00001
00002 #ifndef OBJECT_MANIPULATION_MSGS_SERVICE_GRASPPLANNING_H
00003 #define OBJECT_MANIPULATION_MSGS_SERVICE_GRASPPLANNING_H
00004 #include <string>
00005 #include <vector>
00006 #include <ostream>
00007 #include "ros/serialization.h"
00008 #include "ros/builtin_message_traits.h"
00009 #include "ros/message_operations.h"
00010 #include "ros/message.h"
00011 #include "ros/time.h"
00012
00013 #include "ros/service_traits.h"
00014
00015 #include "object_manipulation_msgs/GraspableObject.h"
00016 #include "object_manipulation_msgs/Grasp.h"
00017
00018
00019 #include "object_manipulation_msgs/Grasp.h"
00020 #include "object_manipulation_msgs/GraspPlanningErrorCode.h"
00021
00022 namespace object_manipulation_msgs
00023 {
00024 template <class ContainerAllocator>
00025 struct GraspPlanningRequest_ : public ros::Message
00026 {
00027 typedef GraspPlanningRequest_<ContainerAllocator> Type;
00028
00029 GraspPlanningRequest_()
00030 : arm_name()
00031 , target()
00032 , collision_object_name()
00033 , collision_support_surface_name()
00034 , grasps_to_evaluate()
00035 {
00036 }
00037
00038 GraspPlanningRequest_(const ContainerAllocator& _alloc)
00039 : arm_name(_alloc)
00040 , target(_alloc)
00041 , collision_object_name(_alloc)
00042 , collision_support_surface_name(_alloc)
00043 , grasps_to_evaluate(_alloc)
00044 {
00045 }
00046
00047 typedef std::basic_string<char, std::char_traits<char>, typename ContainerAllocator::template rebind<char>::other > _arm_name_type;
00048 std::basic_string<char, std::char_traits<char>, typename ContainerAllocator::template rebind<char>::other > arm_name;
00049
00050 typedef ::object_manipulation_msgs::GraspableObject_<ContainerAllocator> _target_type;
00051 ::object_manipulation_msgs::GraspableObject_<ContainerAllocator> target;
00052
00053 typedef std::basic_string<char, std::char_traits<char>, typename ContainerAllocator::template rebind<char>::other > _collision_object_name_type;
00054 std::basic_string<char, std::char_traits<char>, typename ContainerAllocator::template rebind<char>::other > collision_object_name;
00055
00056 typedef std::basic_string<char, std::char_traits<char>, typename ContainerAllocator::template rebind<char>::other > _collision_support_surface_name_type;
00057 std::basic_string<char, std::char_traits<char>, typename ContainerAllocator::template rebind<char>::other > collision_support_surface_name;
00058
00059 typedef std::vector< ::object_manipulation_msgs::Grasp_<ContainerAllocator> , typename ContainerAllocator::template rebind< ::object_manipulation_msgs::Grasp_<ContainerAllocator> >::other > _grasps_to_evaluate_type;
00060 std::vector< ::object_manipulation_msgs::Grasp_<ContainerAllocator> , typename ContainerAllocator::template rebind< ::object_manipulation_msgs::Grasp_<ContainerAllocator> >::other > grasps_to_evaluate;
00061
00062
00063 ROS_DEPRECATED uint32_t get_grasps_to_evaluate_size() const { return (uint32_t)grasps_to_evaluate.size(); }
00064 ROS_DEPRECATED void set_grasps_to_evaluate_size(uint32_t size) { grasps_to_evaluate.resize((size_t)size); }
00065 ROS_DEPRECATED void get_grasps_to_evaluate_vec(std::vector< ::object_manipulation_msgs::Grasp_<ContainerAllocator> , typename ContainerAllocator::template rebind< ::object_manipulation_msgs::Grasp_<ContainerAllocator> >::other > & vec) const { vec = this->grasps_to_evaluate; }
00066 ROS_DEPRECATED void set_grasps_to_evaluate_vec(const std::vector< ::object_manipulation_msgs::Grasp_<ContainerAllocator> , typename ContainerAllocator::template rebind< ::object_manipulation_msgs::Grasp_<ContainerAllocator> >::other > & vec) { this->grasps_to_evaluate = vec; }
00067 private:
00068 static const char* __s_getDataType_() { return "object_manipulation_msgs/GraspPlanningRequest"; }
00069 public:
00070 ROS_DEPRECATED static const std::string __s_getDataType() { return __s_getDataType_(); }
00071
00072 ROS_DEPRECATED const std::string __getDataType() const { return __s_getDataType_(); }
00073
00074 private:
00075 static const char* __s_getMD5Sum_() { return "d79844f9e55bd91b731965103ce46bb1"; }
00076 public:
00077 ROS_DEPRECATED static const std::string __s_getMD5Sum() { return __s_getMD5Sum_(); }
00078
00079 ROS_DEPRECATED const std::string __getMD5Sum() const { return __s_getMD5Sum_(); }
00080
00081 private:
00082 static const char* __s_getServerMD5Sum_() { return "f5892f83455760950390677f50327dd2"; }
00083 public:
00084 ROS_DEPRECATED static const std::string __s_getServerMD5Sum() { return __s_getServerMD5Sum_(); }
00085
00086 ROS_DEPRECATED const std::string __getServerMD5Sum() const { return __s_getServerMD5Sum_(); }
00087
00088 private:
00089 static const char* __s_getMessageDefinition_() { return "\n\
00090 \n\
00091 \n\
00092 \n\
00093 string arm_name\n\
00094 \n\
00095 \n\
00096 GraspableObject target\n\
00097 \n\
00098 \n\
00099 \n\
00100 string collision_object_name\n\
00101 \n\
00102 \n\
00103 \n\
00104 string collision_support_surface_name\n\
00105 \n\
00106 \n\
00107 Grasp[] grasps_to_evaluate\n\
00108 \n\
00109 \n\
00110 ================================================================================\n\
00111 MSG: object_manipulation_msgs/GraspableObject\n\
00112 # an object that the object_manipulator can work on\n\
00113 \n\
00114 # a graspable object can be represented in multiple ways. This message\n\
00115 # can contain all of them. Which one is actually used is up to the receiver\n\
00116 # of this message. When adding new representations, one must be careful that\n\
00117 # they have reasonable lightweight defaults indicating that that particular\n\
00118 # representation is not available.\n\
00119 \n\
00120 # the tf frame to be used as a reference frame when combining information from\n\
00121 # the different representations below\n\
00122 string reference_frame_id\n\
00123 \n\
00124 # potential recognition results from a database of models\n\
00125 # all poses are relative to the object reference pose\n\
00126 household_objects_database_msgs/DatabaseModelPose[] potential_models\n\
00127 \n\
00128 # the point cloud itself\n\
00129 sensor_msgs/PointCloud cluster\n\
00130 \n\
00131 # a region of a PointCloud2 of interest\n\
00132 object_manipulation_msgs/SceneRegion region\n\
00133 \n\
00134 \n\
00135 ================================================================================\n\
00136 MSG: household_objects_database_msgs/DatabaseModelPose\n\
00137 # Informs that a specific model from the Model Database has been \n\
00138 # identified at a certain location\n\
00139 \n\
00140 # the database id of the model\n\
00141 int32 model_id\n\
00142 \n\
00143 # the pose that it can be found in\n\
00144 geometry_msgs/PoseStamped pose\n\
00145 \n\
00146 # a measure of the confidence level in this detection result\n\
00147 float32 confidence\n\
00148 ================================================================================\n\
00149 MSG: geometry_msgs/PoseStamped\n\
00150 # A Pose with reference coordinate frame and timestamp\n\
00151 Header header\n\
00152 Pose pose\n\
00153 \n\
00154 ================================================================================\n\
00155 MSG: std_msgs/Header\n\
00156 # Standard metadata for higher-level stamped data types.\n\
00157 # This is generally used to communicate timestamped data \n\
00158 # in a particular coordinate frame.\n\
00159 # \n\
00160 # sequence ID: consecutively increasing ID \n\
00161 uint32 seq\n\
00162 #Two-integer timestamp that is expressed as:\n\
00163 # * stamp.secs: seconds (stamp_secs) since epoch\n\
00164 # * stamp.nsecs: nanoseconds since stamp_secs\n\
00165 # time-handling sugar is provided by the client library\n\
00166 time stamp\n\
00167 #Frame this data is associated with\n\
00168 # 0: no frame\n\
00169 # 1: global frame\n\
00170 string frame_id\n\
00171 \n\
00172 ================================================================================\n\
00173 MSG: geometry_msgs/Pose\n\
00174 # A representation of pose in free space, composed of postion and orientation. \n\
00175 Point position\n\
00176 Quaternion orientation\n\
00177 \n\
00178 ================================================================================\n\
00179 MSG: geometry_msgs/Point\n\
00180 # This contains the position of a point in free space\n\
00181 float64 x\n\
00182 float64 y\n\
00183 float64 z\n\
00184 \n\
00185 ================================================================================\n\
00186 MSG: geometry_msgs/Quaternion\n\
00187 # This represents an orientation in free space in quaternion form.\n\
00188 \n\
00189 float64 x\n\
00190 float64 y\n\
00191 float64 z\n\
00192 float64 w\n\
00193 \n\
