linmath.h
Go to the documentation of this file.
1 #ifndef LINMATH_H
2 #define LINMATH_H
3 
4 #include <math.h>
5 
6 #ifdef _MSC_VER
7 #define inline __inline
8 #endif
9 
10 #define LINMATH_H_DEFINE_VEC(n) \
11 typedef float vec##n[n]; \
12 static inline void vec##n##_add(vec##n r, vec##n const a, vec##n const b) \
13 { \
14  int i; \
15  for(i=0; i<n; ++i) \
16  r[i] = a[i] + b[i]; \
17 } \
18 static inline void vec##n##_sub(vec##n r, vec##n const a, vec##n const b) \
19 { \
20  int i; \
21  for(i=0; i<n; ++i) \
22  r[i] = a[i] - b[i]; \
23 } \
24 static inline void vec##n##_scale(vec##n r, vec##n const v, float const s) \
25 { \
26  int i; \
27  for(i=0; i<n; ++i) \
28  r[i] = v[i] * s; \
29 } \
30 static inline float vec##n##_mul_inner(vec##n const a, vec##n const b) \
31 { \
32  float p = 0.; \
33  int i; \
34  for(i=0; i<n; ++i) \
35  p += b[i]*a[i]; \
36  return p; \
37 } \
38 static inline float vec##n##_len(vec##n const v) \
39 { \
40  return (float) sqrt(vec##n##_mul_inner(v,v)); \
41 } \
42 static inline void vec##n##_norm(vec##n r, vec##n const v) \
43 { \
44  float k = 1.f / vec##n##_len(v); \
45  vec##n##_scale(r, v, k); \
46 }
47 
51 
52 static inline void vec3_mul_cross(vec3 r, vec3 const a, vec3 const b)
53 {
54  r[0] = a[1]*b[2] - a[2]*b[1];
55  r[1] = a[2]*b[0] - a[0]*b[2];
56  r[2] = a[0]*b[1] - a[1]*b[0];
57 }
58 
59 static inline void vec3_reflect(vec3 r, vec3 const v, vec3 const n)
60 {
61  float p = 2.f*vec3_mul_inner(v, n);
62  int i;
63  for(i=0;i<3;++i)
64  r[i] = v[i] - p*n[i];
65 }
66 
67 static inline void vec4_mul_cross(vec4 r, vec4 a, vec4 b)
68 {
69  r[0] = a[1]*b[2] - a[2]*b[1];
70  r[1] = a[2]*b[0] - a[0]*b[2];
71  r[2] = a[0]*b[1] - a[1]*b[0];
72  r[3] = 1.f;
73 }
74 
75 static inline void vec4_reflect(vec4 r, vec4 v, vec4 n)
76 {
77  float p = 2.f*vec4_mul_inner(v, n);
78  int i;
79  for(i=0;i<4;++i)
80  r[i] = v[i] - p*n[i];
81 }
82 
83 typedef vec4 mat4x4[4];
84 static inline void mat4x4_identity(mat4x4 M)
85 {
86  int i, j;
87  for(i=0; i<4; ++i)
88  for(j=0; j<4; ++j)
89  M[i][j] = i==j ? 1.f : 0.f;
90 }
91 static inline void mat4x4_dup(mat4x4 M, mat4x4 N)
92 {
93  int i, j;
94  for(i=0; i<4; ++i)
95  for(j=0; j<4; ++j)
96  M[i][j] = N[i][j];
97 }
98 static inline void mat4x4_row(vec4 r, mat4x4 M, int i)
99 {
100  int k;
101  for(k=0; k<4; ++k)
102  r[k] = M[k][i];
103 }
104 static inline void mat4x4_col(vec4 r, mat4x4 M, int i)
