5 #ifndef SENSOR_MSGS_MESSAGE_SETCAMERAINFOREQUEST_H 6 #define SENSOR_MSGS_MESSAGE_SETCAMERAINFOREQUEST_H 22 template <
class ContainerAllocator>
57 template<
typename ContainerAllocator>
58 std::ostream& operator<<(std::ostream& s, const ::sensor_msgs::SetCameraInfoRequest_<ContainerAllocator> &
v)
68 namespace message_traits
81 template <
class ContainerAllocator>
86 template <
class ContainerAllocator>
91 template <
class ContainerAllocator>
96 template <
class ContainerAllocator>
101 template <
class ContainerAllocator>
106 template <
class ContainerAllocator>
112 template<
class ContainerAllocator>
117 return "ee34be01fdeee563d0d99cd594d5581d";
120 static const char*
value(const ::sensor_msgs::SetCameraInfoRequest_<ContainerAllocator>&) {
return value(); }
121 static const uint64_t static_value1 = 0xee34be01fdeee563ULL;
122 static const uint64_t static_value2 = 0xd0d99cd594d5581dULL;
125 template<
class ContainerAllocator>
130 return "sensor_msgs/SetCameraInfoRequest";
133 static const char*
value(const ::sensor_msgs::SetCameraInfoRequest_<ContainerAllocator>&) {
return value(); }
136 template<
class ContainerAllocator>
149 sensor_msgs/CameraInfo camera_info\n\ 151 ================================================================================\n\ 152 MSG: sensor_msgs/CameraInfo\n\ 153 # This message defines meta information for a camera. It should be in a\n\ 154 # camera namespace on topic \"camera_info\" and accompanied by up to five\n\ 155 # image topics named:\n\ 157 # image_raw - raw data from the camera driver, possibly Bayer encoded\n\ 158 # image - monochrome, distorted\n\ 159 # image_color - color, distorted\n\ 160 # image_rect - monochrome, rectified\n\ 161 # image_rect_color - color, rectified\n\ 163 # The image_pipeline contains packages (image_proc, stereo_image_proc)\n\ 164 # for producing the four processed image topics from image_raw and\n\ 165 # camera_info. The meaning of the camera parameters are described in\n\ 166 # detail at http://www.ros.org/wiki/image_pipeline/CameraInfo.\n\ 168 # The image_geometry package provides a user-friendly interface to\n\ 169 # common operations using this meta information. If you want to, e.g.,\n\ 170 # project a 3d point into image coordinates, we strongly recommend\n\ 171 # using image_geometry.\n\ 173 # If the camera is uncalibrated, the matrices D, K, R, P should be left\n\ 174 # zeroed out. In particular, clients may assume that K[0] == 0.0\n\ 175 # indicates an uncalibrated camera.\n\ 177 #######################################################################\n\ 178 # Image acquisition info #\n\ 179 #######################################################################\n\ 181 # Time of image acquisition, camera coordinate frame ID\n\ 182 Header header # Header timestamp should be acquisition time of image\n\ 183 # Header frame_id should be optical frame of camera\n\ 184 # origin of frame should be optical center of camera\n\ 185 # +x should point to the right in the image\n\ 186 # +y should point down in the image\n\ 187 # +z should point into the plane of the image\n\ 190 #######################################################################\n\ 191 # Calibration Parameters #\n\ 192 #######################################################################\n\ 193 # These are fixed during camera calibration. Their values will be the #\n\ 194 # same in all messages until the camera is recalibrated. Note that #\n\ 195 # self-calibrating systems may \"recalibrate\" frequently. #\n\ 197 # The internal parameters can be used to warp a raw (distorted) image #\n\ 199 # 1. An undistorted image (requires D and K) #\n\ 200 # 2. A rectified image (requires D, K, R) #\n\ 201 # The projection matrix P projects 3D points into the rectified image.#\n\ 202 #######################################################################\n\ 204 # The image dimensions with which the camera was calibrated. Normally\n\ 205 # this will be the full camera resolution in pixels.