #include "rtabmap/core/RtabmapExp.h" // DLL export/import defines
33 #include "rtabmap/core/Version.h" // DLL export/import defines
35 #include <opencv2/core/version.hpp>
36 #include <opencv2/opencv_modules.hpp>
37 #include <string>
38 #include <map>
39 
40 namespace rtabmap
41 {
42 
43 typedef std::map<std::string, std::string> ParametersMap; // Key, value
44 typedef std::pair<std::string, std::string> ParametersPair;
45 
64 #define RTABMAP_PARAM(PREFIX, NAME, TYPE, DEFAULT_VALUE, DESCRIPTION) \
65  public: \
66  static std::string k##PREFIX##NAME() {return std::string(#PREFIX "/" #NAME);} \
67  static TYPE default##PREFIX##NAME() {return (TYPE)DEFAULT_VALUE;} \
68  static std::string type##PREFIX##NAME() {return std::string(#TYPE);} \
69  private: \
70  class Dummy##PREFIX##NAME { \
71  public: \
72  Dummy##PREFIX##NAME() {parameters_.insert(ParametersPair(#PREFIX "/" #NAME, #DEFAULT_VALUE)); \
73  parametersType_.insert(ParametersPair(#PREFIX "/" #NAME, #TYPE)); \
74  descriptions_.insert(ParametersPair(#PREFIX "/" #NAME, DESCRIPTION));} \
75  }; \
76  Dummy##PREFIX##NAME dummy##PREFIX##NAME
77 // end define PARAM
78 
98 #define RTABMAP_PARAM_STR(PREFIX, NAME, DEFAULT_VALUE, DESCRIPTION) \
99  public: \
100  static std::string k##PREFIX##NAME() {return std::string(#PREFIX "/" #NAME);} \
101  static std::string default##PREFIX##NAME() {return DEFAULT_VALUE;} \
102  static std::string type##PREFIX##NAME() {return std::string("string");} \
103  private: \
104  class Dummy##PREFIX##NAME { \
105  public: \
106  Dummy##PREFIX##NAME() {parameters_.insert(ParametersPair(#PREFIX "/" #NAME, DEFAULT_VALUE)); \
107  parametersType_.insert(ParametersPair(#PREFIX "/" #NAME, "string")); \
108  descriptions_.insert(ParametersPair(#PREFIX "/" #NAME, DESCRIPTION));} \
109  }; \
110  Dummy##PREFIX##NAME dummy##PREFIX##NAME
111 // end define PARAM
112 
131 #define RTABMAP_PARAM_COND(PREFIX, NAME, TYPE, COND, DEFAULT_VALUE1, DEFAULT_VALUE2, DESCRIPTION) \
132  public: \
133  static std::string k##PREFIX##NAME() {return std::string(#PREFIX "/" #NAME);} \
134  static TYPE default##PREFIX##NAME() {return COND?DEFAULT_VALUE1:DEFAULT_VALUE2;} \
135  static std::string type##PREFIX##NAME() {return std::string(#TYPE);} \
136  private: \
137  class Dummy##PREFIX##NAME { \
138  public: \
139  Dummy##PREFIX##NAME() {parameters_.insert(ParametersPair(#PREFIX "/" #NAME, COND?#DEFAULT_VALUE1:#DEFAULT_VALUE2)); \
140  parametersType_.insert(ParametersPair(#PREFIX "/" #NAME, #TYPE)); \
141  descriptions_.insert(ParametersPair(#PREFIX "/" #NAME, DESCRIPTION));} \
142  }; \
143  Dummy##PREFIX##NAME dummy##PREFIX##NAME
144 // end define PARAM
145 
171 {
172  // Rtabmap parameters
173  RTABMAP_PARAM(Rtabmap, PublishStats, bool, true, "Publishing statistics.");
174  RTABMAP_PARAM(Rtabmap, PublishLastSignature, bool, true, "Publishing last signature.");
175  RTABMAP_PARAM(Rtabmap, PublishPdf, bool, true, "Publishing pdf.");
176  RTABMAP_PARAM(Rtabmap, PublishLikelihood, bool, true, "Publishing likelihood.");
177  RTABMAP_PARAM(Rtabmap, PublishRAMUsage, bool, false, "Publishing RAM usage in statistics (may add a small overhead to get info from the system).");
178  RTABMAP_PARAM(Rtabmap, ComputeRMSE, bool, true, "Compute root mean square error (RMSE) and publish it in statistics, if ground truth is provided.");
179  RTABMAP_PARAM(Rtabmap, SaveWMState, bool, false, "Save working memory state after each update in statistics.");
180  RTABMAP_PARAM(Rtabmap, TimeThr, float, 0, "Maximum time allowed for map update (ms) (0 means infinity). When map update time exceeds this fixed time threshold, some nodes in Working Memory (WM) are transferred to Long-Term Memory to limit the size of the WM and decrease the update time.");
181  RTABMAP_PARAM(Rtabmap, MemoryThr, int, 0, uFormat("Maximum nodes in the Working Memory (0 means infinity). Similar to \"%s\", when the number of nodes in Working Memory (WM) exceeds this treshold, some nodes are transferred to Long-Term Memory to keep WM size fixed.", kRtabmapTimeThr().c_str()));
182  RTABMAP_PARAM(Rtabmap, DetectionRate, float, 1, "Detection rate (Hz). RTAB-Map will filter input images to satisfy this rate.");
183  RTABMAP_PARAM(Rtabmap, ImageBufferSize, unsigned int, 1, "Data buffer size (0 min inf).");
184  RTABMAP_PARAM(Rtabmap, CreateIntermediateNodes, bool, false, uFormat("Create intermediate nodes between loop closure detection. Only used when %s>0.", kRtabmapDetectionRate().c_str()));
185  RTABMAP_PARAM_STR(Rtabmap, WorkingDirectory, "", "Working directory.");
186  RTABMAP_PARAM(Rtabmap, MaxRetrieved, unsigned int, 2, "Maximum locations retrieved at the same time from LTM.");
187  RTABMAP_PARAM(Rtabmap, StatisticLogsBufferedInRAM, bool, true, "Statistic logs buffered in RAM instead of written to hard drive after each iteration.");
188  RTABMAP_PARAM(Rtabmap, StatisticLogged, bool, false, "Logging enabled.");
189  RTABMAP_PARAM(Rtabmap, StatisticLoggedHeaders, bool, true, "Add column header description to log files.");
190  RTABMAP_PARAM(Rtabmap, StartNewMapOnLoopClosure, bool, false, "Start a new map only if there is a global loop closure with a previous map.");
191  RTABMAP_PARAM(Rtabmap, StartNewMapOnGoodSignature, bool, false, uFormat("Start a new map only if the first signature is not bad (i.e., has enough features, see %s).", kKpBadSignRatio().c_str()));
192  RTABMAP_PARAM(Rtabmap, ImagesAlreadyRectified, bool, true, "Images are already rectified. By default RTAB-Map assumes that received images are rectified. If they are not, they can be rectified by RTAB-Map if this parameter is false.");
193  RTABMAP_PARAM(Rtabmap, RectifyOnlyFeatures, bool, false, uFormat("If \"%s\" is false and this parameter is true, the whole RGB image will not be rectified, only the features. Warning: As projection of RGB-D image to point cloud is assuming that images are rectified, the generated point cloud map will have wrong colors if this parameter is true.", kRtabmapImagesAlreadyRectified().c_str()));
194 
195  // Hypotheses selection
196  RTABMAP_PARAM(Rtabmap, LoopThr, float, 0.11, "Loop closing threshold.");
197  RTABMAP_PARAM(Rtabmap, LoopRatio, float, 0, "The loop closure hypothesis must be over LoopRatio x lastHypothesisValue.");
198  RTABMAP_PARAM(Rtabmap, LoopGPS, bool, true, uFormat("Use GPS to filter likelihood (if GPS is recorded). Only locations inside the local radius \"%s\" of the current GPS location are considered for loop closure detection.", kRGBDLocalRadius().c_str()));
199 
200  // Memory
201  RTABMAP_PARAM(Mem, RehearsalSimilarity, float, 0.6, "Rehearsal similarity.");
202  RTABMAP_PARAM(Mem, ImageKept, bool, false, "Keep raw images in RAM.");
203  RTABMAP_PARAM(Mem, BinDataKept, bool, true, "Keep binary data in db.");
204  RTABMAP_PARAM(Mem, RawDescriptorsKept, bool, true, "Raw descriptors kept in memory.");
205  RTABMAP_PARAM(Mem, MapLabelsAdded, bool, true, "Create map labels. The first node of a map will be labelled as \"map#\" where # is the map ID.");
206  RTABMAP_PARAM(Mem, SaveDepth16Format, bool, false, "Save depth image into 16 bits format to reduce memory used. Warning: values over ~65 meters are ignored (maximum 65535 millimeters).");
207  RTABMAP_PARAM(Mem, NotLinkedNodesKept, bool, true, "Keep not linked nodes in db (rehearsed nodes and deleted nodes).");
208  RTABMAP_PARAM(Mem, IntermediateNodeDataKept, bool, false, "Keep intermediate node data in db.");
209  RTABMAP_PARAM_STR(Mem, ImageCompressionFormat, ".jpg", "RGB image compression format. It should be \".jpg\" or \".png\".");
210  RTABMAP_PARAM(Mem, STMSize, unsigned int, 10, "Short-term memory size.");
211  RTABMAP_PARAM(Mem, IncrementalMemory, bool, true, "SLAM mode, otherwise it is Localization mode.");
212  RTABMAP_PARAM(Mem, LocalizationDataSaved, bool, false, uFormat("Save localization data during localization session (when %s=false). When enabled, the database will then also grow in localization mode. This mode would be used only for debugging purpose.", kMemIncrementalMemory().c_str()).c_str());
213  RTABMAP_PARAM(Mem, ReduceGraph, bool, false, "Reduce graph. Merge nodes when loop closures are added (ignoring those with user data set).");
214  RTABMAP_PARAM(Mem, RecentWmRatio, float, 0.2, "Ratio of locations after the last loop closure in WM that cannot be transferred.");
215  RTABMAP_PARAM(Mem, TransferSortingByWeightId, bool, false, "On transfer, signatures are sorted by weight->ID only (i.e. the oldest of the lowest weighted signatures are transferred first). If false, the signatures are sorted by weight->Age->ID (i.e. the oldest inserted in WM of the lowest weighted signatures are transferred first). Note that retrieval updates the age, not the ID.");
216  RTABMAP_PARAM(Mem, RehearsalIdUpdatedToNewOne, bool, false, "On merge, update to new id. When false, no copy.");
217  RTABMAP_PARAM(Mem, RehearsalWeightIgnoredWhileMoving, bool, false, "When the robot is moving, weights are not updated on rehearsal.");
218  RTABMAP_PARAM(Mem, GenerateIds, bool, true, "True=Generate location IDs, False=use input image IDs.");
219  RTABMAP_PARAM(Mem, BadSignaturesIgnored, bool, false, "Bad signatures are ignored.");
220  RTABMAP_PARAM(Mem, InitWMWithAllNodes, bool, false, "Initialize the Working Memory with all nodes in Long-Term Memory. When false, it is initialized with nodes of the previous session.");
221  RTABMAP_PARAM(Mem, DepthAsMask, bool, true, "Use depth image as mask when extracting features for vocabulary.");
222  RTABMAP_PARAM(Mem, StereoFromMotion, bool, false, uFormat("Triangulate features without depth using stereo from motion (odometry). It would be ignored if %s is true and the feature detector used supports masking.", kMemDepthAsMask().c_str()));
223  RTABMAP_PARAM(Mem, ImagePreDecimation, int, 1, "Image decimation (>=1) before features extraction.");
