sr_spi.cpp
Go to the documentation of this file.
00001 /*
00002  * Copyright (c) 2013, Shadow Robot Company, All rights reserved.
00003  *
00004  * This library is free software; you can redistribute it and/or
00005  * modify it under the terms of the GNU Lesser General Public
00006  * License as published by the Free Software Foundation; either
00007  * version 3.0 of the License, or (at your option) any later version.
00008  *
00009  * This library is distributed in the hope that it will be useful,
00010  * but WITHOUT ANY WARRANTY; without even the implied warranty of
00011  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
00012  * Lesser General Public License for more details.
00013  *
00014  * You should have received a copy of the GNU Lesser General Public
00015  * License along with this library.
00016  */
00017 
00024 #include <sr_ronex_drivers/sr_spi.hpp>
00025 #include <ros_ethercat_model/robot_state.hpp>
00026 #include <ros_ethercat_hardware/ethercat_hardware.h>
00027 
00028 #include <sstream>
00029 #include <iomanip>
00030 #include <boost/lexical_cast.hpp>
00031 #include <math.h>
00032 
00033 #include "sr_ronex_drivers/ronex_utils.hpp"
00034 
00035 PLUGINLIB_EXPORT_CLASS(SrSPI, EthercatDevice);
00036 
00037 using namespace std;
00038 using boost::lexical_cast;
00039 
00040 const string SrSPI::product_alias_ = PRODUCT_NAME;
00041 
00042 SrSPI::SrSPI() :
00043   node_("~"), cycle_count_(0)
00044 {}
00045 
00046 SrSPI::~SrSPI()
00047 {
00048   //remove parameters from server
00049   string device_id = "/ronex/devices/" + lexical_cast<string>(parameter_id_);
00050   ros::param::del(device_id);
00051 
00052   string controller_name = "/ronex_" + serial_number_ + "_passthrough";
00053   ros::param::del(controller_name);
00054   
00055   string spi_device_name = "/ronex/spi/" + serial_number_;
00056   ros::param::del(spi_device_name);
00057 }
00058 
00059 void SrSPI::construct(EtherCAT_SlaveHandler *sh, int &start_address)
00060 {
00061   sh_ = sh;
00062   serial_number_ = ronex::get_serial_number( sh );
00063 
00064   //get the alias from the parameter server if it exists
00065   string path_to_alias, alias;
00066   path_to_alias = "/ronex/mapping/" + serial_number_;
00067   if( ros::param::get(path_to_alias, alias))
00068   {
00069     ronex_id_ = alias;
00070   }
00071   else
00072   {
00073     //no alias found, using the serial number directly.
00074     ronex_id_ = serial_number_ ;
00075   }
00076 
00077   device_name_ = ronex::build_name( product_alias_, ronex_id_ );
00078 
00079   command_base_  = start_address;
00080   command_size_  = COMMAND_ARRAY_SIZE_BYTES;
00081 
00082   start_address += command_size_;
00083   status_base_   = start_address;
00084   status_size_   = STATUS_ARRAY_SIZE_BYTES;
00085 
00086   start_address += status_size_;
00087 
00088   // ETHERCAT_COMMAND_DATA
00089   //
00090   // This is for data going TO the board
00091   //
00092 
00093   if ( (PROTOCOL_TYPE) == (EC_BUFFERED) )
00094   {
00095     ROS_INFO("Using EC_BUFFERED");
00096   }
00097   else if ( (PROTOCOL_TYPE) == (EC_QUEUED) )
00098   {
00099     ROS_INFO("Using EC_QUEUED");
00100   }
00101 
00102   ROS_INFO("First FMMU (command) : Logical address: 0x%08X ; size: %3d bytes ; ET1200 address: 0x%08X", command_base_, command_size_,
00103            static_cast<int>(COMMAND_ADDRESS) );
00104   EC_FMMU *commandFMMU = new EC_FMMU( command_base_,    // Logical Start Address    (in ROS address space?)
00105                                       command_size_,
00106                                       0x00,             // Logical Start Bit
00107                                       0x07,             // Logical End Bit
00108                                       COMMAND_ADDRESS,  // Physical Start Address   (in ET1200 address space?)
00109                                       0x00,             // Physical Start Bit
00110                                       false,            // Read Enable
00111                                       true,             // Write Enable
00112                                       true              // Channel Enable
00113     );
00114 
00115 
00116   // WARNING!!!
00117   // We are leaving (command_size_ * 4) bytes in the physical memory of the device, but strictly we only need to
00118   // leave (command_size_ * 3). This change should be done in the firmware as well, otherwise it won't work.
