BDCSVD.h
Go to the documentation of this file.
1 // This file is part of Eigen, a lightweight C++ template library
2 // for linear algebra.
3 //
4 // We used the "A Divide-And-Conquer Algorithm for the Bidiagonal SVD"
5 // research report written by Ming Gu and Stanley C.Eisenstat
6 // The code variable names correspond to the names they used in their
7 // report
8 //
9 // Copyright (C) 2013 Gauthier Brun <brun.gauthier@gmail.com>
10 // Copyright (C) 2013 Nicolas Carre <nicolas.carre@ensimag.fr>
11 // Copyright (C) 2013 Jean Ceccato <jean.ceccato@ensimag.fr>
12 // Copyright (C) 2013 Pierre Zoppitelli <pierre.zoppitelli@ensimag.fr>
13 // Copyright (C) 2013 Jitse Niesen <jitse@maths.leeds.ac.uk>
14 // Copyright (C) 2014-2017 Gael Guennebaud <gael.guennebaud@inria.fr>
15 //
16 // Source Code Form is subject to the terms of the Mozilla
17 // Public License v. 2.0. If a copy of the MPL was not distributed
18 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
19 
20 #ifndef EIGEN_BDCSVD_H
21 #define EIGEN_BDCSVD_H
22 // #define EIGEN_BDCSVD_DEBUG_VERBOSE
23 // #define EIGEN_BDCSVD_SANITY_CHECKS
24 
25 #ifdef EIGEN_BDCSVD_SANITY_CHECKS
26 #undef eigen_internal_assert
27 #define eigen_internal_assert(X) assert(X);
28 #endif
29 
30 namespace Eigen {
31 
32 #ifdef EIGEN_BDCSVD_DEBUG_VERBOSE
33 IOFormat bdcsvdfmt(8, 0, ", ", "\n", " [", "]");
34 #endif
35 
36 template<typename _MatrixType> class BDCSVD;
37 
38 namespace internal {
39 
40 template<typename _MatrixType>
41 struct traits<BDCSVD<_MatrixType> >
42  : traits<_MatrixType>
43 {
44  typedef _MatrixType MatrixType;
45 };
46 
47 } // end namespace internal
48 
49 
72 template<typename _MatrixType>
73 class BDCSVD : public SVDBase<BDCSVD<_MatrixType> >
74 {
76 
77 public:
78  using Base::rows;
79  using Base::cols;
80  using Base::computeU;
81  using Base::computeV;
82 
83  typedef _MatrixType MatrixType;
84  typedef typename MatrixType::Scalar Scalar;
87  enum {
88  RowsAtCompileTime = MatrixType::RowsAtCompileTime,
89  ColsAtCompileTime = MatrixType::ColsAtCompileTime,
91  MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime,
92  MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime,
94  MatrixOptions = MatrixType::Options
95  };
96 
97  typedef typename Base::MatrixUType MatrixUType;
98  typedef typename Base::MatrixVType MatrixVType;
100 
108 
114  BDCSVD() : m_algoswap(16), m_isTranspose(false), m_compU(false), m_compV(false), m_numIters(0)
115  {}
116 
117 
124  BDCSVD(Index rows, Index cols, unsigned int computationOptions = 0)
125  : m_algoswap(16), m_numIters(0)
126  {
127  allocate(rows, cols, computationOptions);
128  }
129 
140  BDCSVD(const MatrixType& matrix, unsigned int computationOptions = 0)
141  : m_algoswap(16), m_numIters(0)
142  {
143  compute(matrix, computationOptions);
144  }
145 
147  {
148  }
149 
160  BDCSVD& compute(const MatrixType& matrix, unsigned int computationOptions);
161 
169  {
170  return compute(matrix, this->m_computationOptions);
171  }
172 
173  void setSwitchSize(int s)
174  {
175  eigen_assert(s>3 && "BDCSVD the size of the algo switch has to be greater than 3");
176  m_algoswap = s;
177  }
178 
179 private:
180  void allocate(Index rows, Index cols, unsigned int computationOptions);
181  void divide(Index firstCol, Index lastCol, Index firstRowW, Index firstColW, Index shift);
182  void computeSVDofM(Index firstCol, Index n, MatrixXr& U, VectorType& singVals, MatrixXr& V);
183  void computeSingVals(const ArrayRef& col0, const ArrayRef& diag, const IndicesRef& perm, VectorType& singVals, ArrayRef shifts, ArrayRef mus);
184  void perturbCol0(const ArrayRef& col0, const ArrayRef& diag, const IndicesRef& perm, const VectorType& singVals, const ArrayRef& shifts, const ArrayRef& mus, ArrayRef zhat);
185  void computeSingVecs(const ArrayRef& zhat, const ArrayRef& diag, const IndicesRef& perm, const VectorType& singVals, const ArrayRef& shifts, const ArrayRef& mus, MatrixXr& U, MatrixXr& V);
186  void deflation43(Index firstCol, Index shift, Index i, Index size);
187  void deflation44(Index firstColu , Index firstColm, Index firstRowW, Index firstColW, Index i, Index j, Index size);
188  void deflation(Index firstCol, Index lastCol, Index k, Index firstRowW, Index firstColW, Index shift);
189  template<typename HouseholderU, typename HouseholderV, typename NaiveU, typename NaiveV>
190  void copyUV(const HouseholderU &householderU, const HouseholderV &householderV, const NaiveU &naiveU, const NaiveV &naivev);
192  static RealScalar secularEq(RealScalar x, const ArrayRef& col0, const ArrayRef& diag, const IndicesRef &perm, const ArrayRef& diagShifted, RealScalar shift);
193 
194 protected:
202 
204  using Base::m_diagSize;
205  using Base::m_computeFullU;
206  using Base::m_computeFullV;
207  using Base::m_computeThinU;
208  using Base::m_computeThinV;
209  using Base::m_matrixU;
210  using Base::m_matrixV;
211  using Base::m_info;
212  using Base::m_isInitialized;
214 
215 public:
217 }; //end class BDCSVD
218 
219 
220 // Method to allocate and initialize matrix and attributes
221 template<typename MatrixType>
222 void BDCSVD<MatrixType>::allocate(Eigen::Index rows, Eigen::Index cols, unsigned int computationOptions)
223 {
224  m_isTranspose = (cols > rows);
225 
226  if (Base::allocate(rows, cols, computationOptions))
227  return;
228 
229  m_computed = MatrixXr::Zero(m_diagSize + 1, m_diagSize );
230  m_compU = computeV();
231  m_compV = computeU();
232  if (m_isTranspose)
233  std::swap(m_compU, m_compV);
234 
235  if (m_compU) m_naiveU = MatrixXr::Zero(m_diagSize + 1, m_diagSize + 1 );
236  else m_naiveU = MatrixXr::Zero(2, m_diagSize + 1 );
237 
238  if (m_compV) m_naiveV = MatrixXr::Zero(m_diagSize, m_diagSize);
239 
240  m_workspace.resize((m_diagSize+1)*(m_diagSize+1)*3);
241  m_workspaceI.resize(3*m_diagSize);
242 }// end allocate
243 
244 template<typename MatrixType>
245 BDCSVD<MatrixType>& BDCSVD<MatrixType>::compute(const MatrixType& matrix, unsigned int computationOptions)
246 {
247 #ifdef EIGEN_BDCSVD_DEBUG_VERBOSE
248  std::cout << "\n\n\n======================================================================================================================\n\n\n";
249 #endif
250  allocate(matrix.rows(), matrix.cols(), computationOptions);
251  using std::abs;
252 
253  const RealScalar considerZero = (std::numeric_limits<RealScalar>::min)();