105 {
106  int k;
107  for(k=0; k<4; ++k)
108  r[k] = M[i][k];
109 }
110 static inline void mat4x4_transpose(mat4x4 M, mat4x4 N)
111 {
112  int i, j;
113  for(j=0; j<4; ++j)
114  for(i=0; i<4; ++i)
115  M[i][j] = N[j][i];
116 }
117 static inline void mat4x4_add(mat4x4 M, mat4x4 a, mat4x4 b)
118 {
119  int i;
120  for(i=0; i<4; ++i)
121  vec4_add(M[i], a[i], b[i]);
122 }
123 static inline void mat4x4_sub(mat4x4 M, mat4x4 a, mat4x4 b)
124 {
125  int i;
126  for(i=0; i<4; ++i)
127  vec4_sub(M[i], a[i], b[i]);
128 }
129 static inline void mat4x4_scale(mat4x4 M, mat4x4 a, float k)
130 {
131  int i;
132  for(i=0; i<4; ++i)
133  vec4_scale(M[i], a[i], k);
134 }
135 static inline void mat4x4_scale_aniso(mat4x4 M, mat4x4 a, float x, float y, float z)
136 {
137  int i;
138  vec4_scale(M[0], a[0], x);
139  vec4_scale(M[1], a[1], y);
140  vec4_scale(M[2], a[2], z);
141  for(i = 0; i < 4; ++i) {
142  M[3][i] = a[3][i];
143  }
144 }
145 static inline void mat4x4_mul(mat4x4 M, mat4x4 a, mat4x4 b)
146 {
147  mat4x4 temp;
148  int k, r, c;
149  for(c=0; c<4; ++c) for(r=0; r<4; ++r) {
150  temp[c][r] = 0.f;
151  for(k=0; k<4; ++k)
152  temp[c][r] += a[k][r] * b[c][k];
153  }
154  mat4x4_dup(M, temp);
155 }
156 static inline void mat4x4_mul_vec4(vec4 r, mat4x4 M, vec4 v)
157 {
158  int i, j;
159  for(j=0; j<4; ++j) {
160  r[j] = 0.f;
161  for(i=0; i<4; ++i)
162  r[j] += M[i][j] * v[i];
163  }
164 }
165 static inline void mat4x4_translate(mat4x4 T, float x, float y, float z)
166 {
167  mat4x4_identity(T);
168  T[3][0] = x;
169  T[3][1] = y;
170  T[3][2] = z;
171 }
172 static inline void mat4x4_translate_in_place(mat4x4 M, float x, float y, float z)
173 {
174  vec4 t = {x, y, z, 0};
175  vec4 r;
176  int i;
177  for (i = 0; i < 4; ++i) {
178  mat4x4_row(r, M, i);
179  M[3][i] += vec4_mul_inner(r, t);
180  }
181 }
182 static inline void mat4x4_from_vec3_mul_outer(mat4x4 M, vec3 a, vec3 b)
183 {
184  int i, j;
185  for(i=0; i<4; ++i) for(j=0; j<4; ++j)
186  M[i][j] = i<3 && j<3 ? a[i] * b[j] : 0.f;
187 }
188 static inline void mat4x4_rotate(mat4x4 R, mat4x4 M, float x, float y, float z, float angle)
189 {
190  float s = sinf(angle);
191  float c = cosf(angle);
192  vec3 u = {x, y, z};
193 
194  if(vec3_len(u) > 1e-4) {
195  mat4x4 T, C, S = {{0}};
196 
197  vec3_norm(u, u);
199 
200  S[1][2] = u[0];
201  S[2][1] = -u[0];
202  S[2][0] = u[1];
203  S[0][2] = -u[1];
204  S[0][1] = u[2];