224  RTABMAP_PARAM(Mem, ImagePostDecimation, int, 1, "Image decimation (>=1) of saved data in created signatures (after features extraction). Decimation is done from the original image.");
225  RTABMAP_PARAM(Mem, CompressionParallelized, bool, true, "Compression of sensor data is multi-threaded.");
226  RTABMAP_PARAM(Mem, LaserScanDownsampleStepSize, int, 1, "If > 1, downsample the laser scans when creating a signature.");
227  RTABMAP_PARAM(Mem, LaserScanVoxelSize, float, 0.0, uFormat("If > 0 m, voxel filtering is done on laser scans when creating a signature. If the laser scan had normals, they will be removed. To recompute the normals, make sure to use \"%s\" or \"%s\" parameters.", kMemLaserScanNormalK().c_str(), kMemLaserScanNormalRadius().c_str()));
228  RTABMAP_PARAM(Mem, LaserScanNormalK, int, 0, "If > 0 and laser scans don't have normals, normals will be computed with K search neighbors when creating a signature.");
229  RTABMAP_PARAM(Mem, LaserScanNormalRadius, float, 0.0, "If > 0 m and laser scans don't have normals, normals will be computed with radius search neighbors when creating a signature.");
230  RTABMAP_PARAM(Mem, UseOdomFeatures, bool, true, "Use odometry features instead of regenerating them.");
231  RTABMAP_PARAM(Mem, UseOdomGravity, bool, false, uFormat("Use odometry instead of IMU orientation to add gravity links to new nodes created. We assume that odometry is already aligned with gravity (e.g., we are using a VIO approach). Gravity constraints are used by graph optimization only if \"%s\" is not zero.", kOptimizerGravitySigma().c_str()));
232  RTABMAP_PARAM(Mem, CovOffDiagIgnored, bool, true, "Ignore off diagonal values of the covariance matrix.");
233 
234  // KeypointMemory (Keypoint-based)
235  RTABMAP_PARAM(Kp, NNStrategy, int, 1, "kNNFlannNaive=0, kNNFlannKdTree=1, kNNFlannLSH=2, kNNBruteForce=3, kNNBruteForceGPU=4");
236  RTABMAP_PARAM(Kp, IncrementalDictionary, bool, true, "");
237  RTABMAP_PARAM(Kp, IncrementalFlann, bool, true, uFormat("When using FLANN based strategy, add/remove points to its index without always rebuilding the index (the index is built only when the dictionary increases of the factor \"%s\" in size).", kKpFlannRebalancingFactor().c_str()));
238  RTABMAP_PARAM(Kp, FlannRebalancingFactor, float, 2.0, uFormat("Factor used when rebuilding the incremental FLANN index (see \"%s\"). Set <=1 to disable.", kKpIncrementalFlann().c_str()));
239  RTABMAP_PARAM(Kp, ByteToFloat, bool, false, uFormat("For %s=1, binary descriptors are converted to float by converting each byte to float instead of converting each bit to float. When converting bytes instead of bits, less memory is used and search is faster at the cost of slightly less accurate matching.", kKpNNStrategy().c_str()));
240  RTABMAP_PARAM(Kp, MaxDepth, float, 0, "Filter extracted keypoints by depth (0=inf).");
241  RTABMAP_PARAM(Kp, MinDepth, float, 0, "Filter extracted keypoints by depth.");
242  RTABMAP_PARAM(Kp, MaxFeatures, int, 500, "Maximum features extracted from the images (0 means not bounded, <0 means no extraction).");
243  RTABMAP_PARAM(Kp, BadSignRatio, float, 0.5, "Bad signature ratio (less than Ratio x AverageWordsPerImage = bad).");
244  RTABMAP_PARAM(Kp, NndrRatio, float, 0.8, "NNDR ratio (A matching pair is detected, if its distance is closer than X times the distance of the second nearest neighbor.)");
245 #if CV_MAJOR_VERSION > 2 && !defined(HAVE_OPENCV_XFEATURES2D)
246  // OpenCV>2 without xFeatures2D module doesn't have BRIEF
247  RTABMAP_PARAM(Kp, DetectorStrategy, int, 8, "0=SURF 1=SIFT 2=ORB 3=FAST/FREAK 4=FAST/BRIEF 5=GFTT/FREAK 6=GFTT/BRIEF 7=BRISK 8=GFTT/ORB 9=KAZE 10=ORB-OCTREE 11=SuperPoint 12=SURF/FREAK 13=GFTT/DAISY 14=SURF/DAISY");
248 #else
249  RTABMAP_PARAM(Kp, DetectorStrategy, int, 6, "0=SURF 1=SIFT 2=ORB 3=FAST/FREAK 4=FAST/BRIEF 5=GFTT/FREAK 6=GFTT/BRIEF 7=BRISK 8=GFTT/ORB 9=KAZE 10=ORB-OCTREE 11=SuperPoint 12=SURF/FREAK 13=GFTT/DAISY 14=SURF/DAISY");
250 #endif
251  RTABMAP_PARAM(Kp, TfIdfLikelihoodUsed, bool, true, "Use of the td-idf strategy to compute the likelihood.");
252  RTABMAP_PARAM(Kp, Parallelized, bool, true, "If the dictionary update and signature creation were parallelized.");
253  RTABMAP_PARAM_STR(Kp, RoiRatios, "0.0 0.0 0.0 0.0", "Region of interest ratios [left, right, top, bottom].");
254  RTABMAP_PARAM_STR(Kp, DictionaryPath, "", "Path of the pre-computed dictionary");
255  RTABMAP_PARAM(Kp, NewWordsComparedTogether, bool, true, "When adding new words to dictionary, they are compared also with each other (to detect same words in the same signature).");
256  RTABMAP_PARAM(Kp, SubPixWinSize, int, 3, "See cv::cornerSubPix().");
257  RTABMAP_PARAM(Kp, SubPixIterations, int, 0, "See cv::cornerSubPix(). 0 disables sub pixel refining.");
258  RTABMAP_PARAM(Kp, SubPixEps, double, 0.02, "See cv::cornerSubPix().");
259  RTABMAP_PARAM(Kp, GridRows, int, 1, uFormat("Number of rows of the grid used to extract uniformly \"%s / grid cells\" features from each cell.", kKpMaxFeatures().c_str()));
260  RTABMAP_PARAM(Kp, GridCols, int, 1, uFormat("Number of columns of the grid used to extract uniformly \"%s / grid cells\" features from each cell.", kKpMaxFeatures().c_str()));
261 
262  //Database
263  RTABMAP_PARAM(DbSqlite3, InMemory, bool, false, "Using database in the memory instead of a file on the hard disk.");
264  RTABMAP_PARAM(DbSqlite3, CacheSize, unsigned int, 10000, "Sqlite cache size (default is 2000).");
265  RTABMAP_PARAM(DbSqlite3, JournalMode, int, 3, "0=DELETE, 1=TRUNCATE, 2=PERSIST, 3=MEMORY, 4=OFF (see sqlite3 doc : \"PRAGMA journal_mode\")");
266  RTABMAP_PARAM(DbSqlite3, Synchronous, int, 0, "0=OFF, 1=NORMAL, 2=FULL (see sqlite3 doc : \"PRAGMA synchronous\")");
267  RTABMAP_PARAM(DbSqlite3, TempStore, int, 2, "0=DEFAULT, 1=FILE, 2=MEMORY (see sqlite3 doc : \"PRAGMA temp_store\")");
268  RTABMAP_PARAM_STR(Db, TargetVersion, "", "Target database version for backward compatibility purpose. Only Major and minor versions are used and should be set (e.g., 0.19 vs 0.20 or 1.0 vs 2.0). Patch version is ignored (e.g., 0.20.1 and 0.20.3 will generate a 0.20 database).");
269 
270  // Keypoints descriptors/detectors
271  RTABMAP_PARAM(SURF, Extended, bool, false, "Extended descriptor flag (true - use extended 128-element descriptors; false - use 64-element descriptors).");
272  RTABMAP_PARAM(SURF, HessianThreshold, float, 500, "Threshold for hessian keypoint detector used in SURF.");
273  RTABMAP_PARAM(SURF, Octaves, int, 4, "Number of pyramid octaves the keypoint detector will use.");
274  RTABMAP_PARAM(SURF, OctaveLayers, int, 2, "Number of octave layers within each octave.");
275  RTABMAP_PARAM(SURF, Upright, bool, false, "Up-right or rotated features flag (true - do not compute orientation of features; false - compute orientation).");
276  RTABMAP_PARAM(SURF, GpuVersion, bool, false, "GPU-SURF: Use GPU version of SURF. This option is enabled only if OpenCV is built with CUDA and GPUs are detected.");
277  RTABMAP_PARAM(SURF, GpuKeypointsRatio, float, 0.01, "Used with SURF GPU.");
278 
279  RTABMAP_PARAM(SIFT, NFeatures, int, 0, "The number of best features to retain. The features are ranked by their scores (measured in SIFT algorithm as the local contrast).");
280  RTABMAP_PARAM(SIFT, NOctaveLayers, int, 3, "The number of layers in each octave. 3 is the value used in D. Lowe paper. The number of octaves is computed automatically from the image resolution.");
281  RTABMAP_PARAM(SIFT, ContrastThreshold, double, 0.04, "The contrast threshold used to filter out weak features in semi-uniform (low-contrast) regions. The larger the threshold, the less features are produced by the detector.");
282  RTABMAP_PARAM(SIFT, EdgeThreshold, double, 10, "The threshold used to filter out edge-like features. Note that the its meaning is different from the contrastThreshold, i.e. the larger the edgeThreshold, the less features are filtered out (more features are retained).");
283  RTABMAP_PARAM(SIFT, Sigma, double, 1.6, "The sigma of the Gaussian applied to the input image at the octave #0. If your image is captured with a weak camera with soft lenses, you might want to reduce the number.");
284  RTABMAP_PARAM(SIFT, RootSIFT, bool, false, "Apply RootSIFT normalization of the descriptors.");
285 
286  RTABMAP_PARAM(BRIEF, Bytes, int, 32, "Bytes is a length of descriptor in bytes. It can be equal 16, 32 or 64 bytes.");
287 
288  RTABMAP_PARAM(FAST, Threshold, int, 20, "Threshold on difference between intensity of the central pixel and pixels of a circle around this pixel.");
289  RTABMAP_PARAM(FAST, NonmaxSuppression, bool, true, "If true, non-maximum suppression is applied to detected corners (keypoints).");
290  RTABMAP_PARAM(FAST, Gpu, bool, false, "GPU-FAST: Use GPU version of FAST. This option is enabled only if OpenCV is built with CUDA and GPUs are detected.");
291  RTABMAP_PARAM(FAST, GpuKeypointsRatio, double, 0.05, "Used with FAST GPU.");
292  RTABMAP_PARAM(FAST, MinThreshold, int, 7, "Minimum threshold. Used only when FAST/GridRows and FAST/GridCols are set.");
293  RTABMAP_PARAM(FAST, MaxThreshold, int, 200, "Maximum threshold. Used only when FAST/GridRows and FAST/GridCols are set.");
294  RTABMAP_PARAM(FAST, GridRows, int, 0, "Grid rows (0 to disable). Adapts the detector to partition the source image into a grid and detect points in each cell.");
295  RTABMAP_PARAM(FAST, GridCols, int, 0, "Grid cols (0 to disable). Adapts the detector to partition the source image into a grid and detect points in each cell.");
296  RTABMAP_PARAM(FAST, CV, int, 0, "Enable FastCV implementation if non-zero (and RTAB-Map is built with FastCV support). Values should be 9 and 10.");
297 
298  RTABMAP_PARAM(GFTT, QualityLevel, double, 0.001, "");