\n\ 209 # The distortion model used. Supported models are listed in\n\ 210 # sensor_msgs/distortion_models.h. For most cameras, \"plumb_bob\" - a\n\ 211 # simple model of radial and tangential distortion - is sufficient.\n\ 212 string distortion_model\n\ 214 # The distortion parameters, size depending on the distortion model.\n\ 215 # For \"plumb_bob\", the 5 parameters are: (k1, k2, t1, t2, k3).\n\ 218 # Intrinsic camera matrix for the raw (distorted) images.\n\ 222 # Projects 3D points in the camera coordinate frame to 2D pixel\n\ 223 # coordinates using the focal lengths (fx, fy) and principal point\n\ 225 float64[9] K # 3x3 row-major matrix\n\ 227 # Rectification matrix (stereo cameras only)\n\ 228 # A rotation matrix aligning the camera coordinate system to the ideal\n\ 229 # stereo image plane so that epipolar lines in both stereo images are\n\ 231 float64[9] R # 3x3 row-major matrix\n\ 233 # Projection/camera matrix\n\ 235 # P = [ 0 fy' cy' Ty]\n\ 237 # By convention, this matrix specifies the intrinsic (camera) matrix\n\ 238 # of the processed (rectified) image. That is, the left 3x3 portion\n\ 239 # is the normal camera intrinsic matrix for the rectified image.\n\ 240 # It projects 3D points in the camera coordinate frame to 2D pixel\n\ 241 # coordinates using the focal lengths (fx', fy') and principal point\n\ 242 # (cx', cy') - these may differ from the values in K.\n\ 243 # For monocular cameras, Tx = Ty = 0. Normally, monocular cameras will\n\ 244 # also have R = the identity and P[1:3,1:3] = K.\n\ 245 # For a stereo pair, the fourth column [Tx Ty 0]' is related to the\n\ 246 # position of the optical center of the second camera in the first\n\ 247 # camera's frame. We assume Tz = 0 so both cameras are in the same\n\ 248 # stereo image plane. The first camera always has Tx = Ty = 0. For\n\ 249 # the right (second) camera of a horizontal stereo pair, Ty = 0 and\n\ 250 # Tx = -fx' * B, where B is the baseline between the cameras.\n\ 251 # Given a 3D point [X Y Z]', the projection (x, y) of the point onto\n\ 252 # the rectified image is given by:\n\ 253 # [u v w]' = P * [X Y Z 1]'\n\ 256 # This holds for both images of a stereo pair.\n\ 257 float64[12] P # 3x4 row-major matrix\n\ 260 #######################################################################\n\ 261 # Operational Parameters #\n\ 262 #######################################################################\n\ 263 # These define the image region actually captured by the camera #\n\ 264 # driver. Although they affect the geometry of the output image, they #\n\ 265 # may be changed freely without recalibrating the camera. #\n\ 266 #######################################################################\n\ 268 # Binning refers here to any camera setting which combines rectangular\n\ 269 # neighborhoods of pixels into larger \"super-pixels.\" It reduces the\n\ 270 # resolution of the output image to\n\ 271 # (width / binning_x) x (height / binning_y).\n\ 272 # The default values binning_x = binning_y = 0 is considered the same\n\ 273 # as binning_x = binning_y = 1 (no subsampling).\n\ 277 # Region of interest (subwindow of full camera resolution), given in\n\ 278 # full resolution (unbinned) image coordinates. A particular ROI\n\ 279 # always denotes the same window of pixels on the camera sensor,\n\ 280 # regardless of binning settings.\n\ 281 # The default setting of roi (all values 0) is considered the same as\n\ 282 # full resolution (roi.width = width, roi.height = height).\n\ 283 RegionOfInterest roi\n\ 285 ================================================================================\n\ 286 MSG: std_msgs/Header\n\ 287 # Standard metadata for higher-level stamped data types.\n\ 288 # This is generally used to communicate timestamped data \n\ 289 # in a particular coordinate frame.