205  S[1][0] = -u[2];
206 
207  mat4x4_scale(S, S, s);
208 
209  mat4x4_identity(C);
210  mat4x4_sub(C, C, T);
211 
212  mat4x4_scale(C, C, c);
213 
214  mat4x4_add(T, T, C);
215  mat4x4_add(T, T, S);
216 
217  T[3][3] = 1.;
218  mat4x4_mul(R, M, T);
219  } else {
220  mat4x4_dup(R, M);
221  }
222 }
223 static inline void mat4x4_rotate_X(mat4x4 Q, mat4x4 M, float angle)
224 {
225  float s = sinf(angle);
226  float c = cosf(angle);
227  mat4x4 R = {
228  {1.f, 0.f, 0.f, 0.f},
229  {0.f, c, s, 0.f},
230  {0.f, -s, c, 0.f},
231  {0.f, 0.f, 0.f, 1.f}
232  };
233  mat4x4_mul(Q, M, R);
234 }
235 static inline void mat4x4_rotate_Y(mat4x4 Q, mat4x4 M, float angle)
236 {
237  float s = sinf(angle);
238  float c = cosf(angle);
239  mat4x4 R = {
240  { c, 0.f, s, 0.f},
241  { 0.f, 1.f, 0.f, 0.f},
242  { -s, 0.f, c, 0.f},
243  { 0.f, 0.f, 0.f, 1.f}
244  };
245  mat4x4_mul(Q, M, R);
246 }
247 static inline void mat4x4_rotate_Z(mat4x4 Q, mat4x4 M, float angle)
248 {
249  float s = sinf(angle);
250  float c = cosf(angle);
251  mat4x4 R = {
252  { c, s, 0.f, 0.f},
253  { -s, c, 0.f, 0.f},
254  { 0.f, 0.f, 1.f, 0.f},
255  { 0.f, 0.f, 0.f, 1.f}
256  };
257  mat4x4_mul(Q, M, R);
258 }
259 static inline void mat4x4_invert(mat4x4 T, mat4x4 M)
260 {
261  float idet;
262  float s[6];
263  float c[6];
264  s[0] = M[0][0]*M[1][1] - M[1][0]*M[0][1];
265  s[1] = M[0][0]*M[1][2] - M[1][0]*M[0][2];
266  s[2] = M[0][0]*M[1][3] - M[1][0]*M[0][3];
267  s[3] = M[0][1]*M[1][2] - M[1][1]*M[0][2];
268  s[4] = M[0][1]*M[1][3] - M[1][1]*M[0][3];
269  s[5] = M[0][2]*M[1][3] - M[1][2]*M[0][3];
270 
271  c[0] = M[2][0]*M[3][1] - M[3][0]*M[2][1];
272  c[1] = M[2][0]*M[3][2] - M[3][0]*M[2][2];
273  c[2] = M[2][0]*M[3][3] - M[3][0]*M[2][3];
274  c[3] = M[2][1]*M[3][2] - M[3][1]*M[2][2];
275  c[4] = M[2][1]*M[3][3] - M[3][1]*M[2][3];
276  c[5] = M[2][2]*M[3][3] - M[3][2]*M[2][3];
277 
278  /* Assumes it is invertible */
279  idet = 1.0f/( s[0]*c[5]-s[1]*c[4]+s[2]*c[3]+s[3]*c[2]-s[4]*c[1]+s[5]*c[0] );
280 
281  T[0][0] = ( M[1][1] * c[5] - M[1][2] * c[4] + M[1][3] * c[3]) * idet;
282  T[0][1] = (-M[0][1] * c[5] + M[0][2] * c[4] - M[0][3] * c[3]) * idet;
283  T[0][2] = ( M[3][1] * s[5] - M[3][2] * s[4] + M[3][3] * s[3]) * idet;
284  T[0][3] = (-M[2][1] * s[5] + M[2][2] * s[4] - M[2][3] * s[3]) * idet;
285 
286  T[1][0] = (-M[1][0] * c[5] + M[1][2] * c[2] - M[1][3] * c[1]) * idet;