299  RTABMAP_PARAM(GFTT, MinDistance, double, 3, "");
300  RTABMAP_PARAM(GFTT, BlockSize, int, 3, "");
301  RTABMAP_PARAM(GFTT, UseHarrisDetector, bool, false, "");
302  RTABMAP_PARAM(GFTT, K, double, 0.04, "");
303 
304  RTABMAP_PARAM(ORB, ScaleFactor, float, 2, "Pyramid decimation ratio, greater than 1. scaleFactor==2 means the classical pyramid, where each next level has 4x less pixels than the previous, but such a big scale factor will degrade feature matching scores dramatically. On the other hand, too close to 1 scale factor will mean that to cover certain scale range you will need more pyramid levels and so the speed will suffer.");
305  RTABMAP_PARAM(ORB, NLevels, int, 3, "The number of pyramid levels. The smallest level will have linear size equal to input_image_linear_size/pow(scaleFactor, nlevels).");
306  RTABMAP_PARAM(ORB, EdgeThreshold, int, 19, "This is size of the border where the features are not detected. It should roughly match the patchSize parameter.");
307  RTABMAP_PARAM(ORB, FirstLevel, int, 0, "It should be 0 in the current implementation.");
308  RTABMAP_PARAM(ORB, WTA_K, int, 2, "The number of points that produce each element of the oriented BRIEF descriptor. The default value 2 means the BRIEF where we take a random point pair and compare their brightnesses, so we get 0/1 response. Other possible values are 3 and 4. For example, 3 means that we take 3 random points (of course, those point coordinates are random, but they are generated from the pre-defined seed, so each element of BRIEF descriptor is computed deterministically from the pixel rectangle), find point of maximum brightness and output index of the winner (0, 1 or 2). Such output will occupy 2 bits, and therefore it will need a special variant of Hamming distance, denoted as NORM_HAMMING2 (2 bits per bin). When WTA_K=4, we take 4 random points to compute each bin (that will also occupy 2 bits with possible values 0, 1, 2 or 3).");
309  RTABMAP_PARAM(ORB, ScoreType, int, 0, "The default HARRIS_SCORE=0 means that Harris algorithm is used to rank features (the score is written to KeyPoint::score and is used to retain best nfeatures features); FAST_SCORE=1 is alternative value of the parameter that produces slightly less stable keypoints, but it is a little faster to compute.");
310  RTABMAP_PARAM(ORB, PatchSize, int, 31, "size of the patch used by the oriented BRIEF descriptor. Of course, on smaller pyramid layers the perceived image area covered by a feature will be larger.");
311  RTABMAP_PARAM(ORB, Gpu, bool, false, "GPU-ORB: Use GPU version of ORB. This option is enabled only if OpenCV is built with CUDA and GPUs are detected.");
312 
313  RTABMAP_PARAM(FREAK, OrientationNormalized, bool, true, "Enable orientation normalization.");
314  RTABMAP_PARAM(FREAK, ScaleNormalized, bool, true, "Enable scale normalization.");
315  RTABMAP_PARAM(FREAK, PatternScale, float, 22, "Scaling of the description pattern.");
316  RTABMAP_PARAM(FREAK, NOctaves, int, 4, "Number of octaves covered by the detected keypoints.");
317 
318  RTABMAP_PARAM(BRISK, Thresh, int, 30, "FAST/AGAST detection threshold score.");
319  RTABMAP_PARAM(BRISK, Octaves, int, 3, "Detection octaves. Use 0 to do single scale.");
320  RTABMAP_PARAM(BRISK, PatternScale, float, 1,"Apply this scale to the pattern used for sampling the neighbourhood of a keypoint.");
321 
322  RTABMAP_PARAM(KAZE, Extended, bool, false, "Set to enable extraction of extended (128-byte) descriptor.");
323  RTABMAP_PARAM(KAZE, Upright, bool, false, "Set to enable use of upright descriptors (non rotation-invariant).");
324  RTABMAP_PARAM(KAZE, Threshold, float, 0.001, "Detector response threshold to accept keypoint.");
325  RTABMAP_PARAM(KAZE, NOctaves, int, 4, "Maximum octave evolution of the image.");
326  RTABMAP_PARAM(KAZE, NOctaveLayers, int, 4, "Default number of sublevels per scale level.");
327  RTABMAP_PARAM(KAZE, Diffusivity, int, 1, "Diffusivity type: 0=DIFF_PM_G1, 1=DIFF_PM_G2, 2=DIFF_WEICKERT or 3=DIFF_CHARBONNIER.");
328 
329  RTABMAP_PARAM_STR(SuperPoint, ModelPath, "", "[Required] Path to pre-trained weights Torch file of SuperPoint (*.pt).");
330  RTABMAP_PARAM(SuperPoint, Threshold, float, 0.010, "Detector response threshold to accept keypoint.");
331  RTABMAP_PARAM(SuperPoint, NMS, bool, true, "If true, non-maximum suppression is applied to detected keypoints.");
332  RTABMAP_PARAM(SuperPoint, NMSRadius, int, 4, uFormat("[%s=true] Minimum distance (pixels) between keypoints.", kSuperPointNMS().c_str()));
333  RTABMAP_PARAM(SuperPoint, Cuda, bool, true, "Use Cuda device for Torch, otherwise CPU device is used by default.");
334 
335  // BayesFilter
336  RTABMAP_PARAM(Bayes, VirtualPlacePriorThr, float, 0.9, "Virtual place prior");
337  RTABMAP_PARAM_STR(Bayes, PredictionLC, "0.1 0.36 0.30 0.16 0.062 0.0151 0.00255 0.000324 2.5e-05 1.3e-06 4.8e-08 1.2e-09 1.9e-11 2.2e-13 1.7e-15 8.5e-18 2.9e-20 6.9e-23", "Prediction of loop closures (Gaussian-like, here with sigma=1.6) - Format: {VirtualPlaceProb, LoopClosureProb, NeighborLvl1, NeighborLvl2, ...}.");
338  RTABMAP_PARAM(Bayes, FullPredictionUpdate, bool, false, "Regenerate all the prediction matrix on each iteration (otherwise only removed/added ids are updated).");
339 
340  // Verify hypotheses
341  RTABMAP_PARAM(VhEp, Enabled, bool, false, uFormat("Verify visual loop closure hypothesis by computing a fundamental matrix. This is done prior to transformation computation when %s is enabled.", kRGBDEnabled().c_str()));
342  RTABMAP_PARAM(VhEp, MatchCountMin, int, 8, "Minimum of matching visual words pairs to accept the loop hypothesis.");
343  RTABMAP_PARAM(VhEp, RansacParam1, float, 3, "Fundamental matrix (see cvFindFundamentalMat()): Max distance (in pixels) from the epipolar line for a point to be inlier.");
344  RTABMAP_PARAM(VhEp, RansacParam2, float, 0.99, "Fundamental matrix (see cvFindFundamentalMat()): Performance of RANSAC.");
345 
346  // RGB-D SLAM
347  RTABMAP_PARAM(RGBD, Enabled, bool, true, "");
348  RTABMAP_PARAM(RGBD, LinearUpdate, float, 0.1, "Minimum linear displacement (m) to update the map. Rehearsal is done prior to this, so weights are still updated.");
349  RTABMAP_PARAM(RGBD, AngularUpdate, float, 0.1, "Minimum angular displacement (rad) to update the map. Rehearsal is done prior to this, so weights are still updated.");
350  RTABMAP_PARAM(RGBD, LinearSpeedUpdate, float, 0.0, "Maximum linear speed (m/s) to update the map (0 means not limit).");
351  RTABMAP_PARAM(RGBD, AngularSpeedUpdate, float, 0.0, "Maximum angular speed (rad/s) to update the map (0 means not limit).");
352  RTABMAP_PARAM(RGBD, NewMapOdomChangeDistance, float, 0, "A new map is created if a change of odometry translation greater than X m is detected (0 m = disabled).");
353  RTABMAP_PARAM(RGBD, OptimizeFromGraphEnd, bool, false, "Optimize graph from the newest node. If false, the graph is optimized from the oldest node of the current graph (this adds an overhead computation to detect to oldest node of the current graph, but it can be useful to preserve the map referential from the oldest node). Warning when set to false: when some nodes are transferred, the first referential of the local map may change, resulting in momentary changes in robot/map position (which are annoying in teleoperation).");
354  RTABMAP_PARAM(RGBD, OptimizeMaxError, float, 3.0, uFormat("Reject loop closures if optimization error ratio is greater than this value (0=disabled). Ratio is computed as absolute error over standard deviation of each link. This will help to detect when a wrong loop closure is added to the graph. Not compatible with \"%s\" if enabled.", kOptimizerRobust().c_str()));
355  RTABMAP_PARAM(RGBD, MaxLoopClosureDistance, float, 0.0, "Reject loop closures/localizations if the distance from the map is over this distance (0=disabled).");
356  RTABMAP_PARAM(RGBD, SavedLocalizationIgnored, bool, false, "Ignore last saved localization pose from previous session. If true, RTAB-Map won't assume it is restarting from the same place than where it shut down previously.");
357  RTABMAP_PARAM(RGBD, GoalReachedRadius, float, 0.5, "Goal reached radius (m).");
358  RTABMAP_PARAM(RGBD, PlanStuckIterations, int, 0, "Mark the current goal node on the path as unreachable if it is not updated after X iterations (0=disabled). If all upcoming nodes on the path are unreachabled, the plan fails.");
359  RTABMAP_PARAM(RGBD, PlanLinearVelocity, float, 0, "Linear velocity (m/sec) used to compute path weights.");
360  RTABMAP_PARAM(RGBD, PlanAngularVelocity, float, 0, "Angular velocity (rad/sec) used to compute path weights.");
361  RTABMAP_PARAM(RGBD, GoalsSavedInUserData, bool, false, "When a goal is received and processed with success, it is saved in user data of the location with this format: \"GOAL:#\".");
362  RTABMAP_PARAM(RGBD, MaxLocalRetrieved, unsigned int, 2, "Maximum local locations retrieved (0=disabled) near the current pose in the local map or on the current planned path (those on the planned path have priority).");
363  RTABMAP_PARAM(RGBD, LocalRadius, float, 10, "Local radius (m) for nodes selection in the local map. This parameter is used in some approaches about the local map management.");
364  RTABMAP_PARAM(RGBD, LocalImmunizationRatio, float, 0.25, "Ratio of working memory for which local nodes are immunized from transfer.");
365  RTABMAP_PARAM(RGBD, ScanMatchingIdsSavedInLinks, bool, true, "Save scan matching IDs in link's user data.");
366  RTABMAP_PARAM(RGBD, NeighborLinkRefining, bool, false, uFormat("When a new node is added to the graph, the transformation of its neighbor link to the previous node is refined using registration approach selected (%s).", kRegStrategy().c_str()));