254 
255  //**** step -1 - If the problem is too small, directly falls back to JacobiSVD and return
256  if(matrix.cols() < m_algoswap)
257  {
258  // FIXME this line involves temporaries
259  JacobiSVD<MatrixType> jsvd(matrix,computationOptions);
260  m_isInitialized = true;
261  m_info = jsvd.info();
262  if (m_info == Success || m_info == NoConvergence) {
263  if(computeU()) m_matrixU = jsvd.matrixU();
264  if(computeV()) m_matrixV = jsvd.matrixV();
265  m_singularValues = jsvd.singularValues();
266  m_nonzeroSingularValues = jsvd.nonzeroSingularValues();
267  }
268  return *this;
269  }
270 
271  //**** step 0 - Copy the input matrix and apply scaling to reduce over/under-flows
272  RealScalar scale = matrix.cwiseAbs().template maxCoeff<PropagateNaN>();
273  if (!(numext::isfinite)(scale)) {
274  m_isInitialized = true;
275  m_info = InvalidInput;
276  return *this;
277  }
278 
279  if(scale==Literal(0)) scale = Literal(1);
280  MatrixX copy;
281  if (m_isTranspose) copy = matrix.adjoint()/scale;
282  else copy = matrix/scale;
283 
284  //**** step 1 - Bidiagonalization
285  // FIXME this line involves temporaries
287 
288  //**** step 2 - Divide & Conquer
289  m_naiveU.setZero();
290  m_naiveV.setZero();
291  // FIXME this line involves a temporary matrix
292  m_computed.topRows(m_diagSize) = bid.bidiagonal().toDenseMatrix().transpose();
293  m_computed.template bottomRows<1>().setZero();
294  divide(0, m_diagSize - 1, 0, 0, 0);
295  if (m_info != Success && m_info != NoConvergence) {
296  m_isInitialized = true;
297  return *this;
298  }
299 
300  //**** step 3 - Copy singular values and vectors
301  for (int i=0; i<m_diagSize; i++)
302  {
303  RealScalar a = abs(m_computed.coeff(i, i));
304  m_singularValues.coeffRef(i) = a * scale;
305  if (a<considerZero)
306  {
307  m_nonzeroSingularValues = i;
308  m_singularValues.tail(m_diagSize - i - 1).setZero();
309  break;
310  }
311  else if (i == m_diagSize - 1)
312  {
313  m_nonzeroSingularValues = i + 1;
314  break;
315  }
316  }
317 
318 #ifdef EIGEN_BDCSVD_DEBUG_VERBOSE
319 // std::cout << "m_naiveU\n" << m_naiveU << "\n\n";
320 // std::cout << "m_naiveV\n" << m_naiveV << "\n\n";
321 #endif
322  if(m_isTranspose) copyUV(bid.householderV(), bid.householderU(), m_naiveV, m_naiveU);
323  else copyUV(bid.householderU(), bid.householderV(), m_naiveU, m_naiveV);
324 
325  m_isInitialized = true;
326  return *this;
327 }// end compute
328 
329 
330 template<typename MatrixType>
331 template<typename HouseholderU, typename HouseholderV, typename NaiveU, typename NaiveV>
332 void BDCSVD<MatrixType>::copyUV(const HouseholderU &householderU, const HouseholderV &householderV, const NaiveU &naiveU, const NaiveV &naiveV)
333 {
334  // Note exchange of U and V: m_matrixU is set from m_naiveV and vice versa
335  if (computeU())
336  {
337  Index Ucols = m_computeThinU ? m_diagSize : householderU.cols();
338  m_matrixU = MatrixX::Identity(householderU.cols(), Ucols);
339  m_matrixU.topLeftCorner(m_diagSize, m_diagSize) = naiveV.template cast<Scalar>().topLeftCorner(m_diagSize, m_diagSize);
340  householderU.applyThisOnTheLeft(m_matrixU); // FIXME this line involves a temporary buffer
341  }
342  if (computeV())
343  {
344  Index Vcols = m_computeThinV ? m_diagSize : householderV.cols();
345  m_matrixV = MatrixX::Identity(householderV.cols(), Vcols);
346  m_matrixV.topLeftCorner(m_diagSize, m_diagSize) = naiveU.template cast<Scalar>().topLeftCorner(m_diagSize, m_diagSize);
347  householderV.applyThisOnTheLeft(m_matrixV); // FIXME this line involves a temporary buffer
348  }
349 }
350 
359 template<typename MatrixType>
361 {
362  Index n = A.rows();
363  if(n>100)
364  {
365  // If the matrices are large enough, let's exploit the sparse structure of A by
366  // splitting it in half (wrt n1), and packing the non-zero columns.
367  Index n2 = n - n1;
368  Map<MatrixXr> A1(m_workspace.data() , n1, n);
369  Map<MatrixXr> A2(m_workspace.data()+ n1*n, n2, n);
370  Map<MatrixXr> B1(m_workspace.data()+ n*n, n, n);
371  Map<MatrixXr> B2(m_workspace.data()+2*n*n, n, n);
372  Index k1=0, k2=0;
373  for(Index j=0; j<n; ++j)
374  {
375  if( (A.col(j).head(n1).array()!=Literal(0)).any() )
376  {
377  A1.col(k1) = A.col(j).head(n1);
378  B1.row(k1) = B.row(j);
379  ++k1;
380  }
381  if( (A.col(j).tail(n2).array()!=Literal(0)).any() )
382  {
383  A2.col(k2) = A.col(j).tail(n2);
384  B2.row(k2) = B.row(j);
385  ++k2;
386  }
387  }
388 
389  A.topRows(n1).noalias() = A1.leftCols(k1) * B1.topRows(k1);
390  A.bottomRows(n2).noalias() = A2.leftCols(k2) * B2.topRows(k2);
391  }
392  else
393  {
394  Map<MatrixXr,Aligned> tmp(m_workspace.data(),n,n);
395  tmp.noalias() = A*B;
396  A = tmp;
397  }
398 }
399 
400 // The divide algorithm is done "in place", we are always working on subsets of the same matrix. The divide methods takes as argument the
401 // place of the submatrix we are currently working on.
402 
403 //@param firstCol : The Index of the first column of the submatrix of m_computed and for m_naiveU;
404 //@param lastCol : The Index of the last column of the submatrix of m_computed and for m_naiveU;
405 // lastCol + 1 - firstCol is the size of the submatrix.
406 //@param firstRowW : The Index of the first row of the matrix W that we are to change. (see the reference paper section 1 for more information on W)
407 //@param firstRowW : Same as firstRowW with the column.
408 //@param shift : Each time one takes the left submatrix, one must add 1 to the shift. Why? Because! We actually want the last column of the U submatrix
409 // to become the first column (*coeff) and to shift all the other columns to the right. There are more details on the reference paper.
410 template<typename MatrixType>
411 void BDCSVD<MatrixType>::divide(Eigen::Index firstCol, Eigen::Index lastCol, Eigen::Index firstRowW, Eigen::Index firstColW, Eigen::Index shift)
412 {
413  // requires rows = cols + 1;
414  using std::pow;
415  using std::sqrt;
416  using std::abs;
417  const Index n = lastCol - firstCol + 1;
418  const Index k = n/2;
419  const RealScalar considerZero = (std::numeric_limits<RealScalar>::min)();
420  RealScalar alphaK;
421  RealScalar betaK;
422  RealScalar r0;
423  RealScalar lambda, phi, c0, s0;
424  VectorType l, f;
425  // We use the other algorithm which is more efficient for small
426  // matrices.