00194 ================================================================================\n\
00195 MSG: sensor_msgs/PointCloud\n\
00196 # This message holds a collection of 3d points, plus optional additional\n\
00197 # information about each point.\n\
00198 \n\
00199 # Time of sensor data acquisition, coordinate frame ID.\n\
00200 Header header\n\
00201 \n\
00202 # Array of 3d points. Each Point32 should be interpreted as a 3d point\n\
00203 # in the frame given in the header.\n\
00204 geometry_msgs/Point32[] points\n\
00205 \n\
00206 # Each channel should have the same number of elements as points array,\n\
00207 # and the data in each channel should correspond 1:1 with each point.\n\
00208 # Channel names in common practice are listed in ChannelFloat32.msg.\n\
00209 ChannelFloat32[] channels\n\
00210 \n\
00211 ================================================================================\n\
00212 MSG: geometry_msgs/Point32\n\
00213 # This contains the position of a point in free space(with 32 bits of precision).\n\
00214 # It is recommeded to use Point wherever possible instead of Point32. \n\
00215 # \n\
00216 # This recommendation is to promote interoperability. \n\
00217 #\n\
00218 # This message is designed to take up less space when sending\n\
00219 # lots of points at once, as in the case of a PointCloud. \n\
00220 \n\
00221 float32 x\n\
00222 float32 y\n\
00223 float32 z\n\
00224 ================================================================================\n\
00225 MSG: sensor_msgs/ChannelFloat32\n\
00226 # This message is used by the PointCloud message to hold optional data\n\
00227 # associated with each point in the cloud. The length of the values\n\
00228 # array should be the same as the length of the points array in the\n\
00229 # PointCloud, and each value should be associated with the corresponding\n\
00230 # point.\n\
00231 \n\
00232 # Channel names in existing practice include:\n\
00233 # \"u\", \"v\" - row and column (respectively) in the left stereo image.\n\
00234 # This is opposite to usual conventions but remains for\n\
00235 # historical reasons. The newer PointCloud2 message has no\n\
00236 # such problem.\n\
00237 # \"rgb\" - For point clouds produced by color stereo cameras. uint8\n\
00238 # (R,G,B) values packed into the least significant 24 bits,\n\
00239 # in order.\n\
00240 # \"intensity\" - laser or pixel intensity.\n\
00241 # \"distance\"\n\
00242 \n\
00243 # The channel name should give semantics of the channel (e.g.\n\
00244 # \"intensity\" instead of \"value\").\n\
00245 string name\n\
00246 \n\
00247 # The values array should be 1-1 with the elements of the associated\n\
00248 # PointCloud.\n\
00249 float32[] values\n\
00250 \n\
00251 ================================================================================\n\
00252 MSG: object_manipulation_msgs/SceneRegion\n\
00253 # Point cloud\n\
00254 sensor_msgs/PointCloud2 cloud\n\
00255 \n\
00256 # Indices for the region of interest\n\
00257 int32[] mask\n\
00258 \n\
00259 # One of the corresponding 2D images, if applicable\n\
00260 sensor_msgs/Image image\n\
00261 \n\
00262 # The disparity image, if applicable\n\
00263 sensor_msgs/Image disparity_image\n\
00264 \n\
00265 # Camera info for the camera that took the image\n\
00266 sensor_msgs/CameraInfo cam_info\n\
00267 \n\
00268 ================================================================================\n\
00269 MSG: sensor_msgs/PointCloud2\n\
00270 # This message holds a collection of N-dimensional points, which may\n\
00271 # contain additional information such as normals, intensity, etc. The\n\
00272 # point data is stored as a binary blob, its layout described by the\n\
00273 # contents of the \"fields\" array.\n\
00274 \n\
00275 # The point cloud data may be organized 2d (image-like) or 1d\n\
00276 # (unordered). Point clouds organized as 2d images may be produced by\n\
00277 # camera depth sensors such as stereo or time-of-flight.\n\
00278 \n\
00279 # Time of sensor data acquisition, and the coordinate frame ID (for 3d\n\
00280 # points).\n\
00281 Header header\n\
00282 \n\
00283 # 2D structure of the point cloud. If the cloud is unordered, height is\n\
00284 # 1 and width is the length of the point cloud.\n\
00285 uint32 height\n\
00286 uint32 width\n\
00287 \n\
00288 # Describes the channels and their layout in the binary data blob.\n\
00289 PointField[] fields\n\
00290 \n\
00291 bool is_bigendian # Is this data bigendian?\n\
00292 uint32 point_step # Length of a point in bytes\n\
00293 uint32 row_step # Length of a row in bytes\n\
00294 uint8[] data # Actual point data, size is (row_step*height)\n\
00295 \n\
00296 bool is_dense # True if there are no invalid points\n\
00297 \n\
00298 ================================================================================\n\
00299 MSG: sensor_msgs/PointField\n\
00300 # This message holds the description of one point entry in the\n\
00301 # PointCloud2 message format.\n\
00302 uint8 INT8 = 1\n\
00303 uint8 UINT8 = 2\n\
00304 uint8 INT16 = 3\n\
00305 uint8 UINT16 = 4\n\
00306 uint8 INT32 = 5\n\
00307 uint8 UINT32 = 6\n\
00308 uint8 FLOAT32 = 7\n\
00309 uint8 FLOAT64 = 8\n\
00310 \n\
00311 string name # Name of field\n\
00312 uint32 offset # Offset from start of point struct\n\
00313 uint8 datatype # Datatype enumeration, see above\n\
00314 uint32 count # How many elements in the field\n\
00315 \n\
00316 ================================================================================\n\
00317 MSG: sensor_msgs/Image\n\
00318 # This message contains an uncompressed image\n\
00319 # (0, 0) is at top-left corner of image\n\
00320 #\n\
00321 \n\
00322 Header header # Header timestamp should be acquisition time of image\n\
00323 # Header frame_id should be optical frame of camera\n\
00324 # origin of frame should be optical center of cameara\n\
00325 # +x should point to the right in the image\n\
00326 # +y should point down in the image\n\
00327 # +z should point into to plane of the image\n\
00328 # If the frame_id here and the frame_id of the CameraInfo\n\
00329 # message associated with the image conflict\n\
00330 # the behavior is undefined\n\
00331 \n\
00332 uint32 height # image height, that is, number of rows\n\
00333 uint32 width # image width, that is, number of columns\n\
00334 \n\
00335 # The legal values for encoding are in file src/image_encodings.cpp\n\
00336 # If you want to standardize a new string format, join\n\
00337 # ros-users@lists.sourceforge.net and send an email proposing a new encoding.\n\
00338 \n\
00339 string encoding # Encoding of pixels -- channel meaning, ordering, size\n\
00340 # taken from the list of strings in src/image_encodings.cpp\n\
00341 \n\
00342 uint8 is_bigendian # is this data bigendian?\n\
00343 uint32 step # Full row length in bytes\n\
00344 uint8[] data # actual matrix data, size is (step * rows)\n\
00345 \n\
00346 ================================================================================\n\
00347 MSG: sensor_msgs/CameraInfo\n\
00348 # This message defines meta information for a camera. It should be in a\n\
00349 # camera namespace on topic \"camera_info\" and accompanied by up to five\n\
00350 # image topics named:\n\
00351 #\n\
00352 # image_raw - raw data from the camera driver, possibly Bayer encoded\n\
00353 # image - monochrome, distorted\n\
00354 # image_color - color, distorted\n\
00355 # image_rect - monochrome, rectified\n\
00356 # image_rect_color - color, rectified\n\
00357 #\n\
00358 # The image_pipeline contains packages (image_proc, stereo_image_proc)\n\
00359 # for producing the four processed image topics from image_raw and\n\
00360 # camera_info. The meaning of the camera parameters are described in\n\
00361 # detail at http://www.ros.org/wiki/image_pipeline/CameraInfo.\n\
00362 #\n\
00363 # The image_geometry package provides a user-friendly interface to\n\
00364 # common operations using this meta information. If you want to, e.g.,\n\
00365 # project a 3d point into image coordinates, we strongly recommend\n\
00366 # using image_geometry.\n\
00367 #\n\
00368 # If the camera is uncalibrated, the matrices D, K, R, P should be left\n\
00369 # zeroed out. In particular, clients may assume that K[0] == 0.0\n\
00370 # indicates an uncalibrated camera.\n\
00371 \n\
00372 #######################################################################\n\
00373 # Image acquisition info #\n\
00374 #######################################################################\n\
00375 \n\
00376 # Time of image acquisition, camera coordinate frame ID\n\
00377 Header header # Header timestamp should be acquisition time of image\n\
00378 # Header frame_id should be optical frame of camera\n\