367  RTABMAP_PARAM(RGBD, LoopClosureReextractFeatures, bool, false, "Extract features even if there are some already in the nodes.");
368  RTABMAP_PARAM(RGBD, LocalBundleOnLoopClosure, bool, false, "Do local bundle adjustment with neighborhood of the loop closure.");
369  RTABMAP_PARAM(RGBD, CreateOccupancyGrid, bool, false, "Create local occupancy grid maps. See \"Grid\" group for parameters.");
370  RTABMAP_PARAM(RGBD, MarkerDetection, bool, false, "Detect static markers to be added as landmarks for graph optimization. If input data have already landmarks, this will be ignored. See \"Marker\" group for parameters.");
371  RTABMAP_PARAM(RGBD, LoopCovLimited, bool, false, "Limit covariance of non-neighbor links to minimum covariance of neighbor links. In other words, if covariance of a loop closure link is smaller than the minimum covariance of odometry links, its covariance is set to minimum covariance of odometry links.");
372  RTABMAP_PARAM(RGBD, MaxOdomCacheSize, int, 0, uFormat("Maximum odometry cache size. Used only in localization mode (when %s=false) and when %s!=0. This is used to verify localization transforms to make sure we don't teleport to a location very similar to one we previously localized on. When the cache is full, the whole cache is cleared and the next localization is automatically accepted without verification. Set 0 to disable caching.", kMemIncrementalMemory().c_str(), kRGBDOptimizeMaxError().c_str()));
373 
374  // Local/Proximity loop closure detection
375  RTABMAP_PARAM(RGBD, ProximityByTime, bool, false, "Detection over all locations in STM.");
376  RTABMAP_PARAM(RGBD, ProximityBySpace, bool, true, "Detection over locations (in Working Memory) near in space.");
377  RTABMAP_PARAM(RGBD, ProximityMaxGraphDepth, int, 50, "Maximum depth from the current/last loop closure location and the local loop closure hypotheses. Set 0 to ignore.");
378  RTABMAP_PARAM(RGBD, ProximityMaxPaths, int, 3, "Maximum paths compared (from the most recent) for proximity detection by space. 0 means no limit.");
379  RTABMAP_PARAM(RGBD, ProximityPathFilteringRadius, float, 1, "Path filtering radius to reduce the number of nodes to compare in a path. A path should also be inside that radius to be considered for proximity detection.");
380  RTABMAP_PARAM(RGBD, ProximityPathMaxNeighbors, int, 0, "Maximum neighbor nodes compared on each path. Set to 0 to disable merging the laser scans.");
381  RTABMAP_PARAM(RGBD, ProximityPathRawPosesUsed, bool, true, "When comparing to a local path, merge the scan using the odometry poses (with neighbor link optimizations) instead of the ones in the optimized local graph.");
382  RTABMAP_PARAM(RGBD, ProximityAngle, float, 45, "Maximum angle (degrees) for visual proximity detection.");
383  RTABMAP_PARAM(RGBD, ProximityOdomGuess, bool, false, "Use odometry as motion guess for visual proximity detection.");
384 
385  // Graph optimization
386 #ifdef RTABMAP_GTSAM
387  RTABMAP_PARAM(Optimizer, Strategy, int, 2, "Graph optimization strategy: 0=TORO, 1=g2o, 2=GTSAM and 3=Ceres.");
388  RTABMAP_PARAM(Optimizer, Iterations, int, 20, "Optimization iterations.");
389  RTABMAP_PARAM(Optimizer, Epsilon, double, 0.00001, "Stop optimizing when the error improvement is less than this value.");
390 #else
391 #ifdef RTABMAP_G2O
392  RTABMAP_PARAM(Optimizer, Strategy, int, 1, "Graph optimization strategy: 0=TORO, 1=g2o, 2=GTSAM and 3=Ceres.");
393  RTABMAP_PARAM(Optimizer, Iterations, int, 20, "Optimization iterations.");
394  RTABMAP_PARAM(Optimizer, Epsilon, double, 0.0, "Stop optimizing when the error improvement is less than this value.");
395 #else
396 #ifdef RTABMAP_CERES
397  RTABMAP_PARAM(Optimizer, Strategy, int, 3, "Graph optimization strategy: 0=TORO, 1=g2o, 2=GTSAM and 3=Ceres.");
398  RTABMAP_PARAM(Optimizer, Iterations, int, 20, "Optimization iterations.");
399  RTABMAP_PARAM(Optimizer, Epsilon, double, 0.000001, "Stop optimizing when the error improvement is less than this value.");
400 #else
401  RTABMAP_PARAM(Optimizer, Strategy, int, 0, "Graph optimization strategy: 0=TORO, 1=g2o, 2=GTSAM and 3=Ceres.");
402  RTABMAP_PARAM(Optimizer, Iterations, int, 100, "Optimization iterations.");
403  RTABMAP_PARAM(Optimizer, Epsilon, double, 0.00001, "Stop optimizing when the error improvement is less than this value.");
404 #endif
405 #endif
406 #endif
407  RTABMAP_PARAM(Optimizer, VarianceIgnored, bool, false, "Ignore constraints' variance. If checked, identity information matrix is used for each constraint. Otherwise, an information matrix is generated from the variance saved in the links.");
408  RTABMAP_PARAM(Optimizer, Robust, bool, false, uFormat("Robust graph optimization using Vertigo (only work for g2o and GTSAM optimization strategies). Not compatible with \"%s\" if enabled.", kRGBDOptimizeMaxError().c_str()));
409  RTABMAP_PARAM(Optimizer, PriorsIgnored, bool, true, "Ignore prior constraints (global pose or GPS) while optimizing. Currently only g2o and gtsam optimization supports this.");
410  RTABMAP_PARAM(Optimizer, LandmarksIgnored, bool, false, "Ignore landmark constraints while optimizing. Currently only g2o and gtsam optimization supports this.");
411  RTABMAP_PARAM(Optimizer, GravitySigma, float, 0.0, uFormat("Gravity sigma value (>=0, typically between 0.1 and 0.3). Optimization is done while preserving gravity orientation of the poses. This should be used only with visual/lidar inertial odometry approaches, for which we assume that all odometry poses are aligned with gravity. Set to 0 to disable gravity constraints. Currently supported only with g2o and GTSAM optimization strategies (see %s).", kOptimizerStrategy().c_str()));
412 
413 #ifdef RTABMAP_ORB_SLAM2
414  RTABMAP_PARAM(g2o, Solver, int, 3, "0=csparse 1=pcg 2=cholmod 3=Eigen");
415 #else
416  RTABMAP_PARAM(g2o, Solver, int, 0, "0=csparse 1=pcg 2=cholmod 3=Eigen");
417 #endif
418  RTABMAP_PARAM(g2o, Optimizer, int, 0, "0=Levenberg 1=GaussNewton");
419  RTABMAP_PARAM(g2o, PixelVariance, double, 1.0, "Pixel variance used for bundle adjustment.");
420  RTABMAP_PARAM(g2o, RobustKernelDelta, double, 8, "Robust kernel delta used for bundle adjustment (0 means don't use robust kernel). Observations with chi2 over this threshold will be ignored in the second optimization pass.");
421  RTABMAP_PARAM(g2o, Baseline, double, 0.075, "When doing bundle adjustment with RGB-D data, we can set a fake baseline (m) to do stereo bundle adjustment (if 0, mono bundle adjustment is done). For stereo data, the baseline in the calibration is used directly.");
422 
423  RTABMAP_PARAM(GTSAM, Optimizer, int, 1, "0=Levenberg 1=GaussNewton 2=Dogleg");
424 
425  // Odometry
426  RTABMAP_PARAM(Odom, Strategy, int, 0, "0=Frame-to-Map (F2M) 1=Frame-to-Frame (F2F) 2=Fovis 3=viso2 4=DVO-SLAM 5=ORB_SLAM2 6=OKVIS 7=LOAM 8=MSCKF_VIO 9=VINS-Fusion");
427  RTABMAP_PARAM(Odom, ResetCountdown, int, 0, "Automatically reset odometry after X consecutive images on which odometry cannot be computed (value=0 disables auto-reset).");
428  RTABMAP_PARAM(Odom, Holonomic, bool, true, "If the robot is holonomic (strafing commands can be issued). If not, y value will be estimated from x and yaw values (y=x*tan(yaw)).");
429  RTABMAP_PARAM(Odom, FillInfoData, bool, true, "Fill info with data (inliers/outliers features).");
430  RTABMAP_PARAM(Odom, ImageBufferSize, unsigned int, 1, "Data buffer size (0 min inf).");
431  RTABMAP_PARAM(Odom, FilteringStrategy, int, 0, "0=No filtering 1=Kalman filtering 2=Particle filtering. This filter is used to smooth the odometry output.");
432  RTABMAP_PARAM(Odom, ParticleSize, unsigned int, 400, "Number of particles of the filter.");
433  RTABMAP_PARAM(Odom, ParticleNoiseT, float, 0.002, "Noise (m) of translation components (x,y,z).");
434  RTABMAP_PARAM(Odom, ParticleLambdaT, float, 100, "Lambda of translation components (x,y,z).");
435  RTABMAP_PARAM(Odom, ParticleNoiseR, float, 0.002, "Noise (rad) of rotational components (roll,pitch,yaw).");
436  RTABMAP_PARAM(Odom, ParticleLambdaR, float, 100, "Lambda of rotational components (roll,pitch,yaw).");
437  RTABMAP_PARAM(Odom, KalmanProcessNoise, float, 0.001, "Process noise covariance value.");
438  RTABMAP_PARAM(Odom, KalmanMeasurementNoise, float, 0.01, "Process measurement covariance value.");
439  RTABMAP_PARAM(Odom, GuessMotion, bool, true, "Guess next transformation from the last motion computed.");
440  RTABMAP_PARAM(Odom, GuessSmoothingDelay, float, 0, uFormat("Guess smoothing delay (s). Estimated velocity is averaged based on last transforms up to this maximum delay. This can help to get smoother velocity prediction. Last velocity computed is used directly if \"%s\" is set or the delay is below the odometry rate.", kOdomFilteringStrategy().c_str()));
441  RTABMAP_PARAM(Odom, KeyFrameThr, float, 0.3, "[Visual] Create a new keyframe when the number of inliers drops under this ratio of features in last frame. Setting the value to 0 means that a keyframe is created for each processed frame.");
442  RTABMAP_PARAM(Odom, VisKeyFrameThr, int, 150, "[Visual] Create a new keyframe when the number of inliers drops under this threshold. Setting the value to 0 means that a keyframe is created for each processed frame.");
443  RTABMAP_PARAM(Odom, ScanKeyFrameThr, float, 0.9, "[Geometry] Create a new keyframe when the number of ICP inliers drops under this ratio of points in last frame's scan. Setting the value to 0 means that a keyframe is created for each processed frame.");
444  RTABMAP_PARAM(Odom, ImageDecimation, int, 1, "Decimation of the images before registration. Negative decimation is done from RGB size instead of depth size (if depth is smaller than RGB, it may be interpolated depending of the decimation value).");
445  RTABMAP_PARAM(Odom, AlignWithGround, bool, false, "Align odometry with the ground on initialization.");
