fed_batch_bioreactor_nbi.cpp
Go to the documentation of this file.
1 /*
2  * This file is part of ACADO Toolkit.
3  *
4  * ACADO Toolkit -- A Toolkit for Automatic Control and Dynamic Optimization.
5  * Copyright (C) 2008-2014 by Boris Houska, Hans Joachim Ferreau,
6  * Milan Vukov, Rien Quirynen, KU Leuven.
7  * Developed within the Optimization in Engineering Center (OPTEC)
8  * under supervision of Moritz Diehl. All rights reserved.
9  *
10  * ACADO Toolkit is free software; you can redistribute it and/or
11  * modify it under the terms of the GNU Lesser General Public
12  * License as published by the Free Software Foundation; either
13  * version 3 of the License, or (at your option) any later version.
14  *
15  * ACADO Toolkit is distributed in the hope that it will be useful,
16  * but WITHOUT ANY WARRANTY; without even the implied warranty of
17  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
18  * Lesser General Public License for more details.
19  *
20  * You should have received a copy of the GNU Lesser General Public
21  * License along with ACADO Toolkit; if not, write to the Free Software
22  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
23  *
24  */
25 
26 
48 #include <acado_gnuplot.hpp>
49 
50 
51 int main( ){
52 
54 
55  // INTRODUCE FIXED PARAMETERS:
56  // ---------------------------
57  #define Csin 2.8
58 
59 
60  // INTRODUCE THE VARIABLES:
61  // -------------------------
62  DifferentialState x1,x2,x3,x4,x5;
63  IntermediateState mu,sigma,pif;
64  Control u ;
65  Parameter tf ;
66  DifferentialEquation f(0.0,tf) ;
67 
68 
69  // DEFINE A DIFFERENTIAL EQUATION:
70  // -------------------------------
71  mu = 0.125*x2/x4;
72  sigma = mu/0.135;
73  pif = (-384.0*mu*mu + 134.0*mu);
74 
75  f << dot(x1) == mu*x1;
76  f << dot(x2) == -sigma*x1 + u*Csin;
77  f << dot(x3) == pif*x1;
78  f << dot(x4) == u;
79  f << dot(x5) == 0.001*(u*u + 0.01*tf*tf);
80 
81 
82  // DEFINE AN OPTIMAL CONTROL PROBLEM:
83  // ----------------------------------
84  OCP ocp( 0.0, tf, 50 );
85  ocp.minimizeMayerTerm(0, 0.01*x5 -x3/tf ); // Solve productivity optimal problem (Note: - due to maximization, small regularisation term)
86  ocp.minimizeMayerTerm(1, 0.01*x5 -x3/(Csin*x4-x2)); // Solve yield optimal problem (Note: Csin = x2(t=0)/x4(t=0); - due to maximization, small regularisation term)
87 
88  ocp.subjectTo( f );
89 
90  ocp.subjectTo( AT_START, x1 == 0.1 );
91  ocp.subjectTo( AT_START, x2 == 14.0 );
92  ocp.subjectTo( AT_START, x3 == 0.0 );
93  ocp.subjectTo( AT_START, x4 == 5.0 );
94  ocp.subjectTo( AT_START, x5 == 0.0 );
95 
96  ocp.subjectTo( 0.0 <= x1 <= 15.0 );
97  ocp.subjectTo( 0.0 <= x2 <= 30.0 );
98  ocp.subjectTo( -0.1 <= x3 <= 1000.0 );
99  ocp.subjectTo( 5.0 <= x4 <= 20.0 );
100  ocp.subjectTo( 20.0 <= tf <= 40.0 );
101  ocp.subjectTo( 0.0 <= u <= 2.0 );
102 
103 
104  // DEFINE A MULTI-OBJECTIVE ALGORITHM AND SOLVE THE OCP:
105  // -----------------------------------------------------
106  MultiObjectiveAlgorithm algorithm(ocp);
107 
108  algorithm.set( PARETO_FRONT_DISCRETIZATION, 21 );
111  algorithm.set( KKT_TOLERANCE, 1e-7 );
112 
113  // Minimize individual objective function
114  algorithm.solveSingleObjective(0);
115 
116  // Minimize individual objective function
117  algorithm.solveSingleObjective(1);
118 
119  // Generate Pareto set
120  algorithm.set( KKT_TOLERANCE, 1e-6 );
121  algorithm.solve();
122 
123  algorithm.getWeights("fed_batch_bioreactor_nbi_weights.txt");
124  algorithm.getAllDifferentialStates("fed_batch_bioreactor_nbi_states.txt");
125  algorithm.getAllControls("fed_batch_bioreactor_nbi_controls.txt");
126  algorithm.getAllParameters("fed_batch_bioreactor_nbi_parameters.txt");
127 
128 
129  // VISUALIZE THE RESULTS IN A GNUPLOT WINDOW:
130  // ------------------------------------------
131  VariablesGrid paretoFront;
132  algorithm.getParetoFront( paretoFront );
133 
134  GnuplotWindow window1;
135  window1.addSubplot( paretoFront, "Pareto Front (yield versus productivity)", "-PRODUCTIVTY", "-YIELD", PM_POINTS );
136  window1.plot( );
137 
138 
139  // PRINT INFORMATION ABOUT THE ALGORITHM:
140  // --------------------------------------
141  algorithm.printInfo();
142 
143 
144  // SAVE INFORMATION:
145  // -----------------
146  paretoFront.print();
147 
148  return 0;
149 }
returnValue print(std::ostream &stream=std::cout, const char *const name=DEFAULT_LABEL, const char *const startString=DEFAULT_START_STRING, const char *const endString=DEFAULT_END_STRING, uint width=DEFAULT_WIDTH, uint precision=DEFAULT_PRECISION, const char *const colSeparator=DEFAULT_COL_SEPARATOR, const char *const rowSeparator=DEFAULT_ROW_SEPARATOR) const
DMatrix getWeights() const
virtual returnValue plot(PlotFrequency _frequency=PLOT_IN_ANY_CASE)
#define Csin
#define USING_NAMESPACE_ACADO
Provides a time grid consisting of vector-valued optimization variables at each grid point...
returnValue printInfo()
returnValue subjectTo(const DifferentialEquation &differentialEquation_)
Definition: ocp.cpp:153
returnValue minimizeMayerTerm(const Expression &arg)
Definition: ocp.cpp:238
returnValue addSubplot(PlotWindowSubplot &_subplot)
returnValue set(OptionsName name, int value)
Definition: options.cpp:126
returnValue getAllControls(const char *fileName) const
returnValue getParetoFront(VariablesGrid &paretoFront) const
Data class for defining optimal control problems.
Definition: ocp.hpp:89
Expression dot(const Expression &arg)
virtual returnValue solveSingleObjective(const int &number)
User-interface to formulate and solve optimal control problems with multiple objectives.
returnValue getAllDifferentialStates(const char *fileName) const
Provides an interface to Gnuplot for plotting algorithmic outputs.
returnValue getAllParameters(const char *fileName) const
Allows to setup and evaluate differential equations (ODEs and DAEs) based on SymbolicExpressions.


acado
Author(s): Milan Vukov, Rien Quirynen
autogenerated on Mon Jun 10 2019 12:34:34