00379 # origin of frame should be optical center of camera\n\
00380 # +x should point to the right in the image\n\
00381 # +y should point down in the image\n\
00382 # +z should point into the plane of the image\n\
00383 \n\
00384 \n\
00385 #######################################################################\n\
00386 # Calibration Parameters #\n\
00387 #######################################################################\n\
00388 # These are fixed during camera calibration. Their values will be the #\n\
00389 # same in all messages until the camera is recalibrated. Note that #\n\
00390 # self-calibrating systems may \"recalibrate\" frequently. #\n\
00391 # #\n\
00392 # The internal parameters can be used to warp a raw (distorted) image #\n\
00393 # to: #\n\
00394 # 1. An undistorted image (requires D and K) #\n\
00395 # 2. A rectified image (requires D, K, R) #\n\
00396 # The projection matrix P projects 3D points into the rectified image.#\n\
00397 #######################################################################\n\
00398 \n\
00399 # The image dimensions with which the camera was calibrated. Normally\n\
00400 # this will be the full camera resolution in pixels.\n\
00401 uint32 height\n\
00402 uint32 width\n\
00403 \n\
00404 # The distortion model used. Supported models are listed in\n\
00405 # sensor_msgs/distortion_models.h. For most cameras, \"plumb_bob\" - a\n\
00406 # simple model of radial and tangential distortion - is sufficent.\n\
00407 string distortion_model\n\
00408 \n\
00409 # The distortion parameters, size depending on the distortion model.\n\
00410 # For \"plumb_bob\", the 5 parameters are: (k1, k2, t1, t2, k3).\n\
00411 float64[] D\n\
00412 \n\
00413 # Intrinsic camera matrix for the raw (distorted) images.\n\
00414 # [fx 0 cx]\n\
00415 # K = [ 0 fy cy]\n\
00416 # [ 0 0 1]\n\
00417 # Projects 3D points in the camera coordinate frame to 2D pixel\n\
00418 # coordinates using the focal lengths (fx, fy) and principal point\n\
00419 # (cx, cy).\n\
00420 float64[9] K # 3x3 row-major matrix\n\
00421 \n\
00422 # Rectification matrix (stereo cameras only)\n\
00423 # A rotation matrix aligning the camera coordinate system to the ideal\n\
00424 # stereo image plane so that epipolar lines in both stereo images are\n\
00425 # parallel.\n\
00426 float64[9] R # 3x3 row-major matrix\n\
00427 \n\
00428 # Projection/camera matrix\n\
00429 # [fx' 0 cx' Tx]\n\
00430 # P = [ 0 fy' cy' Ty]\n\
00431 # [ 0 0 1 0]\n\
00432 # By convention, this matrix specifies the intrinsic (camera) matrix\n\
00433 # of the processed (rectified) image. That is, the left 3x3 portion\n\
00434 # is the normal camera intrinsic matrix for the rectified image.\n\
00435 # It projects 3D points in the camera coordinate frame to 2D pixel\n\
00436 # coordinates using the focal lengths (fx', fy') and principal point\n\
00437 # (cx', cy') - these may differ from the values in K.\n\
00438 # For monocular cameras, Tx = Ty = 0. Normally, monocular cameras will\n\
00439 # also have R = the identity and P[1:3,1:3] = K.\n\
00440 # For a stereo pair, the fourth column [Tx Ty 0]' is related to the\n\
00441 # position of the optical center of the second camera in the first\n\
00442 # camera's frame. We assume Tz = 0 so both cameras are in the same\n\
00443 # stereo image plane. The first camera always has Tx = Ty = 0. For\n\
00444 # the right (second) camera of a horizontal stereo pair, Ty = 0 and\n\
00445 # Tx = -fx' * B, where B is the baseline between the cameras.\n\
00446 # Given a 3D point [X Y Z]', the projection (x, y) of the point onto\n\
00447 # the rectified image is given by:\n\
00448 # [u v w]' = P * [X Y Z 1]'\n\
00449 # x = u / w\n\
00450 # y = v / w\n\
00451 # This holds for both images of a stereo pair.\n\
00452 float64[12] P # 3x4 row-major matrix\n\
00453 \n\
00454 \n\
00455 #######################################################################\n\
00456 # Operational Parameters #\n\
00457 #######################################################################\n\
00458 # These define the image region actually captured by the camera #\n\
00459 # driver. Although they affect the geometry of the output image, they #\n\
00460 # may be changed freely without recalibrating the camera. #\n\
00461 #######################################################################\n\
00462 \n\
00463 # Binning refers here to any camera setting which combines rectangular\n\
00464 # neighborhoods of pixels into larger \"super-pixels.\" It reduces the\n\
00465 # resolution of the output image to\n\
00466 # (width / binning_x) x (height / binning_y).\n\
00467 # The default values binning_x = binning_y = 0 is considered the same\n\
00468 # as binning_x = binning_y = 1 (no subsampling).\n\
00469 uint32 binning_x\n\
00470 uint32 binning_y\n\
00471 \n\
00472 # Region of interest (subwindow of full camera resolution), given in\n\
00473 # full resolution (unbinned) image coordinates. A particular ROI\n\
00474 # always denotes the same window of pixels on the camera sensor,\n\
00475 # regardless of binning settings.\n\
00476 # The default setting of roi (all values 0) is considered the same as\n\
00477 # full resolution (roi.width = width, roi.height = height).\n\
00478 RegionOfInterest roi\n\
00479 \n\
00480 ================================================================================\n\
00481 MSG: sensor_msgs/RegionOfInterest\n\
00482 # This message is used to specify a region of interest within an image.\n\
00483 #\n\
00484 # When used to specify the ROI setting of the camera when the image was\n\
00485 # taken, the height and width fields should either match the height and\n\
00486 # width fields for the associated image; or height = width = 0\n\
00487 # indicates that the full resolution image was captured.\n\
00488 \n\
00489 uint32 x_offset # Leftmost pixel of the ROI\n\
00490 # (0 if the ROI includes the left edge of the image)\n\
00491 uint32 y_offset # Topmost pixel of the ROI\n\
00492 # (0 if the ROI includes the top edge of the image)\n\
00493 uint32 height # Height of ROI\n\
00494 uint32 width # Width of ROI\n\
00495 \n\
00496 # True if a distinct rectified ROI should be calculated from the \"raw\"\n\
00497 # ROI in this message. Typically this should be False if the full image\n\
00498 # is captured (ROI not used), and True if a subwindow is captured (ROI\n\
00499 # used).\n\
00500 bool do_rectify\n\
00501 \n\
00502 ================================================================================\n\
00503 MSG: object_manipulation_msgs/Grasp\n\
00504 \n\
00505 # The internal posture of the hand for the pre-grasp\n\
00506 # only positions are used\n\
00507 sensor_msgs/JointState pre_grasp_posture\n\
00508 \n\
00509 # The internal posture of the hand for the grasp\n\
00510 # positions and efforts are used\n\
00511 sensor_msgs/JointState grasp_posture\n\
00512 \n\
00513 # The position of the end-effector for the grasp relative to the object\n\
00514 geometry_msgs/Pose grasp_pose\n\
00515 \n\
00516 # The estimated probability of success for this grasp\n\
00517 float64 success_probability\n\
00518 \n\
00519 # Debug flag to indicate that this grasp would be the best in its cluster\n\
00520 bool cluster_rep\n\
00521 ================================================================================\n\
00522 MSG: sensor_msgs/JointState\n\
00523 # This is a message that holds data to describe the state of a set of torque controlled joints. \n\
00524 #\n\
00525 # The state of each joint (revolute or prismatic) is defined by:\n\
00526 # * the position of the joint (rad or m),\n\
00527 # * the velocity of the joint (rad/s or m/s) and \n\
00528 # * the effort that is applied in the joint (Nm or N).\n\
00529 #\n\
00530 # Each joint is uniquely identified by its name\n\
00531 # The header specifies the time at which the joint states were recorded. All the joint states\n\
00532 # in one message have to be recorded at the same time.\n\
00533 #\n\
00534 # This message consists of a multiple arrays, one for each part of the joint state. \n\
00535 # The goal is to make each of the fields optional. When e.g. your joints have no\n\
00536 # effort associated with them, you can leave the effort array empty. \n\
00537 #\n\
00538 # All arrays in this message should have the same size, or be empty.\n\
00539 # This is the only way to uniquely associate the joint name with the correct\n\
00540 # states.\n\
00541 \n\
00542 \n\
00543 Header header\n\
00544 \n\
00545 string[] name\n\
00546 float64[] position\n\
00547 float64[] velocity\n\
00548 float64[] effort\n\
00549 \n\
00550 "; }
00551 public:
00552 ROS_DEPRECATED static const std::string __s_getMessageDefinition() { return __s_getMessageDefinition_(); }
00553
00554 ROS_DEPRECATED const std::string __getMessageDefinition() const { return __s_getMessageDefinition_(); }
00555
00556 ROS_DEPRECATED virtual uint8_t *serialize(uint8_t *write_ptr, uint32_t seq) const
00557 {
00558 ros::serialization::OStream stream(write_ptr, 1000000000);
00559 ros::serialization::serialize(stream, arm_name);
00560 ros::serialization::serialize(stream, target);
00561 ros::serialization::serialize(stream, collision_object_name);
00562 ros::serialization::serialize(stream, collision_support_surface_name);
00563 ros::serialization::serialize(stream, grasps_to_evaluate);
00564 return stream.getData();
00565 }
00566
00567 ROS_DEPRECATED virtual uint8_t *deserialize(uint8_t *read_ptr)
00568 {
00569 ros::serialization::IStream stream(read_ptr, 1000000000);
00570 ros::serialization::deserialize(stream, arm_name);
00571 ros::serialization::deserialize(stream, target);
00572 ros::serialization::deserialize(stream, collision_object_name);
00573 ros::serialization::deserialize(stream, collision_support_surface_name);
00574 ros::serialization::deserialize(stream, grasps_to_evaluate);
00575 return stream.getData();
00576 }
00577
00578 ROS_DEPRECATED virtual uint32_t serializationLength() const
00579 {
00580 uint32_t size = 0;
00581 size += ros::serialization::serializationLength(arm_name);
00582 size += ros::serialization::serializationLength(target);
00583 size += ros::serialization::serializationLength(collision_object_name);
00584 size += ros::serialization::serializationLength(collision_support_surface_name);
00585 size += ros::serialization::serializationLength(grasps_to_evaluate);
00586 return size;
00587 }
00588
00589 typedef boost::shared_ptr< ::object_manipulation_msgs::GraspPlanningRequest_<ContainerAllocator> > Ptr;
00590 typedef boost::shared_ptr< ::object_manipulation_msgs::GraspPlanningRequest_<ContainerAllocator> const> ConstPtr;
00591 };
00592 typedef ::object_manipulation_msgs::GraspPlanningRequest_<std::allocator<void> > GraspPlanningRequest;
00593
00594 typedef boost::shared_ptr< ::object_manipulation_msgs::GraspPlanningRequest> GraspPlanningRequestPtr;
00595 typedef boost::shared_ptr< ::object_manipulation_msgs::GraspPlanningRequest const> GraspPlanningRequestConstPtr;
00596
00597
00598 template <class ContainerAllocator>
00599 struct GraspPlanningResponse_ : public ros::Message
00600 {
00601 typedef GraspPlanningResponse_<ContainerAllocator> Type;
00602
00603 GraspPlanningResponse_()
00604 : grasps()
00605 , error_code()
00606 {
00607 }
00608
00609 GraspPlanningResponse_(const ContainerAllocator& _alloc)
00610 : grasps(_alloc)
00611 , error_code(_alloc)
00612 {
00613 }
00614
00615 typedef std::vector< ::object_manipulation_msgs::Grasp_<ContainerAllocator> , typename ContainerAllocator::template rebind< ::object_manipulation_msgs::Grasp_<ContainerAllocator> >::other > _grasps_type;
00616 std::vector< ::object_manipulation_msgs::Grasp_<ContainerAllocator> , typename ContainerAllocator::template rebind< ::object_manipulation_msgs::Grasp_<ContainerAllocator> >::other > grasps;
00617
00618 typedef ::object_manipulation_msgs::GraspPlanningErrorCode_<ContainerAllocator> _error_code_type;
00619 ::object_manipulation_msgs::GraspPlanningErrorCode_<ContainerAllocator> error_code;
00620
00621
00622 ROS_DEPRECATED uint32_t get_grasps_size() const { return (uint32_t)grasps.size(); }
00623 ROS_DEPRECATED void set_grasps_size(uint32_t size) { grasps.resize((size_t)size); }
00624 ROS_DEPRECATED void get_grasps_vec(std::vector< ::object_manipulation_msgs::Grasp_<ContainerAllocator> , typename ContainerAllocator::template rebind< ::object_manipulation_msgs::Grasp_<ContainerAllocator> >::other > & vec) const { vec = this->grasps; }
00625 ROS_DEPRECATED void set_grasps_vec(const std::vector< ::object_manipulation_msgs::Grasp_<ContainerAllocator> , typename ContainerAllocator::template rebind< ::object_manipulation_msgs::Grasp_<ContainerAllocator> >::other > & vec) { this->grasps = vec; }
00626 private:
00627 static const char* __s_getDataType_() { return "object_manipulation_msgs/GraspPlanningResponse"; }
00628 public:
00629 ROS_DEPRECATED static const std::string __s_getDataType() { return __s_getDataType_(); }
00630
00631 ROS_DEPRECATED const std::string __getDataType() const { return __s_getDataType_(); }
00632
00633 private:
00634 static const char* __s_getMD5Sum_() { return "2d97de1f9f75ff916febf6f82db5b547"; }
00635 public:
00636 ROS_DEPRECATED static const std::string __s_getMD5Sum() { return __s_getMD5Sum_(); }
00637
00638 ROS_DEPRECATED const std::string __getMD5Sum() const { return __s_getMD5Sum_(); }
00639
00640 private:
00641 static const char* __s_getServerMD5Sum_() { return "f5892f83455760950390677f50327dd2"; }
00642 public:
00643 ROS_DEPRECATED static const std::string __s_getServerMD5Sum() { return __s_getServerMD5Sum_(); }
00644
00645 ROS_DEPRECATED const std::string __getServerMD5Sum() const { return __s_getServerMD5Sum_(); }
00646
00647 private:
00648 static const char* __s_getMessageDefinition_() { return "\n\
00649 \n\
00650 Grasp[] grasps\n\
00651 \n\
00652 \n\
00653 GraspPlanningErrorCode error_code\n\
00654 \n\
00655 \n\
00656 ================================================================================\n\
00657 MSG: object_manipulation_msgs/Grasp\n\
00658 \n\
00659 # The internal posture of the hand for the pre-grasp\n\
00660 # only positions are used\n\
00661 sensor_msgs/JointState pre_grasp_posture\n\
00662 \n\
00663 # The internal posture of the hand for the grasp\n\
00664 # positions and efforts are used\n\
00665 sensor_msgs/JointState grasp_posture\n\
00666 \n\
00667 # The position of the end-effector for the grasp relative to the object\n\
00668 geometry_msgs/Pose grasp_pose\n\
00669 \n\
00670 # The estimated probability of success for this grasp\n\
00671 float64 success_probability\n\
00672 \n\
00673 # Debug flag to indicate that this grasp would be the best in its cluster\n\
00674 bool cluster_rep\n\
00675 ================================================================================\n\
00676 MSG: sensor_msgs/JointState\n\
00677 # This is a message that holds data to describe the state of a set of torque controlled joints. \n\
00678 #\n\
00679 # The state of each joint (revolute or prismatic) is defined by:\n\
00680 # * the position of the joint (rad or m),\n\
00681 # * the velocity of the joint (rad/s or m/s) and \n\
00682 # * the effort that is applied in the joint (Nm or N).\n\
00683 #\n\
00684 # Each joint is uniquely identified by its name\n\
00685 # The header specifies the time at which the joint states were recorded. All the joint states\n\
00686 # in one message have to be recorded at the same time.\n\
00687 #\n\
00688 # This message consists of a multiple arrays, one for each part of the joint state. \n\
00689 # The goal is to make each of the fields optional. When e.g. your joints have no\n\
00690 # effort associated with them, you can leave the effort array empty. \n\
00691 #\n\
00692 # All arrays in this message should have the same size, or be empty.\n\
00693 # This is the only way to uniquely associate the joint name with the correct\n\
00694 # states.\n\
00695 \n\
00696 \n\
00697 Header header\n\
00698 \n\
00699 string[] name\n\
00700 float64[] position\n\
00701 float64[] velocity\n\
00702 float64[] effort\n\
00703 \n\
00704 ================================================================================\n\
00705 MSG: std_msgs/Header\n\
00706 # Standard metadata for higher-level stamped data types.\n\
00707 # This is generally used to communicate timestamped data \n\
00708 # in a particular coordinate frame.\n\
00709 # \n\
00710 # sequence ID: consecutively increasing ID \n\
00711 uint32 seq\n\
00712 #Two-integer timestamp that is expressed as:\n\
00713 # * stamp.secs: seconds (stamp_secs) since epoch\n\
00714 # * stamp.nsecs: nanoseconds since stamp_secs\n\
00715 # time-handling sugar is provided by the client library\n\
00716 time stamp\n\
00717 #Frame this data is associated with\n\
00718 # 0: no frame\n\
00719 # 1: global frame\n\
00720 string frame_id\n\
00721 \n\
00722 ================================================================================\n\
00723 MSG: geometry_msgs/Pose\n\
00724 # A representation of pose in free space, composed of postion and orientation. \n\
00725 Point position\n\
00726 Quaternion orientation\n\
00727 \n\
00728 ================================================================================\n\
00729 MSG: geometry_msgs/Point\n\
00730 # This contains the position of a point in free space\n\
00731 float64 x\n\