446 
447  // Odometry Frame-to-Map
448  RTABMAP_PARAM(OdomF2M, MaxSize, int, 2000, "[Visual] Local map size: If > 0 (example 5000), the odometry will maintain a local map of X maximum words.");
449  RTABMAP_PARAM(OdomF2M, MaxNewFeatures, int, 0, "[Visual] Maximum features (sorted by keypoint response) added to local map from a new key-frame. 0 means no limit.");
450  RTABMAP_PARAM(OdomF2M, ScanMaxSize, int, 2000, "[Geometry] Maximum local scan map size.");
451  RTABMAP_PARAM(OdomF2M, ScanSubtractRadius, float, 0.05, "[Geometry] Radius used to filter points of a new added scan to local map. This could match the voxel size of the scans.");
452  RTABMAP_PARAM(OdomF2M, ScanSubtractAngle, float, 45, uFormat("[Geometry] Max angle (degrees) used to filter points of a new added scan to local map (when \"%s\">0). 0 means any angle.", kOdomF2MScanSubtractRadius().c_str()).c_str());
453  RTABMAP_PARAM(OdomF2M, ScanRange, float, 0, "[Geometry] Distance Range used to filter points of local map (when > 0). 0 means local map is updated using time and not range.");
454  RTABMAP_PARAM(OdomF2M, ValidDepthRatio, float, 0.75, "If a new frame has points without valid depth, they are added to local feature map only if points with valid depth on total points is over this ratio. Setting to 1 means no points without valid depth are added to local feature map.");
455 #if defined(RTABMAP_G2O) || defined(RTABMAP_ORB_SLAM2)
456  RTABMAP_PARAM(OdomF2M, BundleAdjustment, int, 1, "Local bundle adjustment: 0=disabled, 1=g2o, 2=cvsba, 3=Ceres.");
457 #else
458  RTABMAP_PARAM(OdomF2M, BundleAdjustment, int, 0, "Local bundle adjustment: 0=disabled, 1=g2o, 2=cvsba, 3=Ceres.");
459 #endif
460  RTABMAP_PARAM(OdomF2M, BundleAdjustmentMaxFrames, int, 10, "Maximum frames used for bundle adjustment (0=inf or all current frames in the local map).");
461 
462  // Odometry Mono
463  RTABMAP_PARAM(OdomMono, InitMinFlow, float, 100, "Minimum optical flow required for the initialization step.");
464  RTABMAP_PARAM(OdomMono, InitMinTranslation, float, 0.1, "Minimum translation required for the initialization step.");
465  RTABMAP_PARAM(OdomMono, MinTranslation, float, 0.02, "Minimum translation to add new points to local map. On initialization, translation x 5 is used as the minimum.");
466  RTABMAP_PARAM(OdomMono, MaxVariance, float, 0.01, "Maximum variance to add new points to local map.");
467 
468  // Odometry Fovis
469  RTABMAP_PARAM(OdomFovis, FeatureWindowSize, int, 9, "The size of the n x n image patch surrounding each feature, used for keypoint matching.");
470  RTABMAP_PARAM(OdomFovis, MaxPyramidLevel, int, 3, "The maximum Gaussian pyramid level to process the image at. Pyramid level 1 corresponds to the original image.");
471  RTABMAP_PARAM(OdomFovis, MinPyramidLevel, int, 0, "The minimum pyramid level.");
472  RTABMAP_PARAM(OdomFovis, TargetPixelsPerFeature, int, 250, "Specifies the desired feature density as a ratio of input image pixels per feature detected. This number is used to control the adaptive feature thresholding.");
473  RTABMAP_PARAM(OdomFovis, FastThreshold, int, 20, "FAST threshold.");
474  RTABMAP_PARAM(OdomFovis, UseAdaptiveThreshold, bool, true, "Use FAST adaptive threshold.");
475  RTABMAP_PARAM(OdomFovis, FastThresholdAdaptiveGain, double, 0.005, "FAST threshold adaptive gain.");
476  RTABMAP_PARAM(OdomFovis, UseHomographyInitialization, bool, true, "Use homography initialization.");
477 
478  RTABMAP_PARAM(OdomFovis, UseBucketing, bool, true, "");
479  RTABMAP_PARAM(OdomFovis, BucketWidth, int, 80, "");
480  RTABMAP_PARAM(OdomFovis, BucketHeight, int, 80, "");
481  RTABMAP_PARAM(OdomFovis, MaxKeypointsPerBucket, int, 25, "");
482  RTABMAP_PARAM(OdomFovis, UseImageNormalization, bool, false, "");
483 
484  RTABMAP_PARAM(OdomFovis, InlierMaxReprojectionError, double, 1.5, "The maximum image-space reprojection error (in pixels) a feature match is allowed to have and still be considered an inlier in the set of features used for motion estimation.");
485  RTABMAP_PARAM(OdomFovis, CliqueInlierThreshold, double, 0.1, "See Howard's greedy max-clique algorithm for determining the maximum set of mutually consisten feature matches. This specifies the compatibility threshold, in meters.");
486  RTABMAP_PARAM(OdomFovis, MinFeaturesForEstimate, int, 20, "Minimum number of features in the inlier set for the motion estimate to be considered valid.");
487  RTABMAP_PARAM(OdomFovis, MaxMeanReprojectionError, double, 10.0, "Maximum mean reprojection error over the inlier feature matches for the motion estimate to be considered valid.");
488  RTABMAP_PARAM(OdomFovis, UseSubpixelRefinement, bool, true, "Specifies whether or not to refine feature matches to subpixel resolution.");
489  RTABMAP_PARAM(OdomFovis, FeatureSearchWindow, int, 25, "Specifies the size of the search window to apply when searching for feature matches across time frames. The search is conducted around the feature location predicted by the initial rotation estimate.");
490  RTABMAP_PARAM(OdomFovis, UpdateTargetFeaturesWithRefined, bool, false, "When subpixel refinement is enabled, the refined feature locations can be saved over the original feature locations. This has a slightly negative impact on frame-to-frame visual odometry, but is likely better when using this library as part of a visual SLAM algorithm.");
491 
492  RTABMAP_PARAM(OdomFovis, StereoRequireMutualMatch, bool, true, "");
493  RTABMAP_PARAM(OdomFovis, StereoMaxDistEpipolarLine, double, 1.5, "");
494  RTABMAP_PARAM(OdomFovis, StereoMaxRefinementDisplacement, double, 1.0, "");
495  RTABMAP_PARAM(OdomFovis, StereoMaxDisparity, int, 128, "");
496 
497  // Odometry viso2
498  RTABMAP_PARAM(OdomViso2, RansacIters, int, 200, "Number of RANSAC iterations.");
499  RTABMAP_PARAM(OdomViso2, InlierThreshold, double, 2.0, "Fundamental matrix inlier threshold.");
500  RTABMAP_PARAM(OdomViso2, Reweighting, bool, true, "Lower border weights (more robust to calibration errors).");
501  RTABMAP_PARAM(OdomViso2, MatchNmsN, int, 3, "Non-max-suppression: min. distance between maxima (in pixels).");
502  RTABMAP_PARAM(OdomViso2, MatchNmsTau, int, 50, "Non-max-suppression: interest point peakiness threshold.");
503  RTABMAP_PARAM(OdomViso2, MatchBinsize, int, 50, "Matching bin width/height (affects efficiency only).");
504  RTABMAP_PARAM(OdomViso2, MatchRadius, int, 200, "Matching radius (du/dv in pixels).");
505  RTABMAP_PARAM(OdomViso2, MatchDispTolerance, int, 2, "Disparity tolerance for stereo matches (in pixels).");
506  RTABMAP_PARAM(OdomViso2, MatchOutlierDispTolerance, int, 5, "Outlier removal: disparity tolerance (in pixels).");
507  RTABMAP_PARAM(OdomViso2, MatchOutlierFlowTolerance, int, 5, "Outlier removal: flow tolerance (in pixels).");
508  RTABMAP_PARAM(OdomViso2, MatchMultiStage, bool, true, "Multistage matching (denser and faster).");
509  RTABMAP_PARAM(OdomViso2, MatchHalfResolution, bool, true, "Match at half resolution, refine at full resolution.");
510  RTABMAP_PARAM(OdomViso2, MatchRefinement, int, 1, "Refinement (0=none,1=pixel,2=subpixel).");
511  RTABMAP_PARAM(OdomViso2, BucketMaxFeatures, int, 2, "Maximal number of features per bucket.");
512  RTABMAP_PARAM(OdomViso2, BucketWidth, double, 50, "Width of bucket.");
513  RTABMAP_PARAM(OdomViso2, BucketHeight, double, 50, "Height of bucket.");
514 
515  // Odometry ORB_SLAM2
516  RTABMAP_PARAM_STR(OdomORBSLAM2, VocPath, "", "Path to ORB vocabulary (*.txt).");
517  RTABMAP_PARAM(OdomORBSLAM2, Bf, double, 0.076, "Fake IR projector baseline (m) used only when stereo is not used.");
518  RTABMAP_PARAM(OdomORBSLAM2, ThDepth, double, 40.0, "Close/Far threshold. Baseline times.");
519  RTABMAP_PARAM(OdomORBSLAM2, Fps, float, 0.0, "Camera FPS.");
520  RTABMAP_PARAM(OdomORBSLAM2, MaxFeatures, int, 1000, "Maximum ORB features extracted per frame.");
521  RTABMAP_PARAM(OdomORBSLAM2, MapSize, int, 3000, "Maximum size of the feature map (0 means infinite).");
522 
523  // Odometry OKVIS
524  RTABMAP_PARAM_STR(OdomOKVIS, ConfigPath, "", "Path of OKVIS config file.");
525 
526  // Odometry LOAM
527  RTABMAP_PARAM(OdomLOAM, Sensor, int, 2, "Velodyne sensor: 0=VLP-16, 1=HDL-32, 2=HDL-64E");
528  RTABMAP_PARAM(OdomLOAM, ScanPeriod, float, 0.1, "Scan period (s)");
529  RTABMAP_PARAM(OdomLOAM, LinVar, float, 0.01, "Linear output variance.");
530  RTABMAP_PARAM(OdomLOAM, AngVar, float, 0.01, "Angular output variance.");
531  RTABMAP_PARAM(OdomLOAM, LocalMapping, bool, true, "Local mapping. It adds more time to compute odometry, but accuracy is significantly improved.");
532 
533  // Odometry MSCKF_VIO
534  RTABMAP_PARAM(OdomMSCKF, GridRow, int, 4, "");
535  RTABMAP_PARAM(OdomMSCKF, GridCol, int, 5, "");
536  RTABMAP_PARAM(OdomMSCKF, GridMinFeatureNum, int, 3, "");
537  RTABMAP_PARAM(OdomMSCKF, GridMaxFeatureNum, int, 4, "");
538  RTABMAP_PARAM(OdomMSCKF, PyramidLevels, int, 3, "");
539  RTABMAP_PARAM(OdomMSCKF, PatchSize, int, 15, "");
540  RTABMAP_PARAM(OdomMSCKF, FastThreshold, int, 10, "");
541  RTABMAP_PARAM(OdomMSCKF, MaxIteration, int, 30, "");
542  RTABMAP_PARAM(OdomMSCKF, TrackPrecision, double, 0.01, "");
543  RTABMAP_PARAM(OdomMSCKF, RansacThreshold, double, 3, "");
544  RTABMAP_PARAM(OdomMSCKF, StereoThreshold, double, 5, "");
545  RTABMAP_PARAM(OdomMSCKF, PositionStdThreshold, double, 8.0, "");
546  RTABMAP_PARAM(OdomMSCKF, RotationThreshold, double, 0.2618, "");
547  RTABMAP_PARAM(OdomMSCKF, TranslationThreshold, double, 0.4, "");
548  RTABMAP_PARAM(OdomMSCKF, TrackingRateThreshold, double, 0.5, "");
549  RTABMAP_PARAM(OdomMSCKF, OptTranslationThreshold, double, 0, "");
550  RTABMAP_PARAM(OdomMSCKF, NoiseGyro, double, 0.005, "");
551  RTABMAP_PARAM(OdomMSCKF, NoiseAcc, double, 0.05, "");
552  RTABMAP_PARAM(OdomMSCKF, NoiseGyroBias, double, 0.001, "");
