34 #ifndef ACADO_TOOLKIT_ELLIPSOIDAL_INTEGRATOR_HPP 35 #define ACADO_TOOLKIT_ELLIPSOIDAL_INTEGRATOR_HPP 98 template <
typename T>
double step(
const double &t,
const double &tf,
121 template <
typename T>
void phase0(
double t,
125 template <
typename T>
double phase1(
double t,
double tf,
130 template <
typename T>
void phase2(
double t,
double h,
195 #include <acado/validated_integrator/ellipsoidal_integrator.ipp> 197 #endif // ACADO_TOOLKIT_ELLIPSOIDAL_INTEGRATOR_HPP
virtual returnValue setupOptions()
virtual ~EllipsoidalIntegrator()
void phase2(double t, double h, Tmatrix< T > *x, Tmatrix< T > *p, Tmatrix< T > *w, Tmatrix< T > &coeff, Tmatrix< double > &C)
Allows to setup and evaluate a general function based on SymbolicExpressions.
Implements a templated dense matrix class.
Tmatrix< Interval > getStateBound(const Tmatrix< T > &x) const
void copy(const EllipsoidalIntegrator &arg)
Tmatrix< Interval > integrate(double t0, double tf, int M, const Tmatrix< Interval > &x)
Allows real time measurements based on the system's clock.
Allows to pass back messages to the calling function.
Tmatrix< Interval > boundQ() const
Base class for all algorithmic modules within the ACADO Toolkit providing some basic functionality...
void updateQ(Tmatrix< double > C, Tmatrix< Interval > R)
double norm(const Tmatrix< Interval > &E, Tmatrix< Interval > &X) const
BooleanType isIncluded(const Tmatrix< Interval > &A, const Tmatrix< Interval > &B) const
virtual EllipsoidalIntegrator & operator=(const EllipsoidalIntegrator &arg)
#define CLOSE_NAMESPACE_ACADO
Implements a rudimentary interval class.
double scale(const Interval &E, const Interval &X) const
Validated integrator for ODEs based on Taylor models with ellipsoidal remainder term.
returnValue init(const DifferentialEquation &rhs_, const int &N_=3)
double phase1(double t, double tf, Tmatrix< T > *x, Tmatrix< T > *p, Tmatrix< T > *w, Tmatrix< T > &coeff, Tmatrix< double > &C)
void center(Tmatrix< T > &x) const
Tmatrix< Interval > evalC(const Tmatrix< double > &C, double h) const
double step(const double &t, const double &tf, Tmatrix< T > *x, Tmatrix< T > *p=0, Tmatrix< T > *w=0)
#define BEGIN_NAMESPACE_ACADO
Tmatrix< T > evaluate(Function &f, double t, Tmatrix< T > *x, Tmatrix< T > *p, Tmatrix< T > *w) const
Tmatrix< Interval > getRemainder(const Tmatrix< T > &x) const
Tmatrix< double > evalC2(const Tmatrix< double > &C, double h) const
Tmatrix< T > getPolynomial(const Tmatrix< T > &x) const
Tmatrix< T > phi(const Tmatrix< T > &coeff, const double &h) const
Tmatrix< Interval > bound(const Tmatrix< T > &x) const
Tmatrix< double > hat(const Tmatrix< T > &x) const
void phase0(double t, Tmatrix< T > *x, Tmatrix< T > *p, Tmatrix< T > *w, Tmatrix< T > &coeff, Tmatrix< double > &C)
Allows to setup and evaluate differential equations (ODEs and DAEs) based on SymbolicExpressions.