00732 float64 y\n\
00733 float64 z\n\
00734 \n\
00735 ================================================================================\n\
00736 MSG: geometry_msgs/Quaternion\n\
00737 # This represents an orientation in free space in quaternion form.\n\
00738 \n\
00739 float64 x\n\
00740 float64 y\n\
00741 float64 z\n\
00742 float64 w\n\
00743 \n\
00744 ================================================================================\n\
00745 MSG: object_manipulation_msgs/GraspPlanningErrorCode\n\
00746 # Error codes for grasp and place planning\n\
00747 \n\
00748 # plan completed as expected\n\
00749 int32 SUCCESS = 0\n\
00750 \n\
00751 # tf error encountered while transforming\n\
00752 int32 TF_ERROR = 1 \n\
00753 \n\
00754 # some other error\n\
00755 int32 OTHER_ERROR = 2\n\
00756 \n\
00757 # the actual value of this error code\n\
00758 int32 value\n\
00759 "; }
00760 public:
00761 ROS_DEPRECATED static const std::string __s_getMessageDefinition() { return __s_getMessageDefinition_(); }
00762
00763 ROS_DEPRECATED const std::string __getMessageDefinition() const { return __s_getMessageDefinition_(); }
00764
00765 ROS_DEPRECATED virtual uint8_t *serialize(uint8_t *write_ptr, uint32_t seq) const
00766 {
00767 ros::serialization::OStream stream(write_ptr, 1000000000);
00768 ros::serialization::serialize(stream, grasps);
00769 ros::serialization::serialize(stream, error_code);
00770 return stream.getData();
00771 }
00772
00773 ROS_DEPRECATED virtual uint8_t *deserialize(uint8_t *read_ptr)
00774 {
00775 ros::serialization::IStream stream(read_ptr, 1000000000);
00776 ros::serialization::deserialize(stream, grasps);
00777 ros::serialization::deserialize(stream, error_code);
00778 return stream.getData();
00779 }
00780
00781 ROS_DEPRECATED virtual uint32_t serializationLength() const
00782 {
00783 uint32_t size = 0;
00784 size += ros::serialization::serializationLength(grasps);
00785 size += ros::serialization::serializationLength(error_code);
00786 return size;
00787 }
00788
00789 typedef boost::shared_ptr< ::object_manipulation_msgs::GraspPlanningResponse_<ContainerAllocator> > Ptr;
00790 typedef boost::shared_ptr< ::object_manipulation_msgs::GraspPlanningResponse_<ContainerAllocator> const> ConstPtr;
00791 };
00792 typedef ::object_manipulation_msgs::GraspPlanningResponse_<std::allocator<void> > GraspPlanningResponse;
00793
00794 typedef boost::shared_ptr< ::object_manipulation_msgs::GraspPlanningResponse> GraspPlanningResponsePtr;
00795 typedef boost::shared_ptr< ::object_manipulation_msgs::GraspPlanningResponse const> GraspPlanningResponseConstPtr;
00796
00797 struct GraspPlanning
00798 {
00799
00800 typedef GraspPlanningRequest Request;
00801 typedef GraspPlanningResponse Response;
00802 Request request;
00803 Response response;
00804
00805 typedef Request RequestType;
00806 typedef Response ResponseType;
00807 };
00808 }
00809
00810 namespace ros
00811 {
00812 namespace message_traits
00813 {
00814 template<class ContainerAllocator>
00815 struct MD5Sum< ::object_manipulation_msgs::GraspPlanningRequest_<ContainerAllocator> > {
00816 static const char* value()
00817 {
00818 return "d79844f9e55bd91b731965103ce46bb1";
00819 }
00820
00821 static const char* value(const ::object_manipulation_msgs::GraspPlanningRequest_<ContainerAllocator> &) { return value(); }
00822 static const uint64_t static_value1 = 0xd79844f9e55bd91bULL;
00823 static const uint64_t static_value2 = 0x731965103ce46bb1ULL;
00824 };
00825
00826 template<class ContainerAllocator>
00827 struct DataType< ::object_manipulation_msgs::GraspPlanningRequest_<ContainerAllocator> > {
00828 static const char* value()
00829 {
00830 return "object_manipulation_msgs/GraspPlanningRequest";
00831 }
00832
00833 static const char* value(const ::object_manipulation_msgs::GraspPlanningRequest_<ContainerAllocator> &) { return value(); }
00834 };
00835
00836 template<class ContainerAllocator>
00837 struct Definition< ::object_manipulation_msgs::GraspPlanningRequest_<ContainerAllocator> > {
00838 static const char* value()
00839 {
00840 return "\n\
00841 \n\
00842 \n\
00843 \n\
00844 string arm_name\n\
00845 \n\
00846 \n\
00847 GraspableObject target\n\
00848 \n\
00849 \n\
00850 \n\
00851 string collision_object_name\n\
00852 \n\
00853 \n\
00854 \n\
00855 string collision_support_surface_name\n\
00856 \n\
00857 \n\
00858 Grasp[] grasps_to_evaluate\n\
00859 \n\
00860 \n\
00861 ================================================================================\n\
00862 MSG: object_manipulation_msgs/GraspableObject\n\
00863 # an object that the object_manipulator can work on\n\
00864 \n\
00865 # a graspable object can be represented in multiple ways. This message\n\
00866 # can contain all of them. Which one is actually used is up to the receiver\n\
00867 # of this message. When adding new representations, one must be careful that\n\
00868 # they have reasonable lightweight defaults indicating that that particular\n\
00869 # representation is not available.\n\
00870 \n\
00871 # the tf frame to be used as a reference frame when combining information from\n\
00872 # the different representations below\n\
00873 string reference_frame_id\n\
00874 \n\
00875 # potential recognition results from a database of models\n\
00876 # all poses are relative to the object reference pose\n\
00877 household_objects_database_msgs/DatabaseModelPose[] potential_models\n\
00878 \n\
00879 # the point cloud itself\n\
00880 sensor_msgs/PointCloud cluster\n\
00881 \n\
00882 # a region of a PointCloud2 of interest\n\
00883 object_manipulation_msgs/SceneRegion region\n\
00884 \n\
00885 \n\
00886 ================================================================================\n\
00887 MSG: household_objects_database_msgs/DatabaseModelPose\n\
00888 # Informs that a specific model from the Model Database has been \n\
00889 # identified at a certain location\n\
00890 \n\
00891 # the database id of the model\n\
00892 int32 model_id\n\
00893 \n\
00894 # the pose that it can be found in\n\
00895 geometry_msgs/PoseStamped pose\n\
00896 \n\
00897 # a measure of the confidence level in this detection result\n\
00898 float32 confidence\n\
00899 ================================================================================\n\
00900 MSG: geometry_msgs/PoseStamped\n\
00901 # A Pose with reference coordinate frame and timestamp\n\
00902 Header header\n\
00903 Pose pose\n\
00904 \n\
00905 ================================================================================\n\
00906 MSG: std_msgs/Header\n\
00907 # Standard metadata for higher-level stamped data types.\n\
00908 # This is generally used to communicate timestamped data \n\
00909 # in a particular coordinate frame.\n\
00910 # \n\
00911 # sequence ID: consecutively increasing ID \n\
00912 uint32 seq\n\
00913 #Two-integer timestamp that is expressed as:\n\
00914 # * stamp.secs: seconds (stamp_secs) since epoch\n\
00915 # * stamp.nsecs: nanoseconds since stamp_secs\n\
00916 # time-handling sugar is provided by the client library\n\
00917 time stamp\n\
00918 #Frame this data is associated with\n\
00919 # 0: no frame\n\
00920 # 1: global frame\n\
00921 string frame_id\n\
00922 \n\
00923 ================================================================================\n\
00924 MSG: geometry_msgs/Pose\n\
00925 # A representation of pose in free space, composed of postion and orientation. \n\
00926 Point position\n\
00927 Quaternion orientation\n\
00928 \n\
00929 ================================================================================\n\
00930 MSG: geometry_msgs/Point\n\
00931 # This contains the position of a point in free space\n\
00932 float64 x\n\
00933 float64 y\n\
00934 float64 z\n\
00935 \n\
00936 ================================================================================\n\
00937 MSG: geometry_msgs/Quaternion\n\
00938 # This represents an orientation in free space in quaternion form.\n\
00939 \n\
00940 float64 x\n\
00941 float64 y\n\
00942 float64 z\n\
00943 float64 w\n\
00944 \n\
00945 ================================================================================\n\
00946 MSG: sensor_msgs/PointCloud\n\
00947 # This message holds a collection of 3d points, plus optional additional\n\
00948 # information about each point.\n\
00949 \n\
00950 # Time of sensor data acquisition, coordinate frame ID.\n\
00951 Header header\n\
00952 \n\
00953 # Array of 3d points. Each Point32 should be interpreted as a 3d point\n\
00954 # in the frame given in the header.\n\
00955 geometry_msgs/Point32[] points\n\
00956 \n\
00957 # Each channel should have the same number of elements as points array,\n\