553  RTABMAP_PARAM(OdomMSCKF, NoiseAccBias, double, 0.01, "");
554  RTABMAP_PARAM(OdomMSCKF, NoiseFeature, double, 0.035, "");
555  RTABMAP_PARAM(OdomMSCKF, InitCovVel, double, 0.25, "");
556  RTABMAP_PARAM(OdomMSCKF, InitCovGyroBias, double, 0.01, "");
557  RTABMAP_PARAM(OdomMSCKF, InitCovAccBias, double, 0.01, "");
558  RTABMAP_PARAM(OdomMSCKF, InitCovExRot, double, 0.00030462, "");
559  RTABMAP_PARAM(OdomMSCKF, InitCovExTrans, double, 0.000025, "");
560  RTABMAP_PARAM(OdomMSCKF, MaxCamStateSize, int, 20, "");
561 
562  // Odometry VINS
563  RTABMAP_PARAM_STR(OdomVINS, ConfigPath, "", "Path of VINS config file.");
564 
565  // Common registration parameters
566  RTABMAP_PARAM(Reg, RepeatOnce, bool, true, "Do a second registration with the output of the first registration as guess. Only done if no guess was provided for the first registration (like on loop closure). It can be useful if the registration approach used can use a guess to get better matches.");
567  RTABMAP_PARAM(Reg, Strategy, int, 0, "0=Vis, 1=Icp, 2=VisIcp");
568  RTABMAP_PARAM(Reg, Force3DoF, bool, false, "Force 3 degrees-of-freedom transform (3Dof: x,y and yaw). Parameters z, roll and pitch will be set to 0.");
569 
570  // Visual registration parameters
571  RTABMAP_PARAM(Vis, EstimationType, int, 1, "Motion estimation approach: 0:3D->3D, 1:3D->2D (PnP), 2:2D->2D (Epipolar Geometry)");
572  RTABMAP_PARAM(Vis, ForwardEstOnly, bool, true, "Forward estimation only (A->B). If false, a transformation is also computed in backward direction (B->A), then the two resulting transforms are merged (middle interpolation between the transforms).");
573  RTABMAP_PARAM(Vis, InlierDistance, float, 0.1, uFormat("[%s = 0] Maximum distance for feature correspondences. Used by 3D->3D estimation approach.", kVisEstimationType().c_str()));
574  RTABMAP_PARAM(Vis, RefineIterations, int, 5, uFormat("[%s = 0] Number of iterations used to refine the transformation found by RANSAC. 0 means that the transformation is not refined.", kVisEstimationType().c_str()));
575  RTABMAP_PARAM(Vis, PnPReprojError, float, 2, uFormat("[%s = 1] PnP reprojection error.", kVisEstimationType().c_str()));
576  RTABMAP_PARAM(Vis, PnPFlags, int, 0, uFormat("[%s = 1] PnP flags: 0=Iterative, 1=EPNP, 2=P3P", kVisEstimationType().c_str()));
577 #if defined(RTABMAP_G2O) || defined(RTABMAP_ORB_SLAM2)
578  RTABMAP_PARAM(Vis, PnPRefineIterations, int, 0, uFormat("[%s = 1] Refine iterations. Set to 0 if \"%s\" is also used.", kVisEstimationType().c_str(), kVisBundleAdjustment().c_str()));
579 #else
580  RTABMAP_PARAM(Vis, PnPRefineIterations, int, 1, uFormat("[%s = 1] Refine iterations. Set to 0 if \"%s\" is also used.", kVisEstimationType().c_str(), kVisBundleAdjustment().c_str()));
581 #endif
582 
583  RTABMAP_PARAM(Vis, EpipolarGeometryVar, float, 0.1, uFormat("[%s = 2] Epipolar geometry maximum variance to accept the transformation.", kVisEstimationType().c_str()));
584  RTABMAP_PARAM(Vis, MinInliers, int, 20, "Minimum feature correspondences to compute/accept the transformation.");
585  RTABMAP_PARAM(Vis, MeanInliersDistance, float, 0.0, "Maximum distance (m) of the mean distance of inliers from the camera to accept the transformation. 0 means disabled.");
586  RTABMAP_PARAM(Vis, MinInliersDistribution, float, 0.0, "Minimum distribution value of the inliers in the image to accept the transformation. The distribution is the second eigen value of the PCA (Principal Component Analysis) on the keypoints of the normalized image [-0.5, 0.5]. The value would be between 0 and 0.5. 0 means disabled.");
587 
588  RTABMAP_PARAM(Vis, Iterations, int, 300, "Maximum iterations to compute the transform.");
589 #if CV_MAJOR_VERSION > 2 && !defined(HAVE_OPENCV_XFEATURES2D)
590  // OpenCV>2 without xFeatures2D module doesn't have BRIEF
591  RTABMAP_PARAM(Vis, FeatureType, int, 8, "0=SURF 1=SIFT 2=ORB 3=FAST/FREAK 4=FAST/BRIEF 5=GFTT/FREAK 6=GFTT/BRIEF 7=BRISK 8=GFTT/ORB 9=KAZE 10=ORB-OCTREE 11=SuperPoint 12=SURF/FREAK 13=GFTT/DAISY 14=SURF/DAISY");
592 #else
593  RTABMAP_PARAM(Vis, FeatureType, int, 6, "0=SURF 1=SIFT 2=ORB 3=FAST/FREAK 4=FAST/BRIEF 5=GFTT/FREAK 6=GFTT/BRIEF 7=BRISK 8=GFTT/ORB 9=KAZE 10=ORB-OCTREE 11=SuperPoint 12=SURF/FREAK 13=GFTT/DAISY 14=SURF/DAISY");
594 #endif
595  RTABMAP_PARAM(Vis, MaxFeatures, int, 1000, "0 no limits.");
596  RTABMAP_PARAM(Vis, MaxDepth, float, 0, "Max depth of the features (0 means no limit).");
597  RTABMAP_PARAM(Vis, MinDepth, float, 0, "Min depth of the features (0 means no limit).");
598  RTABMAP_PARAM(Vis, DepthAsMask, bool, true, "Use depth image as mask when extracting features.");
599  RTABMAP_PARAM_STR(Vis, RoiRatios, "0.0 0.0 0.0 0.0", "Region of interest ratios [left, right, top, bottom].");
600  RTABMAP_PARAM(Vis, SubPixWinSize, int, 3, "See cv::cornerSubPix().");
601  RTABMAP_PARAM(Vis, SubPixIterations, int, 0, "See cv::cornerSubPix(). 0 disables sub pixel refining.");
602  RTABMAP_PARAM(Vis, SubPixEps, float, 0.02, "See cv::cornerSubPix().");
603  RTABMAP_PARAM(Vis, GridRows, int, 1, uFormat("Number of rows of the grid used to extract uniformly \"%s / grid cells\" features from each cell.", kVisMaxFeatures().c_str()));
604  RTABMAP_PARAM(Vis, GridCols, int, 1, uFormat("Number of columns of the grid used to extract uniformly \"%s / grid cells\" features from each cell.", kVisMaxFeatures().c_str()));
605  RTABMAP_PARAM(Vis, CorType, int, 0, "Correspondences computation approach: 0=Features Matching, 1=Optical Flow");
606  RTABMAP_PARAM(Vis, CorNNType, int, 1, uFormat("[%s=0] kNNFlannNaive=0, kNNFlannKdTree=1, kNNFlannLSH=2, kNNBruteForce=3, kNNBruteForceGPU=4, BruteForceCrossCheck=5, SuperGlue=6, GMS=7. Used for features matching approach.", kVisCorType().c_str()));
607  RTABMAP_PARAM(Vis, CorNNDR, float, 0.8, uFormat("[%s=0] NNDR: nearest neighbor distance ratio. Used for knn features matching approach.", kVisCorType().c_str()));
608  RTABMAP_PARAM(Vis, CorGuessWinSize, int, 20, uFormat("[%s=0] Matching window size (pixels) around projected points when a guess transform is provided to find correspondences. 0 means disabled.", kVisCorType().c_str()));
609  RTABMAP_PARAM(Vis, CorGuessMatchToProjection, bool, false, uFormat("[%s=0] Match frame's corners to source's projected points (when guess transform is provided) instead of projected points to frame's corners.", kVisCorType().c_str()));
610  RTABMAP_PARAM(Vis, CorFlowWinSize, int, 16, uFormat("[%s=1] See cv::calcOpticalFlowPyrLK(). Used for optical flow approach.", kVisCorType().c_str()));
611  RTABMAP_PARAM(Vis, CorFlowIterations, int, 30, uFormat("[%s=1] See cv::calcOpticalFlowPyrLK(). Used for optical flow approach.", kVisCorType().c_str()));
612  RTABMAP_PARAM(Vis, CorFlowEps, float, 0.01, uFormat("[%s=1] See cv::calcOpticalFlowPyrLK(). Used for optical flow approach.", kVisCorType().c_str()));
613  RTABMAP_PARAM(Vis, CorFlowMaxLevel, int, 3, uFormat("[%s=1] See cv::calcOpticalFlowPyrLK(). Used for optical flow approach.", kVisCorType().c_str()));
614 #if defined(RTABMAP_G2O) || defined(RTABMAP_ORB_SLAM2)
615  RTABMAP_PARAM(Vis, BundleAdjustment, int, 1, "Optimization with bundle adjustment: 0=disabled, 1=g2o, 2=cvsba, 3=Ceres.");
616 #else
617  RTABMAP_PARAM(Vis, BundleAdjustment, int, 0, "Optimization with bundle adjustment: 0=disabled, 1=g2o, 2=cvsba, 3=Ceres.");
618 #endif
619 
620  // Features matching approaches
621  RTABMAP_PARAM_STR(PyMatcher, Path, "", "Path to python script file (see available ones in rtabmap/corelib/src/pymatcher/*). See the header to see where the script should be copied.");
622  RTABMAP_PARAM(PyMatcher, Iterations, int, 20, "Sinkhorn iterations. Used by SuperGlue.");
623  RTABMAP_PARAM(PyMatcher, Threshold, float, 0.2, "Used by SuperGlue.");
624  RTABMAP_PARAM(PyMatcher, Cuda, bool, true, "Used by SuperGlue.");
625  RTABMAP_PARAM_STR(PyMatcher, Model, "indoor", "For SuperGlue, set only \"indoor\" or \"outdoor\". For OANet, set path to one of the pth file (e.g., \"OANet/model/gl3d/sift-4000/model_best.pth\").");
626 
627  RTABMAP_PARAM(GMS, WithRotation, bool, false, "Take rotation transformation into account.");
628  RTABMAP_PARAM(GMS, WithScale, bool, false, "Take scale transformation into account.");
629  RTABMAP_PARAM(GMS, ThresholdFactor, double, 6.0, "The higher, the less matches.");
630 
631  // ICP registration parameters
632  RTABMAP_PARAM(Icp, MaxTranslation, float, 0.2, "Maximum ICP translation correction accepted (m).");
633  RTABMAP_PARAM(Icp, MaxRotation, float, 0.78, "Maximum ICP rotation correction accepted (rad).");
634  RTABMAP_PARAM(Icp, VoxelSize, float, 0.0, "Uniform sampling voxel size (0=disabled).");
635  RTABMAP_PARAM(Icp, DownsamplingStep, int, 1, "Downsampling step size (1=no sampling). This is done before uniform sampling.");
636  RTABMAP_PARAM(Icp, RangeMin, float, 0, "Minimum range filtering (0=disabled).");
637  RTABMAP_PARAM(Icp, RangeMax, float, 0, "Maximum range filtering (0=disabled).");
638 #ifdef RTABMAP_POINTMATCHER
639  RTABMAP_PARAM(Icp, MaxCorrespondenceDistance, float, 0.1, "Max distance for point correspondences.");
640 #else
641  RTABMAP_PARAM(Icp, MaxCorrespondenceDistance, float, 0.05, "Max distance for point correspondences.");
642 #endif
643  RTABMAP_PARAM(Icp, Iterations, int, 30, "Max iterations.");
644  RTABMAP_PARAM(Icp, Epsilon, float, 0, "Set the transformation epsilon (maximum allowable difference between two consecutive transformations) in order for an optimization to be considered as having converged to the final solution.");
645  RTABMAP_PARAM(Icp, CorrespondenceRatio, float, 0.1, "Ratio of matching correspondences to accept the transform.");
646 #ifdef RTABMAP_POINTMATCHER
647  RTABMAP_PARAM(Icp, PointToPlane, bool, true, "Use point to plane ICP.");
648 #else