\n\ 291 # sequence ID: consecutively increasing ID \n\ 293 #Two-integer timestamp that is expressed as:\n\ 294 # * stamp.sec: seconds (stamp_secs) since epoch (in Python the variable is called 'secs')\n\ 295 # * stamp.nsec: nanoseconds since stamp_secs (in Python the variable is called 'nsecs')\n\ 296 # time-handling sugar is provided by the client library\n\ 298 #Frame this data is associated with\n\ 303 ================================================================================\n\ 304 MSG: sensor_msgs/RegionOfInterest\n\ 305 # This message is used to specify a region of interest within an image.\n\ 307 # When used to specify the ROI setting of the camera when the image was\n\ 308 # taken, the height and width fields should either match the height and\n\ 309 # width fields for the associated image; or height = width = 0\n\ 310 # indicates that the full resolution image was captured.\n\ 312 uint32 x_offset # Leftmost pixel of the ROI\n\ 313 # (0 if the ROI includes the left edge of the image)\n\ 314 uint32 y_offset # Topmost pixel of the ROI\n\ 315 # (0 if the ROI includes the top edge of the image)\n\ 316 uint32 height # Height of ROI\n\ 317 uint32 width # Width of ROI\n\ 319 # True if a distinct rectified ROI should be calculated from the \"raw\"\n\ 320 # ROI in this message. Typically this should be False if the full image\n\ 321 # is captured (ROI not used), and True if a subwindow is captured (ROI\n\ 327 static const char*
value(const ::sensor_msgs::SetCameraInfoRequest_<ContainerAllocator>&) {
return value(); }
335 namespace serialization
342 stream.next(m.camera_info);
353 namespace message_operations
356 template<
class ContainerAllocator>
359 template<
typename Stream>
static void stream(Stream&
s,
const std::string& indent, const ::sensor_msgs::SetCameraInfoRequest_<ContainerAllocator>&
v)
361 s << indent <<
"camera_info: ";
370 #endif // SENSOR_MSGS_MESSAGE_SETCAMERAINFOREQUEST_H
typedef void(APIENTRY *GLDEBUGPROC)(GLenum source
Base type for compile-type true/false tests. Compatible with Boost.MPL. classes inheriting from this ...
static const char * value(const ::sensor_msgs::SetCameraInfoRequest_< ContainerAllocator > &)
Specialize to provide the md5sum for a message.
Base type for compile-type true/false tests. Compatible with Boost.MPL. classes inheriting from this ...
GLsizei const GLchar *const * string
Specialize to provide the datatype for a message.
static const char * value(const ::sensor_msgs::SetCameraInfoRequest_< ContainerAllocator > &)
boost::shared_ptr< ::sensor_msgs::SetCameraInfoRequest const > SetCameraInfoRequestConstPtr
static const char * value()
SetCameraInfoRequest_< ContainerAllocator > Type
A fixed-size datatype is one whose size is constant, i.e. it has no variable-length arrays or strings...
Stream base-class, provides common functionality for IStream and OStream.
boost::shared_ptr< ::sensor_msgs::SetCameraInfoRequest > SetCameraInfoRequestPtr
static void allInOne(Stream &stream, T m)
static const char * value()
static void stream(Stream &s, const std::string &indent, const ::sensor_msgs::SetCameraInfoRequest_< ContainerAllocator > &v)
boost::shared_ptr< ::sensor_msgs::SetCameraInfoRequest_< ContainerAllocator > > Ptr
_camera_info_type camera_info
boost::shared_ptr< ::sensor_msgs::SetCameraInfoRequest_< ContainerAllocator > const > ConstPtr
static const char * value()
Tools for manipulating sensor_msgs.
::sensor_msgs::CameraInfo_< ContainerAllocator > _camera_info_type
#define ROS_DECLARE_ALLINONE_SERIALIZER
Declare your serializer to use an allInOne member instead of requiring 3 different serialization func...
unsigned __int64 uint64_t
Specialize to provide the definition for a message.
static const char * value(const ::sensor_msgs::SetCameraInfoRequest_< ContainerAllocator > &)
::sensor_msgs::SetCameraInfoRequest_< std::allocator< void > > SetCameraInfoRequest
SetCameraInfoRequest_(const ContainerAllocator &_alloc)
Templated serialization class. Default implementation provides backwards compatibility with old messa...