427  if (n < m_algoswap)
428  {
429  // FIXME this line involves temporaries
430  JacobiSVD<MatrixXr> b(m_computed.block(firstCol, firstCol, n + 1, n), ComputeFullU | (m_compV ? ComputeFullV : 0));
431  m_info = b.info();
432  if (m_info != Success && m_info != NoConvergence) return;
433  if (m_compU)
434  m_naiveU.block(firstCol, firstCol, n + 1, n + 1).real() = b.matrixU();
435  else
436  {
437  m_naiveU.row(0).segment(firstCol, n + 1).real() = b.matrixU().row(0);
438  m_naiveU.row(1).segment(firstCol, n + 1).real() = b.matrixU().row(n);
439  }
440  if (m_compV) m_naiveV.block(firstRowW, firstColW, n, n).real() = b.matrixV();
441  m_computed.block(firstCol + shift, firstCol + shift, n + 1, n).setZero();
442  m_computed.diagonal().segment(firstCol + shift, n) = b.singularValues().head(n);
443  return;
444  }
445  // We use the divide and conquer algorithm
446  alphaK = m_computed(firstCol + k, firstCol + k);
447  betaK = m_computed(firstCol + k + 1, firstCol + k);
448  // The divide must be done in that order in order to have good results. Divide change the data inside the submatrices
449  // and the divide of the right submatrice reads one column of the left submatrice. That's why we need to treat the
450  // right submatrix before the left one.
451  divide(k + 1 + firstCol, lastCol, k + 1 + firstRowW, k + 1 + firstColW, shift);
452  if (m_info != Success && m_info != NoConvergence) return;
453  divide(firstCol, k - 1 + firstCol, firstRowW, firstColW + 1, shift + 1);
454  if (m_info != Success && m_info != NoConvergence) return;
455 
456  if (m_compU)
457  {
458  lambda = m_naiveU(firstCol + k, firstCol + k);
459  phi = m_naiveU(firstCol + k + 1, lastCol + 1);
460  }
461  else
462  {
463  lambda = m_naiveU(1, firstCol + k);
464  phi = m_naiveU(0, lastCol + 1);
465  }
466  r0 = sqrt((abs(alphaK * lambda) * abs(alphaK * lambda)) + abs(betaK * phi) * abs(betaK * phi));
467  if (m_compU)
468  {
469  l = m_naiveU.row(firstCol + k).segment(firstCol, k);
470  f = m_naiveU.row(firstCol + k + 1).segment(firstCol + k + 1, n - k - 1);
471  }
472  else
473  {
474  l = m_naiveU.row(1).segment(firstCol, k);
475  f = m_naiveU.row(0).segment(firstCol + k + 1, n - k - 1);
476  }
477  if (m_compV) m_naiveV(firstRowW+k, firstColW) = Literal(1);
478  if (r0<considerZero)
479  {
480  c0 = Literal(1);
481  s0 = Literal(0);
482  }
483  else
484  {
485  c0 = alphaK * lambda / r0;
486  s0 = betaK * phi / r0;
487  }
488 
489 #ifdef EIGEN_BDCSVD_SANITY_CHECKS
490  assert(m_naiveU.allFinite());
491  assert(m_naiveV.allFinite());
492  assert(m_computed.allFinite());
493 #endif
494 
495  if (m_compU)
496  {
497  MatrixXr q1 (m_naiveU.col(firstCol + k).segment(firstCol, k + 1));
498  // we shiftW Q1 to the right
499  for (Index i = firstCol + k - 1; i >= firstCol; i--)
500  m_naiveU.col(i + 1).segment(firstCol, k + 1) = m_naiveU.col(i).segment(firstCol, k + 1);
501  // we shift q1 at the left with a factor c0
502  m_naiveU.col(firstCol).segment( firstCol, k + 1) = (q1 * c0);
503  // last column = q1 * - s0
504  m_naiveU.col(lastCol + 1).segment(firstCol, k + 1) = (q1 * ( - s0));
505  // first column = q2 * s0
506  m_naiveU.col(firstCol).segment(firstCol + k + 1, n - k) = m_naiveU.col(lastCol + 1).segment(firstCol + k + 1, n - k) * s0;
507  // q2 *= c0
508  m_naiveU.col(lastCol + 1).segment(firstCol + k + 1, n - k) *= c0;
509  }
510  else
511  {
512  RealScalar q1 = m_naiveU(0, firstCol + k);
513  // we shift Q1 to the right
514  for (Index i = firstCol + k - 1; i >= firstCol; i--)
515  m_naiveU(0, i + 1) = m_naiveU(0, i);
516  // we shift q1 at the left with a factor c0
517  m_naiveU(0, firstCol) = (q1 * c0);
518  // last column = q1 * - s0
519  m_naiveU(0, lastCol + 1) = (q1 * ( - s0));
520  // first column = q2 * s0
521  m_naiveU(1, firstCol) = m_naiveU(1, lastCol + 1) *s0;
522  // q2 *= c0
523  m_naiveU(1, lastCol + 1) *= c0;
524  m_naiveU.row(1).segment(firstCol + 1, k).setZero();
525  m_naiveU.row(0).segment(firstCol + k + 1, n - k - 1).setZero();
526  }
527 
528 #ifdef EIGEN_BDCSVD_SANITY_CHECKS
529  assert(m_naiveU.allFinite());
530  assert(m_naiveV.allFinite());
531  assert(m_computed.allFinite());
532 #endif
533 
534  m_computed(firstCol + shift, firstCol + shift) = r0;
535  m_computed.col(firstCol + shift).segment(firstCol + shift + 1, k) = alphaK * l.transpose().real();
536  m_computed.col(firstCol + shift).segment(firstCol + shift + k + 1, n - k - 1) = betaK * f.transpose().real();
537 
538 #ifdef EIGEN_BDCSVD_DEBUG_VERBOSE
539  ArrayXr tmp1 = (m_computed.block(firstCol+shift, firstCol+shift, n, n)).jacobiSvd().singularValues();
540 #endif
541  // Second part: try to deflate singular values in combined matrix
542  deflation(firstCol, lastCol, k, firstRowW, firstColW, shift);
543 #ifdef EIGEN_BDCSVD_DEBUG_VERBOSE
544  ArrayXr tmp2 = (m_computed.block(firstCol+shift, firstCol+shift, n, n)).jacobiSvd().singularValues();
545  std::cout << "\n\nj1 = " << tmp1.transpose().format(bdcsvdfmt) << "\n";
546  std::cout << "j2 = " << tmp2.transpose().format(bdcsvdfmt) << "\n\n";
547  std::cout << "err: " << ((tmp1-tmp2).abs()>1e-12*tmp2.abs()).transpose() << "\n";
548  static int count = 0;
549  std::cout << "# " << ++count << "\n\n";
550  assert((tmp1-tmp2).matrix().norm() < 1e-14*tmp2.matrix().norm());
551 // assert(count<681);
552 // assert(((tmp1-tmp2).abs()<1e-13*tmp2.abs()).all());
553 #endif
554 
555  // Third part: compute SVD of combined matrix
556  MatrixXr UofSVD, VofSVD;
557  VectorType singVals;
558  computeSVDofM(firstCol + shift, n, UofSVD, singVals, VofSVD);
559 
560 #ifdef EIGEN_BDCSVD_SANITY_CHECKS
561  assert(UofSVD.allFinite());
562  assert(VofSVD.allFinite());
563 #endif
564 
565  if (m_compU)
566  structured_update(m_naiveU.block(firstCol, firstCol, n + 1, n + 1), UofSVD, (n+2)/2);
567  else
568  {
569  Map<Matrix<RealScalar,2,Dynamic>,Aligned> tmp(m_workspace.data(),2,n+1);
570  tmp.noalias() = m_naiveU.middleCols(firstCol, n+1) * UofSVD;
571  m_naiveU.middleCols(firstCol, n + 1) = tmp;
572  }
573 
574  if (m_compV) structured_update(m_naiveV.block(firstRowW, firstColW, n, n), VofSVD, (n+1)/2);
575 
576 #ifdef EIGEN_BDCSVD_SANITY_CHECKS
577  assert(m_naiveU.allFinite());
578  assert(m_naiveV.allFinite());
579  assert(m_computed.allFinite());
580 #endif
581 
582  m_computed.block(firstCol + shift, firstCol + shift, n, n).setZero();
583  m_computed.block(firstCol + shift, firstCol + shift, n, n).diagonal() = singVals;
584 }// end divide
585 
586 // Compute SVD of m_computed.block(firstCol, firstCol, n + 1, n); this block only has non-zeros in
587 // the first column and on the diagonal and has undergone deflation, so diagonal is in increasing
588 // order except for possibly the (0,0) entry. The computed SVD is stored U, singVals and V, except
589 // that if m_compV is false, then V is not computed. Singular values are sorted in decreasing order.