00119   // This triple buffer is needed in the ethercat devices to work in EC_BUFFERED mode (in opposition to the other mode EC_QUEUED, the so called mailbox mode)
00120 
00121   // ETHERCAT_STATUS_DATA
00122   //
00123   // This is for data coming FROM the board
00124   //
00125   ROS_INFO("Second FMMU (status) : Logical address: 0x%08X ; size: %3d bytes ; ET1200 address: 0x%08X", status_base_, status_size_,
00126            static_cast<int>(STATUS_ADDRESS) );
00127   EC_FMMU *statusFMMU = new EC_FMMU(  status_base_,
00128                                       status_size_,
00129                                       0x00,
00130                                       0x07,
00131                                       STATUS_ADDRESS,
00132                                       0x00,
00133                                       true,
00134                                       false,
00135                                       true);
00136 
00137 
00138   EtherCAT_FMMU_Config *fmmu = new EtherCAT_FMMU_Config(2);
00139 
00140   (*fmmu)[0] = *commandFMMU;
00141   (*fmmu)[1] = *statusFMMU;
00142 
00143   sh->set_fmmu_config(fmmu);
00144 
00145   EtherCAT_PD_Config *pd = new EtherCAT_PD_Config(2);
00146 
00147 // SyncMan takes the physical address
00148   (*pd)[0] = EC_SyncMan(COMMAND_ADDRESS, command_size_, PROTOCOL_TYPE, EC_WRITTEN_FROM_MASTER);
00149   (*pd)[1] = EC_SyncMan(STATUS_ADDRESS,  status_size_,  PROTOCOL_TYPE);
00150 
00151 
00152   (*pd)[0].ChannelEnable = true;
00153   (*pd)[0].ALEventEnable = true;
00154   (*pd)[0].WriteEvent    = true;
00155 
00156   (*pd)[1].ChannelEnable = true;
00157 
00158   sh->set_pd_config(pd);
00159 
00160   ROS_INFO("Finished constructing the SrSPI driver");
00161 }
00162 
00163 int SrSPI::initialize(hardware_interface::HardwareInterface *hw, bool allow_unprogrammed)
00164 {
00165   digital_commands_ = 0;
00166   ROS_INFO("Device #%02d: Product code: %u (%#010X) , Serial #: %u (%#010X)",
00167             sh_->get_ring_position(),
00168             sh_->get_product_code(),
00169             sh_->get_product_code(),
00170             sh_->get_serial(),
00171             sh_->get_serial());
00172 
00173   device_offset_ = sh_->get_ring_position();
00174 
00175   //add the RoNeX SPI module to the hw interface
00176   ros_ethercat_model::RobotState *robot_state = static_cast<ros_ethercat_model::RobotState*>(hw);
00177   robot_state->custom_hws_.insert(device_name_, new ronex::SPI());
00178   spi_ = static_cast<ronex::SPI*>(robot_state->getCustomHW(device_name_));
00179 
00180   build_topics_();
00181 
00182   ROS_INFO_STREAM("Adding a SPI RoNeX module to the hardware interface: " << device_name_);
00183   //Using the name of the ronex to prefix the state topic
00184 
00185   return 0;
00186 }
00187 
00188 void SrSPI::packCommand(unsigned char *buffer, bool halt, bool reset)
00189 {
00190   RONEX_COMMAND_02000002* command = (RONEX_COMMAND_02000002*)(buffer);
00191 
00192   //Copying the command
00193   command->command_type = spi_->command_->command_type;
00194   command->pin_output_states_pre = spi_->command_->pin_output_states_pre;
00195   command->pin_output_states_post = spi_->command_->pin_output_states_post;
00196 
00197   for(size_t spi_index = 0; spi_index < NUM_SPI_OUTPUTS; ++spi_index)
00198   {
00199     command->spi_out[spi_index].clock_divider = spi_->command_->spi_out[spi_index].clock_divider;
00200     command->spi_out[spi_index].SPI_config = spi_->command_->spi_out[spi_index].SPI_config;
00201     command->spi_out[spi_index].inter_byte_gap = spi_->command_->spi_out[spi_index].inter_byte_gap;
00202     command->spi_out[spi_index].num_bytes = spi_->command_->spi_out[spi_index].num_bytes;
00203 
00204     for( size_t i = 0; i < SPI_TRANSACTION_MAX_SIZE; ++i )
00205       command->spi_out[spi_index].data_bytes[i] = spi_->command_->spi_out[spi_index].data_bytes[i];
00206 
00207     if( command->spi_out[spi_index].num_bytes != 0)
00208     {
00209       ostringstream ss;
00210       ss << "SPI out ["<<spi_index<<"]: Sending non null command("<<static_cast<unsigned int>(command->spi_out[spi_index].num_bytes)<<"): -> ";
00211 
00212       for(unsigned int i =0; i < static_cast<unsigned int>(command->spi_out[spi_index].num_bytes); ++i)
00213         ss << static_cast<int>(command->spi_out[spi_index].data_bytes[i]) << ",";
00214 
00215       ROS_DEBUG_STREAM("" << ss.str());
00216     }
00217   }
00218 }
00219 
