00001
00002
00003
00004
00005
00006
00007
00008
00009
00010
00011
00012
00013
00014
00015
00016
00017
00018
00019
00020
00021
00022
00023
00024
00025
00026
00027
00028
00029
00030
00031
00032
00033
00034
00035
00036
00037
00038
00039
00040
00041 #include <pcl/PCLPointCloud2.h>
00042 #include <pcl/io/pcd_io.h>
00043 #include <pcl/features/normal_3d.h>
00044 #include <pcl/features/integral_image_normal.h>
00045 #include <pcl/console/print.h>
00046 #include <pcl/console/parse.h>
00047 #include <pcl/console/time.h>
00048
00049 using namespace std;
00050 using namespace pcl;
00051 using namespace pcl::io;
00052 using namespace pcl::console;
00053
00054 int default_k = 0;
00055 double default_radius = 0.0;
00056
00057 void
00058 printHelp (int, char **argv)
00059 {
00060 print_error ("Syntax is: %s input.pcd output.pcd <options> [optional_arguments]\n", argv[0]);
00061 print_info (" where options are:\n");
00062 print_info (" -radius X = use a radius of Xm around each point to determine the neighborhood (default: ");
00063 print_value ("%f", default_radius); print_info (")\n");
00064 print_info (" -k X = use a fixed number of X-nearest neighbors around each point (default: ");
00065 print_value ("%f", default_k); print_info (")\n");
00066 print_info (" For organized datasets, an IntegralImageNormalEstimation approach will be used, with the RADIUS given value as SMOOTHING SIZE.\n");
00067 print_info ("\nOptional arguments are:\n");
00068 print_info (" -input_dir X = batch process all PCD files found in input_dir\n");
00069 print_info (" -output_dir X = save the processed files from input_dir in this directory\n");
00070 }
00071
00072 bool
00073 loadCloud (const string &filename, pcl::PCLPointCloud2 &cloud,
00074 Eigen::Vector4f &translation, Eigen::Quaternionf &orientation)
00075 {
00076 if (loadPCDFile (filename, cloud, translation, orientation) < 0)
00077 return (false);
00078
00079 return (true);
00080 }
00081
00082 void
00083 compute (const pcl::PCLPointCloud2::ConstPtr &input, pcl::PCLPointCloud2 &output,
00084 int k, double radius)
00085 {
00086
00087 PointCloud<PointXYZ>::Ptr xyz (new PointCloud<PointXYZ>);
00088 fromPCLPointCloud2 (*input, *xyz);
00089
00090 TicToc tt;
00091 tt.tic ();
00092
00093 PointCloud<Normal> normals;
00094
00095
00096 if (xyz->isOrganized ())
00097 {
00098 IntegralImageNormalEstimation<PointXYZ, Normal> ne;
00099 ne.setInputCloud (xyz);
00100 ne.setNormalEstimationMethod (IntegralImageNormalEstimation<PointXYZ, Normal>::COVARIANCE_MATRIX);
00101 ne.setNormalSmoothingSize (float (radius));
00102 ne.setDepthDependentSmoothing (true);
00103 ne.compute (normals);
00104 }
00105 else
00106 {
00107 NormalEstimation<PointXYZ, Normal> ne;
00108 ne.setInputCloud (xyz);
00109 ne.setSearchMethod (search::KdTree<PointXYZ>::Ptr (new search::KdTree<PointXYZ>));
00110 ne.setKSearch (k);
00111 ne.setRadiusSearch (radius);
00112 ne.compute (normals);
00113 }
00114
00115 print_highlight ("Computed normals in "); print_value ("%g", tt.toc ()); print_info (" ms for "); print_value ("%d", normals.width * normals.height); print_info (" points.\n");
00116
00117
00118 pcl::PCLPointCloud2 output_normals;
00119 toPCLPointCloud2 (normals, output_normals);
00120 concatenateFields (*input, output_normals, output);
00121 }
00122
00123 void
00124 saveCloud (const string &filename, const pcl::PCLPointCloud2 &output,
00125 const Eigen::Vector4f &translation, const Eigen::Quaternionf &orientation)
00126 {
00127 PCDWriter w;
00128 w.writeBinaryCompressed (filename, output, translation, orientation);
00129 }
00130