00958 # and the data in each channel should correspond 1:1 with each point.\n\
00959 # Channel names in common practice are listed in ChannelFloat32.msg.\n\
00960 ChannelFloat32[] channels\n\
00961 \n\
00962 ================================================================================\n\
00963 MSG: geometry_msgs/Point32\n\
00964 # This contains the position of a point in free space(with 32 bits of precision).\n\
00965 # It is recommeded to use Point wherever possible instead of Point32. \n\
00966 # \n\
00967 # This recommendation is to promote interoperability. \n\
00968 #\n\
00969 # This message is designed to take up less space when sending\n\
00970 # lots of points at once, as in the case of a PointCloud. \n\
00971 \n\
00972 float32 x\n\
00973 float32 y\n\
00974 float32 z\n\
00975 ================================================================================\n\
00976 MSG: sensor_msgs/ChannelFloat32\n\
00977 # This message is used by the PointCloud message to hold optional data\n\
00978 # associated with each point in the cloud. The length of the values\n\
00979 # array should be the same as the length of the points array in the\n\
00980 # PointCloud, and each value should be associated with the corresponding\n\
00981 # point.\n\
00982 \n\
00983 # Channel names in existing practice include:\n\
00984 # \"u\", \"v\" - row and column (respectively) in the left stereo image.\n\
00985 # This is opposite to usual conventions but remains for\n\
00986 # historical reasons. The newer PointCloud2 message has no\n\
00987 # such problem.\n\
00988 # \"rgb\" - For point clouds produced by color stereo cameras. uint8\n\
00989 # (R,G,B) values packed into the least significant 24 bits,\n\
00990 # in order.\n\
00991 # \"intensity\" - laser or pixel intensity.\n\
00992 # \"distance\"\n\
00993 \n\
00994 # The channel name should give semantics of the channel (e.g.\n\
00995 # \"intensity\" instead of \"value\").\n\
00996 string name\n\
00997 \n\
00998 # The values array should be 1-1 with the elements of the associated\n\
00999 # PointCloud.\n\
01000 float32[] values\n\
01001 \n\
01002 ================================================================================\n\
01003 MSG: object_manipulation_msgs/SceneRegion\n\
01004 # Point cloud\n\
01005 sensor_msgs/PointCloud2 cloud\n\
01006 \n\
01007 # Indices for the region of interest\n\
01008 int32[] mask\n\
01009 \n\
01010 # One of the corresponding 2D images, if applicable\n\
01011 sensor_msgs/Image image\n\
01012 \n\
01013 # The disparity image, if applicable\n\
01014 sensor_msgs/Image disparity_image\n\
01015 \n\
01016 # Camera info for the camera that took the image\n\
01017 sensor_msgs/CameraInfo cam_info\n\
01018 \n\
01019 ================================================================================\n\
01020 MSG: sensor_msgs/PointCloud2\n\
01021 # This message holds a collection of N-dimensional points, which may\n\
01022 # contain additional information such as normals, intensity, etc. The\n\
01023 # point data is stored as a binary blob, its layout described by the\n\
01024 # contents of the \"fields\" array.\n\
01025 \n\
01026 # The point cloud data may be organized 2d (image-like) or 1d\n\
01027 # (unordered). Point clouds organized as 2d images may be produced by\n\
01028 # camera depth sensors such as stereo or time-of-flight.\n\
01029 \n\
01030 # Time of sensor data acquisition, and the coordinate frame ID (for 3d\n\
01031 # points).\n\
01032 Header header\n\
01033 \n\
01034 # 2D structure of the point cloud. If the cloud is unordered, height is\n\
01035 # 1 and width is the length of the point cloud.\n\
01036 uint32 height\n\
01037 uint32 width\n\
01038 \n\
01039 # Describes the channels and their layout in the binary data blob.\n\
01040 PointField[] fields\n\
01041 \n\
01042 bool is_bigendian # Is this data bigendian?\n\
01043 uint32 point_step # Length of a point in bytes\n\
01044 uint32 row_step # Length of a row in bytes\n\
01045 uint8[] data # Actual point data, size is (row_step*height)\n\
01046 \n\
01047 bool is_dense # True if there are no invalid points\n\
01048 \n\
01049 ================================================================================\n\
01050 MSG: sensor_msgs/PointField\n\
01051 # This message holds the description of one point entry in the\n\
01052 # PointCloud2 message format.\n\
01053 uint8 INT8 = 1\n\
01054 uint8 UINT8 = 2\n\
01055 uint8 INT16 = 3\n\
01056 uint8 UINT16 = 4\n\
01057 uint8 INT32 = 5\n\
01058 uint8 UINT32 = 6\n\
01059 uint8 FLOAT32 = 7\n\
01060 uint8 FLOAT64 = 8\n\
01061 \n\
01062 string name # Name of field\n\
01063 uint32 offset # Offset from start of point struct\n\
01064 uint8 datatype # Datatype enumeration, see above\n\
01065 uint32 count # How many elements in the field\n\
01066 \n\
01067 ================================================================================\n\
01068 MSG: sensor_msgs/Image\n\
01069 # This message contains an uncompressed image\n\
01070 # (0, 0) is at top-left corner of image\n\
01071 #\n\
01072 \n\
01073 Header header # Header timestamp should be acquisition time of image\n\
01074 # Header frame_id should be optical frame of camera\n\
01075 # origin of frame should be optical center of cameara\n\
01076 # +x should point to the right in the image\n\
01077 # +y should point down in the image\n\
01078 # +z should point into to plane of the image\n\
01079 # If the frame_id here and the frame_id of the CameraInfo\n\
01080 # message associated with the image conflict\n\
01081 # the behavior is undefined\n\
01082 \n\
01083 uint32 height # image height, that is, number of rows\n\
01084 uint32 width # image width, that is, number of columns\n\
01085 \n\
01086 # The legal values for encoding are in file src/image_encodings.cpp\n\
01087 # If you want to standardize a new string format, join\n\
01088 # ros-users@lists.sourceforge.net and send an email proposing a new encoding.\n\
01089 \n\
01090 string encoding # Encoding of pixels -- channel meaning, ordering, size\n\
01091 # taken from the list of strings in src/image_encodings.cpp\n\
01092 \n\
01093 uint8 is_bigendian # is this data bigendian?\n\
01094 uint32 step # Full row length in bytes\n\
01095 uint8[] data # actual matrix data, size is (step * rows)\n\
01096 \n\
01097 ================================================================================\n\
01098 MSG: sensor_msgs/CameraInfo\n\
01099 # This message defines meta information for a camera. It should be in a\n\
01100 # camera namespace on topic \"camera_info\" and accompanied by up to five\n\
01101 # image topics named:\n\
01102 #\n\
01103 # image_raw - raw data from the camera driver, possibly Bayer encoded\n\
01104 # image - monochrome, distorted\n\
01105 # image_color - color, distorted\n\
01106 # image_rect - monochrome, rectified\n\
01107 # image_rect_color - color, rectified\n\
01108 #\n\
01109 # The image_pipeline contains packages (image_proc, stereo_image_proc)\n\
01110 # for producing the four processed image topics from image_raw and\n\
01111 # camera_info. The meaning of the camera parameters are described in\n\
01112 # detail at http://www.ros.org/wiki/image_pipeline/CameraInfo.\n\
01113 #\n\
01114 # The image_geometry package provides a user-friendly interface to\n\
01115 # common operations using this meta information. If you want to, e.g.,\n\
01116 # project a 3d point into image coordinates, we strongly recommend\n\
01117 # using image_geometry.\n\
01118 #\n\
01119 # If the camera is uncalibrated, the matrices D, K, R, P should be left\n\
01120 # zeroed out. In particular, clients may assume that K[0] == 0.0\n\
01121 # indicates an uncalibrated camera.\n\
01122 \n\
01123 #######################################################################\n\
01124 # Image acquisition info #\n\
01125 #######################################################################\n\
01126 \n\
01127 # Time of image acquisition, camera coordinate frame ID\n\
01128 Header header # Header timestamp should be acquisition time of image\n\
01129 # Header frame_id should be optical frame of camera\n\
01130 # origin of frame should be optical center of camera\n\
01131 # +x should point to the right in the image\n\
01132 # +y should point down in the image\n\
01133 # +z should point into the plane of the image\n\
01134 \n\
01135 \n\
01136 #######################################################################\n\
01137 # Calibration Parameters #\n\
01138 #######################################################################\n\
01139 # These are fixed during camera calibration. Their values will be the #\n\
01140 # same in all messages until the camera is recalibrated. Note that #\n\