590 //
591 // TODO Opportunities for optimization: better root finding algo, better stopping criterion, better
592 // handling of round-off errors, be consistent in ordering
593 // For instance, to solve the secular equation using FMM, see http://www.stat.uchicago.edu/~lekheng/courses/302/classics/greengard-rokhlin.pdf
594 template <typename MatrixType>
596 {
597  const RealScalar considerZero = (std::numeric_limits<RealScalar>::min)();
598  using std::abs;
599  ArrayRef col0 = m_computed.col(firstCol).segment(firstCol, n);
600  m_workspace.head(n) = m_computed.block(firstCol, firstCol, n, n).diagonal();
601  ArrayRef diag = m_workspace.head(n);
602  diag(0) = Literal(0);
603 
604  // Allocate space for singular values and vectors
605  singVals.resize(n);
606  U.resize(n+1, n+1);
607  if (m_compV) V.resize(n, n);
608 
609 #ifdef EIGEN_BDCSVD_DEBUG_VERBOSE
610  if (col0.hasNaN() || diag.hasNaN())
611  std::cout << "\n\nHAS NAN\n\n";
612 #endif
613 
614  // Many singular values might have been deflated, the zero ones have been moved to the end,
615  // but others are interleaved and we must ignore them at this stage.
616  // To this end, let's compute a permutation skipping them:
617  Index actual_n = n;
618  while(actual_n>1 && diag(actual_n-1)==Literal(0)) {--actual_n; eigen_internal_assert(col0(actual_n)==Literal(0)); }
619  Index m = 0; // size of the deflated problem
620  for(Index k=0;k<actual_n;++k)
621  if(abs(col0(k))>considerZero)
622  m_workspaceI(m++) = k;
623  Map<ArrayXi> perm(m_workspaceI.data(),m);
624 
625  Map<ArrayXr> shifts(m_workspace.data()+1*n, n);
626  Map<ArrayXr> mus(m_workspace.data()+2*n, n);
627  Map<ArrayXr> zhat(m_workspace.data()+3*n, n);
628 
629 #ifdef EIGEN_BDCSVD_DEBUG_VERBOSE
630  std::cout << "computeSVDofM using:\n";
631  std::cout << " z: " << col0.transpose() << "\n";
632  std::cout << " d: " << diag.transpose() << "\n";
633 #endif
634 
635  // Compute singVals, shifts, and mus
636  computeSingVals(col0, diag, perm, singVals, shifts, mus);
637 
638 #ifdef EIGEN_BDCSVD_DEBUG_VERBOSE
639  std::cout << " j: " << (m_computed.block(firstCol, firstCol, n, n)).jacobiSvd().singularValues().transpose().reverse() << "\n\n";
640  std::cout << " sing-val: " << singVals.transpose() << "\n";
641  std::cout << " mu: " << mus.transpose() << "\n";
642  std::cout << " shift: " << shifts.transpose() << "\n";
643 
644  {
645  std::cout << "\n\n mus: " << mus.head(actual_n).transpose() << "\n\n";
646  std::cout << " check1 (expect0) : " << ((singVals.array()-(shifts+mus)) / singVals.array()).head(actual_n).transpose() << "\n\n";
647  assert((((singVals.array()-(shifts+mus)) / singVals.array()).head(actual_n) >= 0).all());
648  std::cout << " check2 (>0) : " << ((singVals.array()-diag) / singVals.array()).head(actual_n).transpose() << "\n\n";
649  assert((((singVals.array()-diag) / singVals.array()).head(actual_n) >= 0).all());
650  }
651 #endif
652 
653 #ifdef EIGEN_BDCSVD_SANITY_CHECKS
654  assert(singVals.allFinite());
655  assert(mus.allFinite());
656  assert(shifts.allFinite());
657 #endif
658 
659  // Compute zhat
660  perturbCol0(col0, diag, perm, singVals, shifts, mus, zhat);
661 #ifdef EIGEN_BDCSVD_DEBUG_VERBOSE
662  std::cout << " zhat: " << zhat.transpose() << "\n";
663 #endif
664 
665 #ifdef EIGEN_BDCSVD_SANITY_CHECKS
666  assert(zhat.allFinite());
667 #endif
668 
669  computeSingVecs(zhat, diag, perm, singVals, shifts, mus, U, V);
670 
671 #ifdef EIGEN_BDCSVD_DEBUG_VERBOSE
672  std::cout << "U^T U: " << (U.transpose() * U - MatrixXr(MatrixXr::Identity(U.cols(),U.cols()))).norm() << "\n";
673  std::cout << "V^T V: " << (V.transpose() * V - MatrixXr(MatrixXr::Identity(V.cols(),V.cols()))).norm() << "\n";
674 #endif
675 
676 #ifdef EIGEN_BDCSVD_SANITY_CHECKS
677  assert(m_naiveU.allFinite());
678  assert(m_naiveV.allFinite());
679  assert(m_computed.allFinite());
680  assert(U.allFinite());
681  assert(V.allFinite());
682 // assert((U.transpose() * U - MatrixXr(MatrixXr::Identity(U.cols(),U.cols()))).norm() < 100*NumTraits<RealScalar>::epsilon() * n);
683 // assert((V.transpose() * V - MatrixXr(MatrixXr::Identity(V.cols(),V.cols()))).norm() < 100*NumTraits<RealScalar>::epsilon() * n);
684 #endif
685 
686  // Because of deflation, the singular values might not be completely sorted.