00131 int
00132 batchProcess (const vector<string> &pcd_files, string &output_dir, int k, double radius)
00133 {
00134 #if _OPENMP
00135 #pragma omp parallel for
00136 #endif
00137 for (int i = 0; i < int (pcd_files.size ()); ++i)
00138 {
00139
00140 Eigen::Vector4f translation;
00141 Eigen::Quaternionf rotation;
00142 pcl::PCLPointCloud2::Ptr cloud (new pcl::PCLPointCloud2);
00143 if (!loadCloud (pcd_files[i], *cloud, translation, rotation))
00144 continue;
00145
00146
00147 pcl::PCLPointCloud2 output;
00148 compute (cloud, output, k, radius);
00149
00150
00151 string filename = pcd_files[i];
00152 boost::trim (filename);
00153 vector<string> st;
00154 boost::split (st, filename, boost::is_any_of ("/\\"), boost::token_compress_on);
00155
00156
00157 stringstream ss;
00158 ss << output_dir << "/" << st.at (st.size () - 1);
00159 saveCloud (ss.str (), output, translation, rotation);
00160 }
00161 return (0);
00162 }
00163
00164
00165 int
00166 main (int argc, char** argv)
00167 {
00168 print_info ("Estimate surface normals using NormalEstimation. For more information, use: %s -h\n", argv[0]);
00169
00170 if (argc < 3)
00171 {
00172 printHelp (argc, argv);
00173 return (-1);
00174 }
00175
00176 bool batch_mode = false;
00177
00178
00179 int k = default_k;
00180 double radius = default_radius;
00181 parse_argument (argc, argv, "-k", k);
00182 parse_argument (argc, argv, "-radius", radius);
00183 string input_dir, output_dir;
00184 if (parse_argument (argc, argv, "-input_dir", input_dir) != -1)
00185 {
00186 PCL_INFO ("Input directory given as %s. Batch process mode on.\n", input_dir.c_str ());
00187 if (parse_argument (argc, argv, "-output_dir", output_dir) == -1)
00188 {
00189 PCL_ERROR ("Need an output directory! Please use -output_dir to continue.\n");
00190 return (-1);
00191 }
00192
00193
00194 batch_mode = true;
00195 }
00196
00197 if (!batch_mode)
00198 {
00199
00200 vector<int> p_file_indices;
00201 p_file_indices = parse_file_extension_argument (argc, argv, ".pcd");
00202 if (p_file_indices.size () != 2)
00203 {
00204 print_error ("Need one input PCD file and one output PCD file to continue.\n");
00205 return (-1);
00206 }
00207
00208 print_info ("Estimating normals with a radius/k/smoothing size of: ");
00209 print_value ("%d / %f / %f\n", k, radius, radius);
00210
00211
00212 Eigen::Vector4f translation;
00213 Eigen::Quaternionf rotation;
00214 pcl::PCLPointCloud2::Ptr cloud (new pcl::PCLPointCloud2);
00215 if (!loadCloud (argv[p_file_indices[0]], *cloud, translation, rotation))
00216 return (-1);
00217
00218
00219 pcl::PCLPointCloud2 output;
00220 compute (cloud, output, k, radius);
00221
00222
00223 saveCloud (argv[p_file_indices[1]], output, translation, rotation);
00224 }
00225 else
00226 {
00227 if (input_dir != "" && boost::filesystem::exists (input_dir))
00228 {
00229 vector<string> pcd_files;
00230 boost::filesystem::directory_iterator end_itr;
00231 for (boost::filesystem::directory_iterator itr (input_dir); itr != end_itr; ++itr)
00232 {
00233
00234 if (!is_directory (itr->status ()) && boost::algorithm::to_upper_copy (boost::filesystem::extension (itr->path ())) == ".PCD" )
00235 {
00236 pcd_files.push_back (itr->path ().string ());
00237 PCL_INFO ("[Batch processing mode] Added %s for processing.\n", itr->path ().string ().c_str ());
00238 }
00239 }
00240 batchProcess (pcd_files, output_dir, k, radius);
00241 }
00242 else
00243 {
00244 PCL_ERROR ("Batch processing mode enabled, but invalid input directory (%s) given!\n", input_dir.c_str ());
00245 return (-1);
00246 }
00247 }
00248 }
00249