01141 # self-calibrating systems may \"recalibrate\" frequently. #\n\
01142 # #\n\
01143 # The internal parameters can be used to warp a raw (distorted) image #\n\
01144 # to: #\n\
01145 # 1. An undistorted image (requires D and K) #\n\
01146 # 2. A rectified image (requires D, K, R) #\n\
01147 # The projection matrix P projects 3D points into the rectified image.#\n\
01148 #######################################################################\n\
01149 \n\
01150 # The image dimensions with which the camera was calibrated. Normally\n\
01151 # this will be the full camera resolution in pixels.\n\
01152 uint32 height\n\
01153 uint32 width\n\
01154 \n\
01155 # The distortion model used. Supported models are listed in\n\
01156 # sensor_msgs/distortion_models.h. For most cameras, \"plumb_bob\" - a\n\
01157 # simple model of radial and tangential distortion - is sufficent.\n\
01158 string distortion_model\n\
01159 \n\
01160 # The distortion parameters, size depending on the distortion model.\n\
01161 # For \"plumb_bob\", the 5 parameters are: (k1, k2, t1, t2, k3).\n\
01162 float64[] D\n\
01163 \n\
01164 # Intrinsic camera matrix for the raw (distorted) images.\n\
01165 # [fx 0 cx]\n\
01166 # K = [ 0 fy cy]\n\
01167 # [ 0 0 1]\n\
01168 # Projects 3D points in the camera coordinate frame to 2D pixel\n\
01169 # coordinates using the focal lengths (fx, fy) and principal point\n\
01170 # (cx, cy).\n\
01171 float64[9] K # 3x3 row-major matrix\n\
01172 \n\
01173 # Rectification matrix (stereo cameras only)\n\
01174 # A rotation matrix aligning the camera coordinate system to the ideal\n\
01175 # stereo image plane so that epipolar lines in both stereo images are\n\
01176 # parallel.\n\
01177 float64[9] R # 3x3 row-major matrix\n\
01178 \n\
01179 # Projection/camera matrix\n\
01180 # [fx' 0 cx' Tx]\n\
01181 # P = [ 0 fy' cy' Ty]\n\
01182 # [ 0 0 1 0]\n\
01183 # By convention, this matrix specifies the intrinsic (camera) matrix\n\
01184 # of the processed (rectified) image. That is, the left 3x3 portion\n\
01185 # is the normal camera intrinsic matrix for the rectified image.\n\
01186 # It projects 3D points in the camera coordinate frame to 2D pixel\n\
01187 # coordinates using the focal lengths (fx', fy') and principal point\n\
01188 # (cx', cy') - these may differ from the values in K.\n\
01189 # For monocular cameras, Tx = Ty = 0. Normally, monocular cameras will\n\
01190 # also have R = the identity and P[1:3,1:3] = K.\n\
01191 # For a stereo pair, the fourth column [Tx Ty 0]' is related to the\n\
01192 # position of the optical center of the second camera in the first\n\
01193 # camera's frame. We assume Tz = 0 so both cameras are in the same\n\
01194 # stereo image plane. The first camera always has Tx = Ty = 0. For\n\
01195 # the right (second) camera of a horizontal stereo pair, Ty = 0 and\n\
01196 # Tx = -fx' * B, where B is the baseline between the cameras.\n\
01197 # Given a 3D point [X Y Z]', the projection (x, y) of the point onto\n\
01198 # the rectified image is given by:\n\
01199 # [u v w]' = P * [X Y Z 1]'\n\
01200 # x = u / w\n\
01201 # y = v / w\n\
01202 # This holds for both images of a stereo pair.\n\
01203 float64[12] P # 3x4 row-major matrix\n\
01204 \n\
01205 \n\
01206 #######################################################################\n\
01207 # Operational Parameters #\n\
01208 #######################################################################\n\
01209 # These define the image region actually captured by the camera #\n\
01210 # driver. Although they affect the geometry of the output image, they #\n\
01211 # may be changed freely without recalibrating the camera. #\n\
01212 #######################################################################\n\
01213 \n\
01214 # Binning refers here to any camera setting which combines rectangular\n\
01215 # neighborhoods of pixels into larger \"super-pixels.\" It reduces the\n\
01216 # resolution of the output image to\n\
01217 # (width / binning_x) x (height / binning_y).\n\
01218 # The default values binning_x = binning_y = 0 is considered the same\n\
01219 # as binning_x = binning_y = 1 (no subsampling).\n\
01220 uint32 binning_x\n\
01221 uint32 binning_y\n\
01222 \n\
01223 # Region of interest (subwindow of full camera resolution), given in\n\
01224 # full resolution (unbinned) image coordinates. A particular ROI\n\
01225 # always denotes the same window of pixels on the camera sensor,\n\
01226 # regardless of binning settings.\n\
01227 # The default setting of roi (all values 0) is considered the same as\n\
01228 # full resolution (roi.width = width, roi.height = height).\n\
01229 RegionOfInterest roi\n\
01230 \n\
01231 ================================================================================\n\
01232 MSG: sensor_msgs/RegionOfInterest\n\
01233 # This message is used to specify a region of interest within an image.\n\
01234 #\n\
01235 # When used to specify the ROI setting of the camera when the image was\n\
01236 # taken, the height and width fields should either match the height and\n\
01237 # width fields for the associated image; or height = width = 0\n\
01238 # indicates that the full resolution image was captured.\n\
01239 \n\
01240 uint32 x_offset # Leftmost pixel of the ROI\n\
01241 # (0 if the ROI includes the left edge of the image)\n\
01242 uint32 y_offset # Topmost pixel of the ROI\n\
01243 # (0 if the ROI includes the top edge of the image)\n\
01244 uint32 height # Height of ROI\n\
01245 uint32 width # Width of ROI\n\
01246 \n\
01247 # True if a distinct rectified ROI should be calculated from the \"raw\"\n\
01248 # ROI in this message. Typically this should be False if the full image\n\
01249 # is captured (ROI not used), and True if a subwindow is captured (ROI\n\
01250 # used).\n\
01251 bool do_rectify\n\
01252 \n\
01253 ================================================================================\n\
01254 MSG: object_manipulation_msgs/Grasp\n\
01255 \n\
01256 # The internal posture of the hand for the pre-grasp\n\
01257 # only positions are used\n\
01258 sensor_msgs/JointState pre_grasp_posture\n\
01259 \n\
01260 # The internal posture of the hand for the grasp\n\
01261 # positions and efforts are used\n\
01262 sensor_msgs/JointState grasp_posture\n\
01263 \n\
01264 # The position of the end-effector for the grasp relative to the object\n\
01265 geometry_msgs/Pose grasp_pose\n\
01266 \n\
01267 # The estimated probability of success for this grasp\n\
01268 float64 success_probability\n\
01269 \n\
01270 # Debug flag to indicate that this grasp would be the best in its cluster\n\
01271 bool cluster_rep\n\
01272 ================================================================================\n\
01273 MSG: sensor_msgs/JointState\n\
01274 # This is a message that holds data to describe the state of a set of torque controlled joints. \n\
01275 #\n\
01276 # The state of each joint (revolute or prismatic) is defined by:\n\
01277 # * the position of the joint (rad or m),\n\
01278 # * the velocity of the joint (rad/s or m/s) and \n\
01279 # * the effort that is applied in the joint (Nm or N).\n\
01280 #\n\
01281 # Each joint is uniquely identified by its name\n\
01282 # The header specifies the time at which the joint states were recorded. All the joint states\n\
01283 # in one message have to be recorded at the same time.\n\
01284 #\n\
01285 # This message consists of a multiple arrays, one for each part of the joint state. \n\
01286 # The goal is to make each of the fields optional. When e.g. your joints have no\n\
01287 # effort associated with them, you can leave the effort array empty. \n\
01288 #\n\
01289 # All arrays in this message should have the same size, or be empty.\n\
01290 # This is the only way to uniquely associate the joint name with the correct\n\
01291 # states.\n\
01292 \n\
01293 \n\
01294 Header header\n\
01295 \n\
01296 string[] name\n\
01297 float64[] position\n\
01298 float64[] velocity\n\
01299 float64[] effort\n\
01300 \n\
01301 ";
01302 }
01303
01304 static const char* value(const ::object_manipulation_msgs::GraspPlanningRequest_<ContainerAllocator> &) { return value(); }
01305 };
01306
01307 }
01308 }
01309
01310
01311 namespace ros
01312 {
01313 namespace message_traits
01314 {
01315 template<class ContainerAllocator>
01316 struct MD5Sum< ::object_manipulation_msgs::GraspPlanningResponse_<ContainerAllocator> > {
01317 static const char* value()
01318 {
01319 return "2d97de1f9f75ff916febf6f82db5b547";
01320 }
01321
01322 static const char* value(const ::object_manipulation_msgs::GraspPlanningResponse_<ContainerAllocator> &) { return value(); }
01323 static const uint64_t static_value1 = 0x2d97de1f9f75ff91ULL;