287  T[1][1] = ( M[0][0] * c[5] - M[0][2] * c[2] + M[0][3] * c[1]) * idet;
288  T[1][2] = (-M[3][0] * s[5] + M[3][2] * s[2] - M[3][3] * s[1]) * idet;
289  T[1][3] = ( M[2][0] * s[5] - M[2][2] * s[2] + M[2][3] * s[1]) * idet;
290 
291  T[2][0] = ( M[1][0] * c[4] - M[1][1] * c[2] + M[1][3] * c[0]) * idet;
292  T[2][1] = (-M[0][0] * c[4] + M[0][1] * c[2] - M[0][3] * c[0]) * idet;
293  T[2][2] = ( M[3][0] * s[4] - M[3][1] * s[2] + M[3][3] * s[0]) * idet;
294  T[2][3] = (-M[2][0] * s[4] + M[2][1] * s[2] - M[2][3] * s[0]) * idet;
295 
296  T[3][0] = (-M[1][0] * c[3] + M[1][1] * c[1] - M[1][2] * c[0]) * idet;
297  T[3][1] = ( M[0][0] * c[3] - M[0][1] * c[1] + M[0][2] * c[0]) * idet;
298  T[3][2] = (-M[3][0] * s[3] + M[3][1] * s[1] - M[3][2] * s[0]) * idet;
299  T[3][3] = ( M[2][0] * s[3] - M[2][1] * s[1] + M[2][2] * s[0]) * idet;
300 }
301 static inline void mat4x4_orthonormalize(mat4x4 R, mat4x4 M)
302 {
303  float s = 1.;
304  vec3 h;
305 
306  mat4x4_dup(R, M);
307  vec3_norm(R[2], R[2]);
308 
309  s = vec3_mul_inner(R[1], R[2]);
310  vec3_scale(h, R[2], s);
311  vec3_sub(R[1], R[1], h);
312  vec3_norm(R[2], R[2]);
313 
314  s = vec3_mul_inner(R[1], R[2]);
315  vec3_scale(h, R[2], s);
316  vec3_sub(R[1], R[1], h);
317  vec3_norm(R[1], R[1]);
318 
319  s = vec3_mul_inner(R[0], R[1]);
320  vec3_scale(h, R[1], s);
321  vec3_sub(R[0], R[0], h);
322  vec3_norm(R[0], R[0]);
323 }
324 
325 static inline void mat4x4_frustum(mat4x4 M, float l, float r, float b, float t, float n, float f)
326 {
327  M[0][0] = 2.f*n/(r-l);
328  M[0][1] = M[0][2] = M[0][3] = 0.f;
329 
330  M[1][1] = 2.f*n/(t-b);
331  M[1][0] = M[1][2] = M[1][3] = 0.f;
332 
333  M[2][0] = (r+l)/(r-l);
334  M[2][1] = (t+b)/(t-b);
335  M[2][2] = -(f+n)/(f-n);
336  M[2][3] = -1.f;
337 
338  M[3][2] = -2.f*(f*n)/(f-n);
339  M[3][0] = M[3][1] = M[3][3] = 0.f;
340 }
341 static inline void mat4x4_ortho(mat4x4 M, float l, float r, float b, float t, float n, float f)
342 {
343  M[0][0] = 2.f/(r-l);
344  M[0][1] = M[0][2] = M[0][3] = 0.f;
345 
346  M[1][1] = 2.f/(t-b);
347  M[1][0] = M[1][2] = M[1][3] = 0.f;
348 
349  M[2][2] = -2.f/(f-n);
350  M[2][0] = M[2][1] = M[2][3] = 0.f;
351 
352  M[3][0] = -(r+l)/(r-l);
353  M[3][1] = -(t+b)/(t-b);
354  M[3][2] = -(f+n)/(f-n);
355  M[3][3] = 1.f;
356 }
357 static inline void mat4x4_perspective(mat4x4 m, float y_fov, float aspect, float n, float f)
358 {
359  /* NOTE: Degrees are an unhandy unit to work with.