687  // Fortunately, reordering them is a O(n) problem
688  for(Index i=0; i<actual_n-1; ++i)
689  {
690  if(singVals(i)>singVals(i+1))
691  {
692  using std::swap;
693  swap(singVals(i),singVals(i+1));
694  U.col(i).swap(U.col(i+1));
695  if(m_compV) V.col(i).swap(V.col(i+1));
696  }
697  }
698 
699 #ifdef EIGEN_BDCSVD_SANITY_CHECKS
700  {
701  bool singular_values_sorted = (((singVals.segment(1,actual_n-1)-singVals.head(actual_n-1))).array() >= 0).all();
702  if(!singular_values_sorted)
703  std::cout << "Singular values are not sorted: " << singVals.segment(1,actual_n).transpose() << "\n";
704  assert(singular_values_sorted);
705  }
706 #endif
707 
708  // Reverse order so that singular values in increased order
709  // Because of deflation, the zeros singular-values are already at the end
710  singVals.head(actual_n).reverseInPlace();
711  U.leftCols(actual_n).rowwise().reverseInPlace();
712  if (m_compV) V.leftCols(actual_n).rowwise().reverseInPlace();
713 
714 #ifdef EIGEN_BDCSVD_DEBUG_VERBOSE
715  JacobiSVD<MatrixXr> jsvd(m_computed.block(firstCol, firstCol, n, n) );
716  std::cout << " * j: " << jsvd.singularValues().transpose() << "\n\n";
717  std::cout << " * sing-val: " << singVals.transpose() << "\n";
718 // std::cout << " * err: " << ((jsvd.singularValues()-singVals)>1e-13*singVals.norm()).transpose() << "\n";
719 #endif
720 }
721 
722 template <typename MatrixType>
724 {
725  Index m = perm.size();
726  RealScalar res = Literal(1);
727  for(Index i=0; i<m; ++i)
728  {
729  Index j = perm(i);
730  // The following expression could be rewritten to involve only a single division,
731  // but this would make the expression more sensitive to overflow.
732  res += (col0(j) / (diagShifted(j) - mu)) * (col0(j) / (diag(j) + shift + mu));
733  }
734  return res;
735 
736 }
737 
738 template <typename MatrixType>
740  VectorType& singVals, ArrayRef shifts, ArrayRef mus)
741 {
742  using std::abs;
743  using std::swap;
744  using std::sqrt;
745 
746  Index n = col0.size();
747  Index actual_n = n;
748  // Note that here actual_n is computed based on col0(i)==0 instead of diag(i)==0 as above
749  // because 1) we have diag(i)==0 => col0(i)==0 and 2) if col0(i)==0, then diag(i) is already a singular value.
750  while(actual_n>1 && col0(actual_n-1)==Literal(0)) --actual_n;
751 
752  for (Index k = 0; k < n; ++k)
753  {
754  if (col0(k) == Literal(0) || actual_n==1)
755  {
756  // if col0(k) == 0, then entry is deflated, so singular value is on diagonal
757  // if actual_n==1, then the deflated problem is already diagonalized
758  singVals(k) = k==0 ? col0(0) : diag(k);
759  mus(k) = Literal(0);
760  shifts(k) = k==0 ? col0(0) : diag(k);
761  continue;
762  }
763 
764  // otherwise, use secular equation to find singular value
765  RealScalar left = diag(k);
766  RealScalar right; // was: = (k != actual_n-1) ? diag(k+1) : (diag(actual_n-1) + col0.matrix().norm());
767  if(k==actual_n-1)
768  right = (diag(actual_n-1) + col0.matrix().norm());
769  else
770  {
771  // Skip deflated singular values,
772  // recall that at this stage we assume that z[j]!=0 and all entries for which z[j]==0 have been put aside.
773  // This should be equivalent to using perm[]
774  Index l = k+1;
775  while(col0(l)==Literal(0)) { ++l; eigen_internal_assert(l<actual_n); }
776  right = diag(l);
777  }
778 
779  // first decide whether it's closer to the left end or the right end
780  RealScalar mid = left + (right-left) / Literal(2);
781  RealScalar fMid = secularEq(mid, col0, diag, perm, diag, Literal(0));
782 #ifdef EIGEN_BDCSVD_DEBUG_VERBOSE
783  std::cout << "right-left = " << right-left << "\n";
784 // std::cout << "fMid = " << fMid << " " << secularEq(mid-left, col0, diag, perm, ArrayXr(diag-left), left)
785 // << " " << secularEq(mid-right, col0, diag, perm, ArrayXr(diag-right), right) << "\n";
786  std::cout << " = " << secularEq(left+RealScalar(0.000001)*(right-left), col0, diag, perm, diag, 0)
787  << " " << secularEq(left+RealScalar(0.1) *(right-left), col0, diag, perm, diag, 0)
788  << " " << secularEq(left+RealScalar(0.2) *(right-left), col0, diag, perm, diag, 0)
789  << " " << secularEq(left+RealScalar(0.3) *(right-left), col0, diag, perm, diag, 0)
790  << " " << secularEq(left+RealScalar(0.4) *(right-left), col0, diag, perm, diag, 0)
791  << " " << secularEq(left+RealScalar(0.49) *(right-left), col0, diag, perm, diag, 0)
792  << " " << secularEq(left+RealScalar(0.5) *(right-left), col0, diag, perm, diag, 0)
793  << " " << secularEq(left+RealScalar(0.51) *(right-left), col0, diag, perm, diag, 0)
794  << " " << secularEq(left+RealScalar(0.6) *(right-left), col0, diag, perm, diag, 0)
795  << " " << secularEq(left+RealScalar(0.7) *(right-left), col0, diag, perm, diag, 0)
796  << " " << secularEq(left+RealScalar(0.8) *(right-left), col0, diag, perm, diag, 0)
797  << " " << secularEq(left+RealScalar(0.9) *(right-left), col0, diag, perm, diag, 0)
798  << " " << secularEq(left+RealScalar(0.999999)*(right-left), col0, diag, perm, diag, 0) << "\n";
799 #endif
800  RealScalar shift = (k == actual_n-1 || fMid > Literal(0)) ? left : right;
801 
802  // measure everything relative to shift
803  Map<ArrayXr> diagShifted(m_workspace.data()+4*n, n);
804  diagShifted = diag - shift;
805 
806  if(k!=actual_n-1)
807  {
808  // check that after the shift, f(mid) is still negative:
809  RealScalar midShifted = (right - left) / RealScalar(2);
810  if(shift==right)
811  midShifted = -midShifted;
812  RealScalar fMidShifted = secularEq(midShifted, col0, diag, perm, diagShifted, shift);
813  if(fMidShifted>0)
814  {
815  // fMid was erroneous, fix it:
816  shift = fMidShifted > Literal(0) ? left : right;
817  diagShifted = diag - shift;
818  }
819  }
820 
821  // initial guess
822  RealScalar muPrev, muCur;
823  if (shift == left)
824  {
825  muPrev = (right - left) * RealScalar(0.1);
826  if (k == actual_n-1) muCur = right - left;
827  else muCur = (right - left) * RealScalar(0.5);
828  }
829  else
830  {
831  muPrev = -(right - left) * RealScalar(0.1);
832  muCur = -(right - left) * RealScalar(0.5);
833  }
834 
835  RealScalar fPrev = secularEq(muPrev, col0, diag, perm, diagShifted, shift);
836  RealScalar fCur = secularEq(muCur, col0, diag, perm, diagShifted, shift);
837  if (abs(fPrev) < abs(fCur))
838  {
839  swap(fPrev, fCur);
840  swap(muPrev, muCur);
841  }
842 
843  // rational interpolation: fit a function of the form a / mu + b through the two previous
844  // iterates and use its zero to compute the next iterate
845  bool useBisection = fPrev*fCur>Literal(0);
846  while (fCur!=Literal(0) && abs(muCur - muPrev) > Literal(8) * NumTraits<RealScalar>::epsilon() * numext::maxi<RealScalar>(abs(muCur), abs(muPrev)) && abs(fCur - fPrev)>NumTraits<RealScalar>::epsilon() && !useBisection)
847  {
848  ++m_numIters;
849 
850  // Find a and b such that the function f(mu) = a / mu + b matches the current and previous samples.