01324 static const uint64_t static_value2 = 0x6febf6f82db5b547ULL;
01325 };
01326
01327 template<class ContainerAllocator>
01328 struct DataType< ::object_manipulation_msgs::GraspPlanningResponse_<ContainerAllocator> > {
01329 static const char* value()
01330 {
01331 return "object_manipulation_msgs/GraspPlanningResponse";
01332 }
01333
01334 static const char* value(const ::object_manipulation_msgs::GraspPlanningResponse_<ContainerAllocator> &) { return value(); }
01335 };
01336
01337 template<class ContainerAllocator>
01338 struct Definition< ::object_manipulation_msgs::GraspPlanningResponse_<ContainerAllocator> > {
01339 static const char* value()
01340 {
01341 return "\n\
01342 \n\
01343 Grasp[] grasps\n\
01344 \n\
01345 \n\
01346 GraspPlanningErrorCode error_code\n\
01347 \n\
01348 \n\
01349 ================================================================================\n\
01350 MSG: object_manipulation_msgs/Grasp\n\
01351 \n\
01352 # The internal posture of the hand for the pre-grasp\n\
01353 # only positions are used\n\
01354 sensor_msgs/JointState pre_grasp_posture\n\
01355 \n\
01356 # The internal posture of the hand for the grasp\n\
01357 # positions and efforts are used\n\
01358 sensor_msgs/JointState grasp_posture\n\
01359 \n\
01360 # The position of the end-effector for the grasp relative to the object\n\
01361 geometry_msgs/Pose grasp_pose\n\
01362 \n\
01363 # The estimated probability of success for this grasp\n\
01364 float64 success_probability\n\
01365 \n\
01366 # Debug flag to indicate that this grasp would be the best in its cluster\n\
01367 bool cluster_rep\n\
01368 ================================================================================\n\
01369 MSG: sensor_msgs/JointState\n\
01370 # This is a message that holds data to describe the state of a set of torque controlled joints. \n\
01371 #\n\
01372 # The state of each joint (revolute or prismatic) is defined by:\n\
01373 # * the position of the joint (rad or m),\n\
01374 # * the velocity of the joint (rad/s or m/s) and \n\
01375 # * the effort that is applied in the joint (Nm or N).\n\
01376 #\n\
01377 # Each joint is uniquely identified by its name\n\
01378 # The header specifies the time at which the joint states were recorded. All the joint states\n\
01379 # in one message have to be recorded at the same time.\n\
01380 #\n\
01381 # This message consists of a multiple arrays, one for each part of the joint state. \n\
01382 # The goal is to make each of the fields optional. When e.g. your joints have no\n\
01383 # effort associated with them, you can leave the effort array empty. \n\
01384 #\n\
01385 # All arrays in this message should have the same size, or be empty.\n\
01386 # This is the only way to uniquely associate the joint name with the correct\n\
01387 # states.\n\
01388 \n\
01389 \n\
01390 Header header\n\
01391 \n\
01392 string[] name\n\
01393 float64[] position\n\
01394 float64[] velocity\n\
01395 float64[] effort\n\
01396 \n\
01397 ================================================================================\n\
01398 MSG: std_msgs/Header\n\
01399 # Standard metadata for higher-level stamped data types.\n\
01400 # This is generally used to communicate timestamped data \n\
01401 # in a particular coordinate frame.\n\
01402 # \n\
01403 # sequence ID: consecutively increasing ID \n\
01404 uint32 seq\n\
01405 #Two-integer timestamp that is expressed as:\n\
01406 # * stamp.secs: seconds (stamp_secs) since epoch\n\
01407 # * stamp.nsecs: nanoseconds since stamp_secs\n\
01408 # time-handling sugar is provided by the client library\n\
01409 time stamp\n\
01410 #Frame this data is associated with\n\
01411 # 0: no frame\n\
01412 # 1: global frame\n\
01413 string frame_id\n\
01414 \n\
01415 ================================================================================\n\
01416 MSG: geometry_msgs/Pose\n\
01417 # A representation of pose in free space, composed of postion and orientation. \n\
01418 Point position\n\
01419 Quaternion orientation\n\
01420 \n\
01421 ================================================================================\n\
01422 MSG: geometry_msgs/Point\n\
01423 # This contains the position of a point in free space\n\
01424 float64 x\n\
01425 float64 y\n\
01426 float64 z\n\
01427 \n\
01428 ================================================================================\n\
01429 MSG: geometry_msgs/Quaternion\n\
01430 # This represents an orientation in free space in quaternion form.\n\
01431 \n\
01432 float64 x\n\
01433 float64 y\n\
01434 float64 z\n\
01435 float64 w\n\
01436 \n\
01437 ================================================================================\n\
01438 MSG: object_manipulation_msgs/GraspPlanningErrorCode\n\
01439 # Error codes for grasp and place planning\n\
01440 \n\
01441 # plan completed as expected\n\
01442 int32 SUCCESS = 0\n\
01443 \n\
01444 # tf error encountered while transforming\n\
01445 int32 TF_ERROR = 1 \n\
01446 \n\
01447 # some other error\n\
01448 int32 OTHER_ERROR = 2\n\
01449 \n\
01450 # the actual value of this error code\n\
01451 int32 value\n\
01452 ";
01453 }
01454
01455 static const char* value(const ::object_manipulation_msgs::GraspPlanningResponse_<ContainerAllocator> &) { return value(); }
01456 };
01457
01458 }
01459 }
01460
01461 namespace ros
01462 {
01463 namespace serialization
01464 {
01465
01466 template<class ContainerAllocator> struct Serializer< ::object_manipulation_msgs::GraspPlanningRequest_<ContainerAllocator> >
01467 {
01468 template<typename Stream, typename T> inline static void allInOne(Stream& stream, T m)
01469 {
01470 stream.next(m.arm_name);
01471 stream.next(m.target);
01472 stream.next(m.collision_object_name);
01473 stream.next(m.collision_support_surface_name);
01474 stream.next(m.grasps_to_evaluate);
01475 }
01476
01477 ROS_DECLARE_ALLINONE_SERIALIZER;
01478 };
01479 }
01480 }
01481
01482
01483 namespace ros
01484 {
01485 namespace serialization
01486 {
01487
01488 template<class ContainerAllocator> struct Serializer< ::object_manipulation_msgs::GraspPlanningResponse_<ContainerAllocator> >
01489 {
01490 template<typename Stream, typename T> inline static void allInOne(Stream& stream, T m)
01491 {
01492 stream.next(m.grasps);
01493 stream.next(m.error_code);
01494 }
01495
01496 ROS_DECLARE_ALLINONE_SERIALIZER;
01497 };
01498 }
01499 }
01500
01501 namespace ros
01502 {
01503 namespace service_traits
01504 {
01505 template<>
01506 struct MD5Sum<object_manipulation_msgs::GraspPlanning> {
01507 static const char* value()
01508 {
01509 return "f5892f83455760950390677f50327dd2";
01510 }
01511
01512 static const char* value(const object_manipulation_msgs::GraspPlanning&) { return value(); }
01513 };
01514
01515 template<>
01516 struct DataType<object_manipulation_msgs::GraspPlanning> {
01517 static const char* value()
01518 {
01519 return "object_manipulation_msgs/GraspPlanning";
01520 }
01521
01522 static const char* value(const object_manipulation_msgs::GraspPlanning&) { return value(); }
01523 };
01524
01525 template<class ContainerAllocator>
01526 struct MD5Sum<object_manipulation_msgs::GraspPlanningRequest_<ContainerAllocator> > {
01527 static const char* value()
01528 {
01529 return "f5892f83455760950390677f50327dd2";
01530 }
01531
01532 static const char* value(const object_manipulation_msgs::GraspPlanningRequest_<ContainerAllocator> &) { return value(); }
01533 };
01534
01535 template<class ContainerAllocator>
01536 struct DataType<object_manipulation_msgs::GraspPlanningRequest_<ContainerAllocator> > {
01537 static const char* value()
01538 {
01539 return "object_manipulation_msgs/GraspPlanning";
01540 }
01541
01542 static const char* value(const object_manipulation_msgs::GraspPlanningRequest_<ContainerAllocator> &) { return value(); }
01543 };
01544
01545 template<class ContainerAllocator>
01546 struct MD5Sum<object_manipulation_msgs::GraspPlanningResponse_<ContainerAllocator> > {
01547 static const char* value()
01548 {
01549 return "f5892f83455760950390677f50327dd2";
01550 }
01551
01552 static const char* value(const object_manipulation_msgs::GraspPlanningResponse_<ContainerAllocator> &) { return value(); }
01553 };
01554
01555 template<class ContainerAllocator>
01556 struct DataType<object_manipulation_msgs::GraspPlanningResponse_<ContainerAllocator> > {
01557 static const char* value()
01558 {
01559 return "object_manipulation_msgs/GraspPlanning";
01560 }
01561
01562 static const char* value(const object_manipulation_msgs::GraspPlanningResponse_<ContainerAllocator> &) { return value(); }
01563 };
01564
01565 }
01566 }
01567
01568 #endif // OBJECT_MANIPULATION_MSGS_SERVICE_GRASPPLANNING_H
01569