360  * linmath.h uses radians for everything! */
361  float const a = 1.f / (float) tan(y_fov / 2.f);
362 
363  m[0][0] = a / aspect;
364  m[0][1] = 0.f;
365  m[0][2] = 0.f;
366  m[0][3] = 0.f;
367 
368  m[1][0] = 0.f;
369  m[1][1] = a;
370  m[1][2] = 0.f;
371  m[1][3] = 0.f;
372 
373  m[2][0] = 0.f;
374  m[2][1] = 0.f;
375  m[2][2] = -((f + n) / (f - n));
376  m[2][3] = -1.f;
377 
378  m[3][0] = 0.f;
379  m[3][1] = 0.f;
380  m[3][2] = -((2.f * f * n) / (f - n));
381  m[3][3] = 0.f;
382 }
383 static inline void mat4x4_look_at(mat4x4 m, vec3 eye, vec3 center, vec3 up)
384 {
385  /* Adapted from Android's OpenGL Matrix.java. */
386  /* See the OpenGL GLUT documentation for gluLookAt for a description */
387  /* of the algorithm. We implement it in a straightforward way: */
388 
389  /* TODO: The negation of of can be spared by swapping the order of
390  * operands in the following cross products in the right way. */
391  vec3 f;
392  vec3 s;
393  vec3 t;
394 
395  vec3_sub(f, center, eye);
396  vec3_norm(f, f);
397 
398  vec3_mul_cross(s, f, up);
399  vec3_norm(s, s);
400 
401  vec3_mul_cross(t, s, f);
402 
403  m[0][0] = s[0];
404  m[0][1] = t[0];
405  m[0][2] = -f[0];
406  m[0][3] = 0.f;
407 
408  m[1][0] = s[1];
409  m[1][1] = t[1];
410  m[1][2] = -f[1];
411  m[1][3] = 0.f;
412 
413  m[2][0] = s[2];
414  m[2][1] = t[2];
415  m[2][2] = -f[2];
416  m[2][3] = 0.f;
417 
418  m[3][0] = 0.f;
419  m[3][1] = 0.f;
420  m[3][2] = 0.f;
421  m[3][3] = 1.f;
422 
423  mat4x4_translate_in_place(m, -eye[0], -eye[1], -eye[2]);
424 }
425 
426 typedef float quat[4];
427 static inline void quat_identity(quat q)
428 {
429  q[0] = q[1] = q[2] = 0.f;
430  q[3] = 1.f;
431 }
432 static inline void quat_add(quat r, quat a, quat b)
433 {
434  int i;
435  for(i=0; i<4; ++i)
436  r[i] = a[i] + b[i];
437 }
438 static inline void quat_sub(quat r, quat a, quat b)
439 {
440  int i;
441  for(i=0; i<4; ++i)
442  r[i] = a[i] - b[i];
443 }
444 static inline void quat_mul(quat r, quat p, quat q)
445 {
446  vec3 w;
447  vec3_mul_cross(r, p, q);
448  vec3_scale(w, p, q[3]);
449  vec3_add(r, r, w);
450  vec3_scale(w, q, p[3]);
451  vec3_add(r, r, w);
452  r[3] = p[3]*q[3] - vec3_mul_inner(p, q);
453 }
454 static inline void quat_scale(quat r, quat v, float s)
455 {
456  int i;
457  for(i=0; i<4; ++i)
458  r[i] = v[i] * s;
459 }
460 static inline float quat_inner_product(quat a, quat b)
461 {
462  float p = 0.f;
463  int i;
464  for(i=0; i<4; ++i)
465  p += b[i]*a[i];
466  return p;
467 }
468 static inline void quat_conj(quat r, quat q)
469 {
470  int i;
471  for(i=0; i<3; ++i)
472  r[i] = -q[i];
473  r[3] = q[3];
474 }
475 static inline void quat_rotate(quat r, float angle, vec3 axis) {
476  int i;
477  vec3 v;
478  vec3_scale(v, axis, sinf(angle / 2));
479  for(i=0; i<3; ++i)
480  r[i] = v[i];
481  r[3] = cosf(angle / 2);
482 }
483 #define quat_norm vec4_norm
484 static inline void quat_mul_vec3(vec3 r, quat q, vec3 v)
485 {
486 /*
487  * Method by Fabian 'ryg' Giessen (of Farbrausch)
488 t = 2 * cross(q.xyz, v)
489 v' = v + q.w * t + cross(q.xyz, t)