649  RTABMAP_PARAM(Icp, PointToPlane, bool, false, "Use point to plane ICP.");
650 #endif
651  RTABMAP_PARAM(Icp, PointToPlaneK, int, 5, "Number of neighbors to compute normals for point to plane if the cloud doesn't have already normals.");
652  RTABMAP_PARAM(Icp, PointToPlaneRadius, float, 1.0, "Search radius to compute normals for point to plane if the cloud doesn't have already normals.");
653  RTABMAP_PARAM(Icp, PointToPlaneGroundNormalsUp, float, 0.0, "Invert normals on ground if they are pointing down (useful for ring-like 3D LiDARs). 0 means disabled, 1 means only normals perfectly aligned with -z axis. This is only done with 3D scans.");
654  RTABMAP_PARAM(Icp, PointToPlaneMinComplexity, float, 0.02, uFormat("Minimum structural complexity (0.0=low, 1.0=high) of the scan to do PointToPlane registration, otherwise PointToPoint registration is done instead and strategy from %s is used. This check is done only when %s=true.", kIcpPointToPlaneLowComplexityStrategy().c_str(), kIcpPointToPlane().c_str()));
655  RTABMAP_PARAM(Icp, PointToPlaneLowComplexityStrategy, int, 1, uFormat("If structural complexity is below %s: set to 0 to so that the transform is automatically rejected, set to 1 to limit ICP correction in axes with most constraints (e.g., for a corridor-like environment, the resulting transform will be limited in y and yaw, x will taken from the guess), set to 2 to accept \"as is\" the transform computed by PointToPoint.", kIcpPointToPlaneMinComplexity().c_str()));
656 
657  // libpointmatcher
658 #ifdef RTABMAP_POINTMATCHER
659  RTABMAP_PARAM(Icp, PM, bool, true, "Use libpointmatcher for ICP registration instead of PCL's implementation.");
660 #else
661  RTABMAP_PARAM(Icp, PM, bool, false, "Use libpointmatcher for ICP registration instead of PCL's implementation.");
662 #endif
663  RTABMAP_PARAM_STR(Icp, PMConfig, "", uFormat("Configuration file (*.yaml) used by libpointmatcher. Note that data filters set for libpointmatcher are done after filtering done by rtabmap (i.e., %s, %s), so make sure to disable those in rtabmap if you want to use only those from libpointmatcher. Parameters %s, %s and %s are also ignored if configuration file is set.", kIcpVoxelSize().c_str(), kIcpDownsamplingStep().c_str(), kIcpIterations().c_str(), kIcpEpsilon().c_str(), kIcpMaxCorrespondenceDistance().c_str()).c_str());
664  RTABMAP_PARAM(Icp, PMMatcherKnn, int, 1, "KDTreeMatcher/knn: number of nearest neighbors to consider it the reference. For convenience when configuration file is not set.");
665  RTABMAP_PARAM(Icp, PMMatcherEpsilon, float, 0.0, "KDTreeMatcher/epsilon: approximation to use for the nearest-neighbor search. For convenience when configuration file is not set.");
666  RTABMAP_PARAM(Icp, PMMatcherIntensity, bool, false, uFormat("KDTreeMatcher: among nearest neighbors, keep only the one with the most similar intensity. This only work with %s>1.", kIcpPMMatcherKnn().c_str()));
667  RTABMAP_PARAM(Icp, PMOutlierRatio, float, 0.95, "TrimmedDistOutlierFilter/ratio: For convenience when configuration file is not set. For kinect-like point cloud, use 0.65.");
668 
669  // Stereo disparity
670  RTABMAP_PARAM(Stereo, WinWidth, int, 15, "Window width.");
671  RTABMAP_PARAM(Stereo, WinHeight, int, 3, "Window height.");
672  RTABMAP_PARAM(Stereo, Iterations, int, 30, "Maximum iterations.");
673  RTABMAP_PARAM(Stereo, MaxLevel, int, 5, "Maximum pyramid level.");
674  RTABMAP_PARAM(Stereo, MinDisparity, float, 0.5, "Minimum disparity.");
675  RTABMAP_PARAM(Stereo, MaxDisparity, float, 128.0, "Maximum disparity.");
676  RTABMAP_PARAM(Stereo, OpticalFlow, bool, true, "Use optical flow to find stereo correspondences, otherwise a simple block matching approach is used.");
677  RTABMAP_PARAM(Stereo, SSD, bool, true, uFormat("[%s=false] Use Sum of Squared Differences (SSD) window, otherwise Sum of Absolute Differences (SAD) window is used.", kStereoOpticalFlow().c_str()));
678  RTABMAP_PARAM(Stereo, Eps, double, 0.01, uFormat("[%s=true] Epsilon stop criterion.", kStereoOpticalFlow().c_str()));
679 
680  RTABMAP_PARAM(Stereo, DenseStrategy, int, 0, "0=cv::StereoBM, 1=cv::StereoSGBM");
681 
682  RTABMAP_PARAM(StereoBM, BlockSize, int, 15, "See cv::StereoBM");
683  RTABMAP_PARAM(StereoBM, MinDisparity, int, 0, "See cv::StereoBM");
684  RTABMAP_PARAM(StereoBM, NumDisparities, int, 128, "See cv::StereoBM");
685  RTABMAP_PARAM(StereoBM, PreFilterSize, int, 9, "See cv::StereoBM");
686  RTABMAP_PARAM(StereoBM, PreFilterCap, int, 31, "See cv::StereoBM");
687  RTABMAP_PARAM(StereoBM, UniquenessRatio, int, 15, "See cv::StereoBM");
688  RTABMAP_PARAM(StereoBM, TextureThreshold, int, 10, "See cv::StereoBM");
689  RTABMAP_PARAM(StereoBM, SpeckleWindowSize, int, 100, "See cv::StereoBM");
690  RTABMAP_PARAM(StereoBM, SpeckleRange, int, 4, "See cv::StereoBM");
691  RTABMAP_PARAM(StereoBM, Disp12MaxDiff, int, -1, "See cv::StereoBM");
692 
693  RTABMAP_PARAM(StereoSGBM, BlockSize, int, 15, "See cv::StereoSGBM");
694  RTABMAP_PARAM(StereoSGBM, MinDisparity, int, 0, "See cv::StereoSGBM");
695  RTABMAP_PARAM(StereoSGBM, NumDisparities, int, 128, "See cv::StereoSGBM");
696  RTABMAP_PARAM(StereoSGBM, PreFilterCap, int, 31, "See cv::StereoSGBM");
697  RTABMAP_PARAM(StereoSGBM, UniquenessRatio, int, 20, "See cv::StereoSGBM");
698  RTABMAP_PARAM(StereoSGBM, SpeckleWindowSize, int, 100, "See cv::StereoSGBM");
699  RTABMAP_PARAM(StereoSGBM, SpeckleRange, int, 4, "See cv::StereoSGBM");
700  RTABMAP_PARAM(StereoSGBM, Disp12MaxDiff, int, 1, "See cv::StereoSGBM");
701  RTABMAP_PARAM(StereoSGBM, P1, int, 2, "See cv::StereoSGBM");
702  RTABMAP_PARAM(StereoSGBM, P2, int, 5, "See cv::StereoSGBM");
703 #if CV_MAJOR_VERSION < 3
704  RTABMAP_PARAM(StereoSGBM, Mode, int, 0, "See cv::StereoSGBM");
705 #else
706  RTABMAP_PARAM(StereoSGBM, Mode, int, 2, "See cv::StereoSGBM");
707 #endif
708 
709  // Occupancy Grid
710  RTABMAP_PARAM(Grid, FromDepth, bool, true, "Create occupancy grid from depth image(s), otherwise it is created from laser scan.");
711  RTABMAP_PARAM(Grid, DepthDecimation, int, 4, uFormat("[%s=true] Decimation of the depth image before creating cloud. Negative decimation is done from RGB size instead of depth size (if depth is smaller than RGB, it may be interpolated depending of the decimation value).", kGridDepthDecimation().c_str()));
712  RTABMAP_PARAM(Grid, RangeMin, float, 0.0, "Minimum range from sensor.");
713  RTABMAP_PARAM(Grid, RangeMax, float, 5.0, "Maximum range from sensor. 0=inf.");
714  RTABMAP_PARAM_STR(Grid, DepthRoiRatios, "0.0 0.0 0.0 0.0", uFormat("[%s=true] Region of interest ratios [left, right, top, bottom].", kGridFromDepth().c_str()));
715  RTABMAP_PARAM(Grid, FootprintLength, float, 0.0, "Footprint length used to filter points over the footprint of the robot.");
716  RTABMAP_PARAM(Grid, FootprintWidth, float, 0.0, "Footprint width used to filter points over the footprint of the robot. Footprint length should be set.");
717  RTABMAP_PARAM(Grid, FootprintHeight, float, 0.0, "Footprint height used to filter points over the footprint of the robot. Footprint length and width should be set.");
718  RTABMAP_PARAM(Grid, ScanDecimation, int, 1, uFormat("[%s=false] Decimation of the laser scan before creating cloud.", kGridFromDepth().c_str()));
719  RTABMAP_PARAM(Grid, CellSize, float, 0.05, "Resolution of the occupancy grid.");
720  RTABMAP_PARAM(Grid, PreVoxelFiltering, bool, true, uFormat("Input cloud is downsampled by voxel filter (voxel size is \"%s\") before doing segmentation of obstacles and ground.", kGridCellSize().c_str()));
721  RTABMAP_PARAM(Grid, MapFrameProjection, bool, false, "Projection in map frame. On a 3D terrain and a fixed local camera transform (the cloud is created relative to ground), you may want to disable this to do the projection in robot frame instead.");
722  RTABMAP_PARAM(Grid, NormalsSegmentation, bool, true, "Segment ground from obstacles using point normals, otherwise a fast passthrough is used.");
723  RTABMAP_PARAM(Grid, MaxObstacleHeight, float, 0.0, "Maximum obstacles height (0=disabled).");
724  RTABMAP_PARAM(Grid, MinGroundHeight, float, 0.0, "Minimum ground height (0=disabled).");
725  RTABMAP_PARAM(Grid, MaxGroundHeight, float, 0.0, uFormat("Maximum ground height (0=disabled). Should be set if \"%s\" is false.", kGridNormalsSegmentation().c_str()));
726  RTABMAP_PARAM(Grid, MaxGroundAngle, float, 45, uFormat("[%s=true] Maximum angle (degrees) between point's normal to ground's normal to label it as ground. Points with higher angle difference are considered as obstacles.", kGridNormalsSegmentation().c_str()));
727  RTABMAP_PARAM(Grid, NormalK, int, 20, uFormat("[%s=true] K neighbors to compute normals.", kGridNormalsSegmentation().c_str()));
728  RTABMAP_PARAM(Grid, ClusterRadius, float, 0.1, uFormat("[%s=true] Cluster maximum radius.", kGridNormalsSegmentation().c_str()));
729  RTABMAP_PARAM(Grid, MinClusterSize, int, 10, uFormat("[%s=true] Minimum cluster size to project the points.", kGridNormalsSegmentation().c_str()));
730  RTABMAP_PARAM(Grid, FlatObstacleDetected, bool, true, uFormat("[%s=true] Flat obstacles detected.", kGridNormalsSegmentation().c_str()));
731 #ifdef RTABMAP_OCTOMAP
732  RTABMAP_PARAM(Grid, 3D, bool, true, uFormat("A 3D occupancy grid is required if you want an OctoMap (3D ray tracing). Set to false if you want only a 2D map, the cloud will be projected on xy plane. A 2D map can be still generated if checked, but it requires more memory and time to generate it. Ignored if laser scan is 2D and \"%s\" is false.", kGridFromDepth().c_str()));
733 #else
734  RTABMAP_PARAM(Grid, 3D, bool, false, uFormat("A 3D occupancy grid is required if you want an OctoMap (3D ray tracing). Set to false if you want only a 2D map, the cloud will be projected on xy plane. A 2D map can be still generated if checked, but it requires more memory and time to generate it. Ignored if laser scan is 2D and \"%s\" is false.", kGridFromDepth().c_str()));