00220 bool SrSPI::unpackState(unsigned char *this_buffer, unsigned char *prev_buffer)
00221 {
00222   RONEX_STATUS_02000002* status_data = (RONEX_STATUS_02000002 *)(this_buffer+  command_size_);
00223 
00224   //copying the status data to the HW interface
00225   spi_->state_->command_type = status_data->command_type;
00226 
00227   for(size_t sampling = 0; sampling < NUM_DIO_SAMPLES; ++sampling)
00228   {
00229     spi_->state_->info_type.status_data.pin_input_states_DIO[sampling] = status_data->info_type.status_data.pin_input_states_DIO[sampling];
00230     spi_->state_->info_type.status_data.pin_input_states_SOMI[sampling] = status_data->info_type.status_data.pin_input_states_SOMI[sampling];
00231   }
00232 
00233   for (size_t spi_index=0; spi_index < NUM_SPI_OUTPUTS; ++spi_index)
00234   {
00235     for(size_t i = 0; i < SPI_TRANSACTION_MAX_SIZE; ++i)
00236       {
00237       spi_->state_->info_type.status_data.spi_in[spi_index].data_bytes[i] = status_data->info_type.status_data.spi_in[spi_index].data_bytes[i];
00238       /*if(status_data->info_type.status_data.spi_in[spi_index].data_bytes[i] != 0)
00239         {
00240           ROS_ERROR_STREAM("NON NULL["<<i<<"]: "<< static_cast<int>(status_data->info_type.status_data.spi_in[spi_index].data_bytes[i])<<".");
00241         }
00242       */
00243       }
00244   }
00245 
00246   for(size_t analogue_index = 0 ; analogue_index < NUM_ANALOGUE_INPUTS ; ++analogue_index)
00247   {
00248     spi_->state_->info_type.status_data.analogue_in[analogue_index] = status_data->info_type.status_data.analogue_in[analogue_index];
00249   }
00250 
00251   //publishing at 100Hz
00252   if(cycle_count_ > 9)
00253   {
00254     state_msg_.header.stamp = ros::Time::now();
00255 
00256     state_msg_.command_type = spi_->state_->command_type;
00257 
00258     for(size_t sampling = 0; sampling < NUM_DIO_SAMPLES; ++sampling)
00259     {
00260       state_msg_.pin_input_states_DIO[sampling] = spi_->state_->info_type.status_data.pin_input_states_DIO[sampling];
00261       state_msg_.pin_input_states_SOMI[sampling] = spi_->state_->info_type.status_data.pin_input_states_SOMI[sampling];
00262     }
00263 
00264     for (size_t spi_index=0; spi_index < NUM_SPI_OUTPUTS; ++spi_index)
00265     {
00266       for(size_t i = 0; i < SPI_TRANSACTION_MAX_SIZE; ++i)
00267         state_msg_.spi_in[spi_index].data[i] = spi_->state_->info_type.status_data.spi_in[spi_index].data_bytes[i];
00268     }
00269 
00270     for(size_t analogue_index = 0 ; analogue_index < NUM_ANALOGUE_INPUTS ; ++analogue_index)
00271     {
00272       state_msg_.analogue_in[analogue_index] = spi_->state_->info_type.status_data.analogue_in[analogue_index];
00273     }
00274 
00275     //publish
00276     if( state_publisher_->trylock() )
00277     {
00278       state_publisher_->msg_ = state_msg_;
00279       state_publisher_->unlockAndPublish();
00280     }
00281 
00282     cycle_count_ = 0;
00283   }
00284 
00285   cycle_count_++;
00286   return true;
00287 }
00288 
00289 void SrSPI::diagnostics(diagnostic_updater::DiagnosticStatusWrapper &d, unsigned char *buffer)
00290 {
00291   d.name = device_name_;
00292   d.summary(d.OK, "OK");
00293   d.hardware_id = serial_number_;
00294 
00295   d.clear();
00296 
00297   //@TODO add more diagnostics
00298 }
00299 
00300 void SrSPI::build_topics_()
00301 {
00302   //loading everything into the parameter server
00303   parameter_id_ = ronex::get_ronex_param_id("");
00304   ostringstream param_path, tmp_param;
00305   param_path << "/ronex/devices/" << parameter_id_ << "/";
00306   tmp_param << ronex::get_product_code(sh_);
00307   ros::param::set(param_path.str() + "product_id", tmp_param.str());
00308   ros::param::set(param_path.str() + "product_name", product_alias_);
00309   ros::param::set(param_path.str() + "ronex_id", ronex_id_);
00310 
00311   //the device is stored using path as the key in the CustomHW map
00312   ros::param::set(param_path.str() + "path", device_name_);
00313   ros::param::set(param_path.str() + "serial", serial_number_);
00314 
00315   //Advertising the realtime state publisher
00316   state_publisher_.reset(new realtime_tools::RealtimePublisher<sr_ronex_msgs::SPIState>(node_, device_name_ + "/state", 1));
00317 }
00318 
00319 /* For the emacs weenies in the crowd.
00320    Local Variables:
00321    c-basic-offset: 2
00322    End:
00323 */


sr_ronex_drivers
Author(s): Ugo Cupcic, Toni Oliver, Mark Pitchless
autogenerated on Fri Aug 28 2015 13:12:23