490  */
491  vec3 t = {q[0], q[1], q[2]};
492  vec3 u = {q[0], q[1], q[2]};
493 
494  vec3_mul_cross(t, t, v);
495  vec3_scale(t, t, 2);
496 
497  vec3_mul_cross(u, u, t);
498  vec3_scale(t, t, q[3]);
499 
500  vec3_add(r, v, t);
501  vec3_add(r, r, u);
502 }
503 static inline void mat4x4_from_quat(mat4x4 M, quat q)
504 {
505  float a = q[3];
506  float b = q[0];
507  float c = q[1];
508  float d = q[2];
509  float a2 = a*a;
510  float b2 = b*b;
511  float c2 = c*c;
512  float d2 = d*d;
513 
514  M[0][0] = a2 + b2 - c2 - d2;
515  M[0][1] = 2.f*(b*c + a*d);
516  M[0][2] = 2.f*(b*d - a*c);
517  M[0][3] = 0.f;
518 
519  M[1][0] = 2*(b*c - a*d);
520  M[1][1] = a2 - b2 + c2 - d2;
521  M[1][2] = 2.f*(c*d + a*b);
522  M[1][3] = 0.f;
523 
524  M[2][0] = 2.f*(b*d + a*c);
525  M[2][1] = 2.f*(c*d - a*b);
526  M[2][2] = a2 - b2 - c2 + d2;
527  M[2][3] = 0.f;
528 
529  M[3][0] = M[3][1] = M[3][2] = 0.f;
530  M[3][3] = 1.f;
531 }
532 
533 static inline void mat4x4o_mul_quat(mat4x4 R, mat4x4 M, quat q)
534 {
535 /* XXX: The way this is written only works for othogonal matrices. */
536 /* TODO: Take care of non-orthogonal case. */
537  quat_mul_vec3(R[0], q, M[0]);
538  quat_mul_vec3(R[1], q, M[1]);
539  quat_mul_vec3(R[2], q, M[2]);
540 
541  R[3][0] = R[3][1] = R[3][2] = 0.f;
542  R[3][3] = 1.f;
543 }
544 static inline void quat_from_mat4x4(quat q, mat4x4 M)
545 {
546  float r=0.f;
547  int i;
548 
549  int perm[] = { 0, 1, 2, 0, 1 };
550  int *p = perm;
551 
552  for(i = 0; i<3; i++) {
553  float m = M[i][i];
554  if( m < r )
555  continue;
556  m = r;
557  p = &perm[i];
558  }
559 
560  r = (float) sqrt(1.f + M[p[0]][p[0]] - M[p[1]][p[1]] - M[p[2]][p[2]] );
561 
562  if(r < 1e-6) {
563  q[0] = 1.f;
564  q[1] = q[2] = q[3] = 0.f;
565  return;
566  }
567 
568  q[0] = r/2.f;
569  q[1] = (M[p[0]][p[1]] - M[p[1]][p[0]])/(2.f*r);
570  q[2] = (M[p[2]][p[0]] - M[p[0]][p[2]])/(2.f*r);
571  q[3] = (M[p[2]][p[1]] - M[p[1]][p[2]])/(2.f*r);
572 }
573 
574 #endif
GLboolean GLboolean GLboolean b
GLint y
static void quat_rotate(quat r, float angle, vec3 axis)
Definition: linmath.h:475
static void mat4x4_rotate_Y(mat4x4 Q, mat4x4 M, float angle)
Definition: linmath.h:235
vec4 mat4x4[4]
Definition: linmath.h:83
static void mat4x4_rotate_X(mat4x4 Q, mat4x4 M, float angle)
Definition: linmath.h:223
static void mat4x4_scale(mat4x4 M, mat4x4 a, float k)
Definition: linmath.h:129
static void quat_scale(quat r, quat v, float s)
Definition: linmath.h:454
GLdouble s
static void mat4x4_ortho(mat4x4 M, float l, float r, float b, float t, float n, float f)
Definition: linmath.h:341
static void mat4x4_identity(mat4x4 M)
Definition: linmath.h:84
GLfloat GLfloat p
Definition: glext.h:12687
const GLfloat * m
Definition: glext.h:6814
static void mat4x4_col(vec4 r, mat4x4 M, int i)
Definition: linmath.h:104
GLfloat angle
Definition: glext.h:6819
#define LINMATH_H_DEFINE_VEC(n)
Definition: linmath.h:10
static void quat_from_mat4x4(quat q, mat4x4 M)
Definition: linmath.h:544
static void mat4x4_rotate_Z(mat4x4 Q, mat4x4 M, float angle)
Definition: linmath.h:247