735 #endif
736  RTABMAP_PARAM(Grid, GroundIsObstacle, bool, false, uFormat("[%s=true] Ground segmentation (%s) is ignored, all points are obstacles. Use this only if you want an OctoMap with ground identified as an obstacle (e.g., with an UAV).", kGrid3D().c_str(), kGridNormalsSegmentation().c_str()));
737  RTABMAP_PARAM(Grid, NoiseFilteringRadius, float, 0.0, "Noise filtering radius (0=disabled). Done after segmentation.");
738  RTABMAP_PARAM(Grid, NoiseFilteringMinNeighbors, int, 5, "Noise filtering minimum neighbors.");
739  RTABMAP_PARAM(Grid, Scan2dUnknownSpaceFilled, bool, false, uFormat("Unknown space filled. Only used with 2D laser scans. Use %s to set maximum range if laser scan max range is to set.", kGridRangeMax().c_str()));
740  RTABMAP_PARAM(Grid, RayTracing, bool, false, uFormat("Ray tracing is done for each occupied cell, filling unknown space between the sensor and occupied cells. If %s=true, RTAB-Map should be built with OctoMap support, otherwise 3D ray tracing is ignored.", kGrid3D().c_str()));
741 
742  RTABMAP_PARAM(GridGlobal, FullUpdate, bool, true, "When the graph is changed, the whole map will be reconstructed instead of moving individually each cells of the map. Also, data added to cache won't be released after updating the map. This process is longer but more robust to drift that would erase some parts of the map when it should not.");
743  RTABMAP_PARAM(GridGlobal, UpdateError, float, 0.01, "Graph changed detection error (m). Update map only if poses in new optimized graph have moved more than this value.");
744  RTABMAP_PARAM(GridGlobal, FootprintRadius, float, 0.0, "Footprint radius (m) used to clear all obstacles under the graph.");
745  RTABMAP_PARAM(GridGlobal, MinSize, float, 0.0, "Minimum map size (m).");
746  RTABMAP_PARAM(GridGlobal, Eroded, bool, false, "Erode obstacle cells.");
747  RTABMAP_PARAM(GridGlobal, MaxNodes, int, 0, "Maximum nodes assembled in the map starting from the last node (0=unlimited).");
748  RTABMAP_PARAM(GridGlobal, OccupancyThr, float, 0.5, "Occupancy threshold (value between 0 and 1).");
749  RTABMAP_PARAM(GridGlobal, ProbHit, float, 0.7, "Probability of a hit (value between 0.5 and 1).");
750  RTABMAP_PARAM(GridGlobal, ProbMiss, float, 0.4, "Probability of a miss (value between 0 and 0.5).");
751  RTABMAP_PARAM(GridGlobal, ProbClampingMin, float, 0.1192, "Probability clamping minimum (value between 0 and 1).");
752  RTABMAP_PARAM(GridGlobal, ProbClampingMax, float, 0.971, "Probability clamping maximum (value between 0 and 1).");
753 
754  RTABMAP_PARAM(Marker, Dictionary, int, 0, "Dictionary to use: DICT_ARUCO_4X4_50=0, DICT_ARUCO_4X4_100=1, DICT_ARUCO_4X4_250=2, DICT_ARUCO_4X4_1000=3, DICT_ARUCO_5X5_50=4, DICT_ARUCO_5X5_100=5, DICT_ARUCO_5X5_250=6, DICT_ARUCO_5X5_1000=7, DICT_ARUCO_6X6_50=8, DICT_ARUCO_6X6_100=9, DICT_ARUCO_6X6_250=10, DICT_ARUCO_6X6_1000=11, DICT_ARUCO_7X7_50=12, DICT_ARUCO_7X7_100=13, DICT_ARUCO_7X7_250=14, DICT_ARUCO_7X7_1000=15, DICT_ARUCO_ORIGINAL = 16, DICT_APRILTAG_16h5=17, DICT_APRILTAG_25h9=18, DICT_APRILTAG_36h10=19, DICT_APRILTAG_36h11=20");
755  RTABMAP_PARAM(Marker, Length, float, 0, "The length (m) of the markers' side. 0 means automatic marker length estimation using the depth image (the camera should look at the marker perpendicularly for initialization).");
756  RTABMAP_PARAM(Marker, MaxDepthError, float, 0.01, uFormat("Maximum depth error between all corners of a marker when estimating the marker length (when %s is 0). The smaller it is, the more perpendicular the camera should be toward the marker to initialize the length.", kMarkerLength().c_str()));
757  RTABMAP_PARAM(Marker, VarianceLinear, float, 0.001, "Linear variance to set on marker detections.");
758  RTABMAP_PARAM(Marker, VarianceAngular, float, 0.01, "Angular variance to set on marker detections. Set to >=9999 to use only position (xyz) constraint in graph optimization.");
759  RTABMAP_PARAM(Marker, CornerRefinementMethod, int, 0, "Corner refinement method (0: None, 1: Subpixel, 2:contour, 3: AprilTag2). For OpenCV <3.3.0, this is \"doCornerRefinement\" parameter: set 0 for false and 1 for true.");
760  RTABMAP_PARAM(Marker, MaxRange, float, 0.0, "Maximum range in which markers will be detected. <=0 for unlimited range.");
761  RTABMAP_PARAM(Marker, MinRange, float, 0.0, "Miniminum range in which markers will be detected. <=0 for unlimited range.");
762 
763  RTABMAP_PARAM(ImuFilter, MadgwickGain, double, 0.1, "Gain of the filter. Higher values lead to faster convergence but more noise. Lower values lead to slower convergence but smoother signal, belongs in [0, 1].");
764  RTABMAP_PARAM(ImuFilter, MadgwickZeta, double, 0.0, "Gyro drift gain (approx. rad/s), belongs in [-1, 1].");
765 
766  RTABMAP_PARAM(ImuFilter, ComplementaryGainAcc, double, 0.01, "Gain parameter for the complementary filter, belongs in [0, 1].");
767  RTABMAP_PARAM(ImuFilter, ComplementaryBiasAlpha, double, 0.01, "Bias estimation gain parameter, belongs in [0, 1].");
768  RTABMAP_PARAM(ImuFilter, ComplementaryDoBiasEstimation, bool, true, "Parameter whether to do bias estimation or not.");
769  RTABMAP_PARAM(ImuFilter, ComplementaryDoAdpativeGain, bool, true, "Parameter whether to do adaptive gain or not.");
770 
771 public:
772  virtual ~Parameters();
773 
778  static const ParametersMap & getDefaultParameters()
779  {
780  return parameters_;
781  }
782 
787  static std::string getType(const std::string & paramKey);
788 
793  static std::string getDescription(const std::string & paramKey);
794 
795  static bool parse(const ParametersMap & parameters, const std::string & key, bool & value);
796  static bool parse(const ParametersMap & parameters, const std::string & key, int & value);
797  static bool parse(const ParametersMap & parameters, const std::string & key, unsigned int & value);
798  static bool parse(const ParametersMap & parameters, const std::string & key, float & value);
799  static bool parse(const ParametersMap & parameters, const std::string & key, double & value);
800  static bool parse(const ParametersMap & parameters, const std::string & key, std::string & value);
801  static void parse(const ParametersMap & parameters, ParametersMap & parametersOut);
802 
803  static const char * showUsage();
804  static ParametersMap parseArguments(int argc, char * argv[], bool onlyParameters = false);
805 
806  static std::string getVersion();
807  static std::string getDefaultDatabaseName();
808 
809  static std::string serialize(const ParametersMap & parameters);
810  static ParametersMap deserialize(const std::string & parameters);
811 
812  static bool isFeatureParameter(const std::string & param);
813  static ParametersMap getDefaultOdometryParameters(bool stereo = false, bool vis = true, bool icp = false);
814  static ParametersMap getDefaultParameters(const std::string & group);
815  static ParametersMap filterParameters(const ParametersMap & parameters, const std::string & group);
816 
817  static void readINI(const std::string & configFile, ParametersMap & parameters, bool modifiedOnly = false);
818  static void writeINI(const std::string & configFile, const ParametersMap & parameters);
819 
824  static const std::map<std::string, std::pair<bool, std::string> > & getRemovedParameters();
825 
829  static const ParametersMap & getBackwardCompatibilityMap();
830 
831  static std::string createDefaultWorkingDirectory();
832 
833 private:
834  Parameters();
835 
836 private:
837  static ParametersMap parameters_;
838  static ParametersMap parametersType_;
839  static ParametersMap descriptions_;
841 
842  static std::map<std::string, std::pair<bool, std::string> > removedParameters_;
843  static ParametersMap backwardCompatibilityMap_;
844 };
845 
846 }
847 
848 #endif /* PARAMETERS_H_ */
#define RTABMAP_PARAM_STR(PREFIX, NAME, DEFAULT_VALUE, DESCRIPTION)
Definition: Parameters.h:98
void serialize(const Eigen::Matrix< S, T, U > &mat, std::ostream &strm)
std::pair< std::string, std::string > ParametersPair
Definition: Parameters.h:44
std::map< std::string, std::string > ParametersMap
Definition: Parameters.h:43
static ParametersMap descriptions_
Definition: Parameters.h:839
static ParametersMap backwardCompatibilityMap_
Definition: Parameters.h:843
Some conversion functions.
void showUsage()
#define RTABMAP_EXP
Definition: RtabmapExp.h:38
Definition: sqlite3.c:10056
static Parameters instance_
Definition: Parameters.h:840
void NMS(const std::vector< cv::KeyPoint > &ptsIn, const cv::Mat &conf, const cv::Mat &descriptorsIn, std::vector< cv::KeyPoint > &ptsOut, cv::Mat &descriptorsOut, int border, int dist_thresh, int img_width, int img_height)
Definition: SuperPoint.cc:264
Transform RTABMAP_EXP icp(const pcl::PointCloud< pcl::PointXYZ >::ConstPtr &cloud_source, const pcl::PointCloud< pcl::PointXYZ >::ConstPtr &cloud_target, double maxCorrespondenceDistance, int maximumIterations, bool &hasConverged, pcl::PointCloud< pcl::PointXYZ > &cloud_source_registered, float epsilon=0.0f, bool icp2D=false)
static ParametersMap parameters_
Definition: Parameters.h:837
Definition: sqlite3.c:13567
static const ParametersMap & getDefaultParameters()
Definition: Parameters.h:778
static ParametersMap parametersType_
Definition: Parameters.h:838
#define RTABMAP_PARAM(PREFIX, NAME, TYPE, DEFAULT_VALUE, DESCRIPTION)
Definition: Parameters.h:64
Length
std::string UTILITE_EXP uFormat(const char *fmt,...)
static std::map< std::string, std::pair< bool, std::string > > removedParameters_
Definition: Parameters.h:842
void deserialize(std::istream &strm, Eigen::Matrix< S, T, U > *mat)


rtabmap
Author(s): Mathieu Labbe
autogenerated on Mon Dec 14 2020 03:34:59