851  RealScalar a = (fCur - fPrev) / (Literal(1)/muCur - Literal(1)/muPrev);
852  RealScalar b = fCur - a / muCur;
853  // And find mu such that f(mu)==0:
854  RealScalar muZero = -a/b;
855  RealScalar fZero = secularEq(muZero, col0, diag, perm, diagShifted, shift);
856 
857 #ifdef EIGEN_BDCSVD_SANITY_CHECKS
858  assert((numext::isfinite)(fZero));
859 #endif
860 
861  muPrev = muCur;
862  fPrev = fCur;
863  muCur = muZero;
864  fCur = fZero;
865 
866  if (shift == left && (muCur < Literal(0) || muCur > right - left)) useBisection = true;
867  if (shift == right && (muCur < -(right - left) || muCur > Literal(0))) useBisection = true;
868  if (abs(fCur)>abs(fPrev)) useBisection = true;
869  }
870 
871  // fall back on bisection method if rational interpolation did not work
872  if (useBisection)
873  {
874 #ifdef EIGEN_BDCSVD_DEBUG_VERBOSE
875  std::cout << "useBisection for k = " << k << ", actual_n = " << actual_n << "\n";
876 #endif
877  RealScalar leftShifted, rightShifted;
878  if (shift == left)
879  {
880  // to avoid overflow, we must have mu > max(real_min, |z(k)|/sqrt(real_max)),
881  // the factor 2 is to be more conservative
882  leftShifted = numext::maxi<RealScalar>( (std::numeric_limits<RealScalar>::min)(), Literal(2) * abs(col0(k)) / sqrt((std::numeric_limits<RealScalar>::max)()) );
883 
884  // check that we did it right:
885  eigen_internal_assert( (numext::isfinite)( (col0(k)/leftShifted)*(col0(k)/(diag(k)+shift+leftShifted)) ) );
886  // I don't understand why the case k==0 would be special there:
887  // if (k == 0) rightShifted = right - left; else
888  rightShifted = (k==actual_n-1) ? right : ((right - left) * RealScalar(0.51)); // theoretically we can take 0.5, but let's be safe
889  }
890  else
891  {
892  leftShifted = -(right - left) * RealScalar(0.51);
893  if(k+1<n)
894  rightShifted = -numext::maxi<RealScalar>( (std::numeric_limits<RealScalar>::min)(), abs(col0(k+1)) / sqrt((std::numeric_limits<RealScalar>::max)()) );
895  else
896  rightShifted = -(std::numeric_limits<RealScalar>::min)();
897  }
898 
899  RealScalar fLeft = secularEq(leftShifted, col0, diag, perm, diagShifted, shift);
900  eigen_internal_assert(fLeft<Literal(0));
901 
902 #if defined EIGEN_INTERNAL_DEBUGGING || defined EIGEN_BDCSVD_SANITY_CHECKS
903  RealScalar fRight = secularEq(rightShifted, col0, diag, perm, diagShifted, shift);
904 #endif
905 
906 #ifdef EIGEN_BDCSVD_SANITY_CHECKS
907  if(!(numext::isfinite)(fLeft))
908  std::cout << "f(" << leftShifted << ") =" << fLeft << " ; " << left << " " << shift << " " << right << "\n";
909  assert((numext::isfinite)(fLeft));
910 
911  if(!(numext::isfinite)(fRight))
912  std::cout << "f(" << rightShifted << ") =" << fRight << " ; " << left << " " << shift << " " << right << "\n";
913  // assert((numext::isfinite)(fRight));
914 #endif
915 
916 #ifdef EIGEN_BDCSVD_DEBUG_VERBOSE
917  if(!(fLeft * fRight<0))
918  {
919  std::cout << "f(leftShifted) using leftShifted=" << leftShifted << " ; diagShifted(1:10):" << diagShifted.head(10).transpose() << "\n ; "
920  << "left==shift=" << bool(left==shift) << " ; left-shift = " << (left-shift) << "\n";
921  std::cout << "k=" << k << ", " << fLeft << " * " << fRight << " == " << fLeft * fRight << " ; "
922  << "[" << left << " .. " << right << "] -> [" << leftShifted << " " << rightShifted << "], shift=" << shift
923  << " , f(right)=" << secularEq(0, col0, diag, perm, diagShifted, shift)
924  << " == " << secularEq(right, col0, diag, perm, diag, 0) << " == " << fRight << "\n";
925  }
926 #endif
927  eigen_internal_assert(fLeft * fRight < Literal(0));
928 
929  if(fLeft<Literal(0))
930  {
931  while (rightShifted - leftShifted > Literal(2) * NumTraits<RealScalar>::epsilon() * numext::maxi<RealScalar>(abs(leftShifted), abs(rightShifted)))
932  {
933  RealScalar midShifted = (leftShifted + rightShifted) / Literal(2);
934  fMid = secularEq(midShifted, col0, diag, perm, diagShifted, shift);
936 
937  if (fLeft * fMid < Literal(0))
938  {
939  rightShifted = midShifted;
940  }
941  else
942  {
943  leftShifted = midShifted;
944  fLeft = fMid;
945  }
946  }
947  muCur = (leftShifted + rightShifted) / Literal(2);
948  }
949  else
950  {
951  // We have a problem as shifting on the left or right give either a positive or negative value
952  // at the middle of [left,right]...