GLdouble GLdouble GLdouble w
static void mat4x4_row(vec4 r, mat4x4 M, int i)
Definition: linmath.h:98
d
Definition: rmse.py:171
GLfloat GLfloat GLfloat GLfloat h
Definition: glext.h:1960
GLdouble GLdouble z
GLdouble n
Definition: glext.h:1966
e
Definition: rmse.py:177
static void mat4x4_perspective(mat4x4 m, float y_fov, float aspect, float n, float f)
Definition: linmath.h:357
static void quat_mul_vec3(vec3 r, quat q, vec3 v)
Definition: linmath.h:484
GLdouble t
GLboolean GLboolean GLboolean GLboolean a
static void mat4x4_from_quat(mat4x4 M, quat q)
Definition: linmath.h:503
static void mat4x4_mul_vec4(vec4 r, mat4x4 M, vec4 v)
Definition: linmath.h:156
GLdouble f
static void mat4x4_translate(mat4x4 T, float x, float y, float z)
Definition: linmath.h:165
static float quat_inner_product(quat a, quat b)
Definition: linmath.h:460
static void quat_mul(quat r, quat p, quat q)
Definition: linmath.h:444
static void mat4x4_add(mat4x4 M, mat4x4 a, mat4x4 b)
Definition: linmath.h:117
static void mat4x4_sub(mat4x4 M, mat4x4 a, mat4x4 b)
Definition: linmath.h:123
const GLubyte * c
Definition: glext.h:12690
static void vec4_reflect(vec4 r, vec4 v, vec4 n)
Definition: linmath.h:75
GLdouble GLdouble r
GLdouble x
static void mat4x4_frustum(mat4x4 M, float l, float r, float b, float t, float n, float f)
Definition: linmath.h:325
static void mat4x4_look_at(mat4x4 m, vec3 eye, vec3 center, vec3 up)
Definition: linmath.h:383
static void quat_identity(quat q)
Definition: linmath.h:427
static void mat4x4_rotate(mat4x4 R, mat4x4 M, float x, float y, float z, float angle)
Definition: linmath.h:188
GLint j
static void vec4_mul_cross(vec4 r, vec4 a, vec4 b)
Definition: linmath.h:67
static void quat_conj(quat r, quat q)
Definition: linmath.h:468
float quat[4]
Definition: linmath.h:426
static void mat4x4_dup(mat4x4 M, mat4x4 N)
Definition: linmath.h:91
static void mat4x4_invert(mat4x4 T, mat4x4 M)
Definition: linmath.h:259
static void quat_add(quat r, quat a, quat b)
Definition: linmath.h:432
static void mat4x4_transpose(mat4x4 M, mat4x4 N)
Definition: linmath.h:110
static void vec3_mul_cross(vec3 r, vec3 const a, vec3 const b)
Definition: linmath.h:52
GLdouble GLdouble GLdouble q
static void mat4x4_translate_in_place(mat4x4 M, float x, float y, float z)
Definition: linmath.h:172
static void quat_sub(quat r, quat a, quat b)
Definition: linmath.h:438
M
Definition: rmse.py:42
static void mat4x4_scale_aniso(mat4x4 M, mat4x4 a, float x, float y, float z)
Definition: linmath.h:135
int i
static void mat4x4_mul(mat4x4 M, mat4x4 a, mat4x4 b)
Definition: linmath.h:145
static void mat4x4_orthonormalize(mat4x4 R, mat4x4 M)
Definition: linmath.h:301
static void vec3_reflect(vec3 r, vec3 const v, vec3 const n)
Definition: linmath.h:59
GLdouble v
static void mat4x4o_mul_quat(mat4x4 R, mat4x4 M, quat q)
Definition: linmath.h:533
static void mat4x4_from_vec3_mul_outer(mat4x4 M, vec3 a, vec3 b)
Definition: linmath.h:182


librealsense2
Author(s): Sergey Dorodnicov , Doron Hirshberg , Mark Horn , Reagan Lopez , Itay Carpis
autogenerated on Mon May 3 2021 02:47:21