|
| a = normal[0] |
|
| b = normal[1] |
|
| c = normal[2] |
|
| C_x = np.cov(xyz.T) |
|
| colorized = cv.applyColorMap(i8, cv.COLORMAP_JET) |
|
| crop = orig[int(my):int(My), int(mx):int(Mx)].astype(np.float) |
|
| d = -np.dot(point, normal) |
|
| Dcrop = np.zeros_like(crop).astype(np.float) |
|
| direction_vector = eig_vecs[:, min_eig_val_index].copy() |
|
| dist = abs(a * x + b * y + c * z + d)/e |
|
| Dmap = np.dstack((Dcrop, Dcrop, Dcrop)) |
|
| e = math.sqrt(a * a + b * b + c * c) |
|
| eig_vals |
|
| eig_vecs |
|
| f = open(filename,"r") |
|
| file_extension |
|
string | filename = "D:/dataset/gt-4622.png" |
|
| fname |
|
| font = cv.FONT_HERSHEY_COMPLEX_SMALL |
|
int | height = 0 |
|
list | i = [] |
|
tuple | i8 = (i * 255.0).astype(np.uint8) |
|
| im = colorized.copy() |
|
int | key = cv.waitKey(100)&0xFF |
|
| m = np.percentile(i, 5) |
|
| M = np.percentile(i, 95) |
|
| min_eig_val_index = np.argmin(eig_vals) |
|
int | mx = 0 |
|
int | Mx = 0 |
|
int | my = 0 |
|
int | My = 0 |
|
| normal = direction_vector/np.linalg.norm(direction_vector) |
|
| orig = i.copy() |
|
| point = np.mean(xyz, axis=0) |
|
| rmse = math.sqrt(variance) |
|
int | rmse_mm = rmse*1000 |
|
| size = i.shape[0] |
|
| variance = np.min(eig_vals) |
|
int | width = 0 |
|
list | X = [] |
|
tuple | x = (float(j) / width - 0.5)*z |
|
int | x0 = 0 |
|
int | x1 = 0 |
|
| Xcrop = np.zeros_like(crop).astype(np.float) |
|
int | xx = 0 |
|
| xyz = np.dstack((X, Y, Z)) |
|
list | Y = [] |
|
tuple | y = (float(i) / height - 0.5)*z |
|
int | y0 = 0 |
|
int | y1 = 0 |
|
| Ycrop = np.zeros_like(crop).astype(np.float) |
|
int | yy = 0 |
|
list | Z = [] |
|
float | z = crop[i - my, j - mx]*0.001 |
|
| Zcrop = np.zeros_like(crop).astype(np.float) |
|