953  // Instead fo abbording or entering an infinite loop,
954  // let's just use the middle as the estimated zero-crossing:
955  muCur = (right - left) * RealScalar(0.5);
956  if(shift == right)
957  muCur = -muCur;
958  }
959  }
960 
961  singVals[k] = shift + muCur;
962  shifts[k] = shift;
963  mus[k] = muCur;
964 
965 #ifdef EIGEN_BDCSVD_DEBUG_VERBOSE
966  if(k+1<n)
967  std::cout << "found " << singVals[k] << " == " << shift << " + " << muCur << " from " << diag(k) << " .. " << diag(k+1) << "\n";
968 #endif
969 #ifdef EIGEN_BDCSVD_SANITY_CHECKS
970  assert(k==0 || singVals[k]>=singVals[k-1]);
971  assert(singVals[k]>=diag(k));
972 #endif
973 
974  // perturb singular value slightly if it equals diagonal entry to avoid division by zero later
975  // (deflation is supposed to avoid this from happening)
976  // - this does no seem to be necessary anymore -
977 // if (singVals[k] == left) singVals[k] *= 1 + NumTraits<RealScalar>::epsilon();
978 // if (singVals[k] == right) singVals[k] *= 1 - NumTraits<RealScalar>::epsilon();
979  }
980 }
981 
982 
983 // zhat is perturbation of col0 for which singular vectors can be computed stably (see Section 3.1)
984 template <typename MatrixType>
986  (const ArrayRef& col0, const ArrayRef& diag, const IndicesRef &perm, const VectorType& singVals,
987  const ArrayRef& shifts, const ArrayRef& mus, ArrayRef zhat)
988 {
989  using std::sqrt;
990  Index n = col0.size();
991  Index m = perm.size();
992  if(m==0)
993  {
994  zhat.setZero();
995  return;
996  }
997  Index lastIdx = perm(m-1);
998  // The offset permits to skip deflated entries while computing zhat
999  for (Index k = 0; k < n; ++k)
1000  {
1001  if (col0(k) == Literal(0)) // deflated
1002  zhat(k) = Literal(0);
1003  else
1004  {
1005  // see equation (3.6)
1006  RealScalar dk = diag(k);
1007  RealScalar prod = (singVals(lastIdx) + dk) * (mus(lastIdx) + (shifts(lastIdx) - dk));
1008 #ifdef EIGEN_BDCSVD_SANITY_CHECKS
1009  if(prod<0) {
1010  std::cout << "k = " << k << " ; z(k)=" << col0(k) << ", diag(k)=" << dk << "\n";
1011  std::cout << "prod = " << "(" << singVals(lastIdx) << " + " << dk << ") * (" << mus(lastIdx) << " + (" << shifts(lastIdx) << " - " << dk << "))" << "\n";
1012  std::cout << " = " << singVals(lastIdx) + dk << " * " << mus(lastIdx) + (shifts(lastIdx) - dk) << "\n";
1013  }
1014  assert(prod>=0);
1015 #endif
1016 
1017  for(Index l = 0; l<m; ++l)
1018  {
1019  Index i = perm(l);
1020  if(i!=k)
1021  {
1022 #ifdef EIGEN_BDCSVD_SANITY_CHECKS
1023  if(i>=k && (l==0 || l-1>=m))
1024  {
1025  std::cout << "Error in perturbCol0\n";
1026  std::cout << " " << k << "/" << n << " " << l << "/" << m << " " << i << "/" << n << " ; " << col0(k) << " " << diag(k) << " " << "\n";
1027  std::cout << " " <<diag(i) << "\n";
1028  Index j = (i<k /*|| l==0*/) ? i : perm(l-1);
1029  std::cout << " " << "j=" << j << "\n";
1030  }
1031 #endif
1032  Index j = i<k ? i : perm(l-1);
1033 #ifdef EIGEN_BDCSVD_SANITY_CHECKS
1034  if(!(dk!=Literal(0) || diag(i)!=Literal(0)))
1035  {
1036  std::cout << "k=" << k << ", i=" << i << ", l=" << l << ", perm.size()=" << perm.size() << "\n";
1037  }
1038  assert(dk!=Literal(0) || diag(i)!=Literal(0));
1039 #endif
1040  prod *= ((singVals(j)+dk) / ((diag(i)+dk))) * ((mus(j)+(shifts(j)-dk)) / ((diag(i)-dk)));
1041 #ifdef EIGEN_BDCSVD_SANITY_CHECKS
1042  assert(prod>=0);
1043 #endif
1044 #ifdef EIGEN_BDCSVD_DEBUG_VERBOSE
1045  if(i!=k && numext::abs(((singVals(j)+dk)*(mus(j)+(shifts(j)-dk)))/((diag(i)+dk)*(diag(i)-dk)) - 1) > 0.9 )
1046  std::cout << " " << ((singVals(j)+dk)*(mus(j)+(shifts(j)-dk)))/((diag(i)+dk)*(diag(i)-dk)) << " == (" << (singVals(j)+dk) << " * " << (mus(j)+(shifts(j)-dk))
1047  << ") / (" << (diag(i)+dk) << " * " << (diag(i)-dk) << ")\n";
1048 #endif
1049  }
1050  }
1051 #ifdef EIGEN_BDCSVD_DEBUG_VERBOSE
1052  std::cout << "zhat(" << k << ") = sqrt( " << prod << ") ; " << (singVals(lastIdx) + dk) << " * " << mus(lastIdx) + shifts(lastIdx) << " - " << dk << "\n";
1053 #endif
1054  RealScalar tmp = sqrt(prod);
1055 #ifdef EIGEN_BDCSVD_SANITY_CHECKS
1056  assert((numext::isfinite)(tmp));
1057 #endif
1058  zhat(k) = col0(k) > Literal(0) ? RealScalar(tmp) : RealScalar(-tmp);
1059  }
1060  }
1061 }
1062 
1063 // compute singular vectors
1064 template <typename MatrixType>
1066  (const ArrayRef& zhat, const ArrayRef& diag, const IndicesRef &perm, const VectorType& singVals,
1067  const ArrayRef& shifts, const ArrayRef& mus, MatrixXr& U, MatrixXr& V)
1068 {
1069  Index n = zhat.size();
1070  Index m = perm.size();
1071 
1072  for (Index k = 0; k < n; ++k)
1073  {
1074  if (zhat(k) == Literal(0))
1075  {
1076  U.col(k) = VectorType::Unit(n+1, k);
1077  if (m_compV) V.col(k) = VectorType::Unit(n, k);
1078  }
1079  else
1080  {
1081  U.col(k).setZero();
1082  for(Index l=0;l<m;++l)
1083  {
1084  Index i = perm(l);
1085  U(i,k) = zhat(i)/(((diag(i) - shifts(k)) - mus(k)) )/( (diag(i) + singVals[k]));
1086  }
1087  U(n,k) = Literal(0);
1088  U.col(k).normalize();
1089 
1090  if (m_compV)
1091  {
1092  V.col(k).setZero();
1093  for(Index l=1;l<m;++l)
1094  {
1095  Index i = perm(l);
1096  V(i,k) = diag(i) * zhat(i) / (((diag(i) - shifts(k)) - mus(k)) )/( (diag(i) + singVals[k]));
1097  }
1098  V(0,k) = Literal(-1);
1099  V.col(k).normalize();
1100  }
1101  }
1102  }
1103  U.col(n) = VectorType::Unit(n+1, n);
1104 }
1105 
1106 
1107 // page 12_13
1108 // i >= 1, di almost null and zi non null.
1109 // We use a rotation to zero out zi applied to the left of M
1110 template <typename MatrixType>
1112 {
1113  using std::abs;
1114  using std::sqrt;
1115  using std::pow;
1116  Index start = firstCol + shift;
1117  RealScalar c = m_computed(start, start);
1118  RealScalar s = m_computed(start+i, start);
1119  RealScalar r = numext::hypot(c,s);
1120  if (r == Literal(0))
1121  {
1122  m_computed(start+i, start+i) = Literal(0);
1123  return;
1124  }
1125  m_computed(start,start) = r;
1126  m_computed(start+i, start) = Literal(0);
1127  m_computed(start+i, start+i) = Literal(0);
1128 
1130  if (m_compU) m_naiveU.middleRows(firstCol, size+1).applyOnTheRight(firstCol, firstCol+i, J);
1131  else m_naiveU.applyOnTheRight(firstCol, firstCol+i, J);
1132 }// end deflation 43
1133 
1134 
1135 // page 13
1136 // i,j >= 1, i!=j and |di - dj| < epsilon * norm2(M)
1137 // We apply two rotations to have zj = 0;
1138 // TODO deflation44 is still broken and not properly tested
1139 template <typename MatrixType>
1141 {
1142  using std::abs;
1143  using std::sqrt;
1144  using std::conj;
1145  using std::pow;
1146  RealScalar c = m_computed(firstColm+i, firstColm);
1147  RealScalar s = m_computed(firstColm+j, firstColm);
1149 #ifdef EIGEN_BDCSVD_DEBUG_VERBOSE
1150  std::cout << "deflation 4.4: " << i << "," << j << " -> " << c << " " << s << " " << r << " ; "
1151  << m_computed(firstColm + i-1, firstColm) << " "
1152  << m_computed(firstColm + i, firstColm) << " "
1153  << m_computed(firstColm + i+1, firstColm) << " "
1154  << m_computed(firstColm + i+2, firstColm) << "\n";
1155  std::cout << m_computed(firstColm + i-1, firstColm + i-1) << " "
1156  << m_computed(firstColm + i, firstColm+i) << " "
1157  << m_computed(firstColm + i+1, firstColm+i+1) << " "
1158  << m_computed(firstColm + i+2, firstColm+i+2) << "\n";
1159 #endif
1160  if (r==Literal(0))
1161  {
1162  m_computed(firstColm + i, firstColm + i) = m_computed(firstColm + j, firstColm + j);
1163  return;
1164  }
1165  c/=r;
1166  s/=r;
1167  m_computed(firstColm + i, firstColm) = r;
1168  m_computed(firstColm + j, firstColm + j) = m_computed(firstColm + i, firstColm + i);
1169  m_computed(firstColm + j, firstColm) = Literal(0);
1170 
1172  if (m_compU) m_naiveU.middleRows(firstColu, size+1).applyOnTheRight(firstColu + i, firstColu + j, J);
1173  else m_naiveU.applyOnTheRight(firstColu+i, firstColu+j, J);
1174  if (m_compV) m_naiveV.middleRows(firstRowW, size).applyOnTheRight(firstColW + i, firstColW + j, J);
1175 }// end deflation 44
1176 
1177 
1178 // acts on block from (firstCol+shift, firstCol+shift) to (lastCol+shift, lastCol+shift) [inclusive]
1179 template <typename MatrixType>
1181 {
1182  using std::sqrt;
1183  using std::abs;
1184  const Index length = lastCol + 1 - firstCol;
1185 
1186  Block<MatrixXr,Dynamic,1> col0(m_computed, firstCol+shift, firstCol+shift, length, 1);
1187  Diagonal<MatrixXr> fulldiag(m_computed);
1188  VectorBlock<Diagonal<MatrixXr>,Dynamic> diag(fulldiag, firstCol+shift, length);
1189 
1190  const RealScalar considerZero = (std::numeric_limits<RealScalar>::min)();
1191  RealScalar maxDiag = diag.tail((std::max)(Index(1),length-1)).cwiseAbs().maxCoeff();
1192  RealScalar epsilon_strict = numext::maxi<RealScalar>(considerZero,NumTraits<RealScalar>::epsilon() * maxDiag);
1193  RealScalar epsilon_coarse = Literal(8) * NumTraits<RealScalar>::epsilon() * numext::maxi<RealScalar>(col0.cwiseAbs().maxCoeff(), maxDiag);
1194 
1195 #ifdef EIGEN_BDCSVD_SANITY_CHECKS
1196  assert(m_naiveU.allFinite());
1197  assert(m_naiveV.allFinite());
1198  assert(m_computed.allFinite());
1199 #endif
1200 
1201 #ifdef EIGEN_BDCSVD_DEBUG_VERBOSE
1202  std::cout << "\ndeflate:" << diag.head(k+1).transpose() << " | " << diag.segment(k+1,length-k-1).transpose() << "\n";
1203 #endif
1204 
1205  //condition 4.1
1206  if (diag(0) < epsilon_coarse)
1207  {
1208 #ifdef EIGEN_BDCSVD_DEBUG_VERBOSE
1209  std::cout << "deflation 4.1, because " << diag(0) << " < " << epsilon_coarse << "\n";
1210 #endif
1211  diag(0) = epsilon_coarse;
1212  }
1213 
1214  //condition 4.2
1215  for (Index i=1;i<length;++i)
1216  if (abs(col0(i)) < epsilon_strict)
1217  {
1218 #ifdef EIGEN_BDCSVD_DEBUG_VERBOSE
1219  std::cout << "deflation 4.2, set z(" << i << ") to zero because " << abs(col0(i)) << " < " << epsilon_strict << " (diag(" << i << ")=" << diag(i) << ")\n";
1220 #endif
1221  col0(i) = Literal(0);
1222  }
1223 
1224  //condition 4.3
1225  for (Index i=1;i<length; i++)
1226  if (diag(i) < epsilon_coarse)
1227  {
1228 #ifdef EIGEN_BDCSVD_DEBUG_VERBOSE
1229  std::cout << "deflation 4.3, cancel z(" << i << ")=" << col0(i) << " because diag(" << i << ")=" << diag(i) << " < " << epsilon_coarse << "\n";
1230 #endif
1231  deflation43(firstCol, shift, i, length);
1232  }
1233 
1234 #ifdef EIGEN_BDCSVD_SANITY_CHECKS
1235  assert(m_naiveU.allFinite());
1236  assert(m_naiveV.allFinite());
1237  assert(m_computed.allFinite());
1238 #endif
1239 #ifdef EIGEN_BDCSVD_DEBUG_VERBOSE
1240  std::cout << "to be sorted: " << diag.transpose() << "\n\n";
1241  std::cout << " : " << col0.transpose() << "\n\n";
1242 #endif
1243  {
1244  // Check for total deflation
1245  // If we have a total deflation, then we have to consider col0(0)==diag(0) as a singular value during sorting
1246  bool total_deflation = (col0.tail(length-1).array()<considerZero).all();
1247 
1248  // Sort the diagonal entries, since diag(1:k-1) and diag(k:length) are already sorted, let's do a sorted merge.
1249  // First, compute the respective permutation.
1250  Index *permutation = m_workspaceI.data();
1251  {
1252  permutation[0] = 0;
1253  Index p = 1;
1254 
1255  // Move deflated diagonal entries at the end.
1256  for(Index i=1; i<length; ++i)
1257  if(abs(diag(i))<considerZero)
1258  permutation[p++] = i;
1259 
1260  Index i=1, j=k+1;
1261  for( ; p < length; ++p)
1262  {
1263  if (i > k) permutation[p] = j++;
1264  else if (j >= length) permutation[p] = i++;
1265  else if (diag(i) < diag(j)) permutation[p] = j++;
1266  else permutation[p] = i++;
1267  }
1268  }
1269 
1270  // If we have a total deflation, then we have to insert diag(0) at the right place
1271  if(total_deflation)
1272  {
1273  for(Index i=1; i<length; ++i)
1274  {
1275  Index pi = permutation[i];
1276  if(abs(diag(pi))<considerZero || diag(0)<diag(pi))
1277  permutation[i-1] = permutation[i];
1278  else
1279  {
1280  permutation[i-1] = 0;
1281  break;
1282  }
1283  }
1284  }
1285 
1286  // Current index of each col, and current column of each index
1287  Index *realInd = m_workspaceI.data()+length;
1288  Index *realCol = m_workspaceI.data()+2*length;
1289 
1290  for(int pos = 0; pos< length; pos++)
1291  {
1292  realCol[pos] = pos;
1293  realInd[pos] = pos;
1294  }
1295 
1296  for(Index i = total_deflation?0:1; i < length; i++)
1297  {
1298  const Index pi = permutation[length - (total_deflation ? i+1 : i)];
1299  const Index J = realCol[pi];
1300 
1301  using std::swap;
1302  // swap diagonal and first column entries:
1303  swap(diag(i), diag(J));
1304  if(i!=0 && J!=0) swap(col0(i), col0(J));
1305 
1306  // change columns
1307  if (m_compU) m_naiveU.col(firstCol+i).segment(firstCol, length + 1).swap(m_naiveU.col(firstCol+J).segment(firstCol, length + 1));
1308  else m_naiveU.col(firstCol+i).segment(0, 2) .swap(m_naiveU.col(firstCol+J).segment(0, 2));
1309  if (m_compV) m_naiveV.col(firstColW + i).segment(firstRowW, length).swap(m_naiveV.col(firstColW + J).segment(firstRowW, length));
1310 
1311  //update real pos
1312  const Index realI = realInd[i];
1313  realCol[realI] = J;
1314  realCol[pi] = i;
1315  realInd[J] = realI;
1316  realInd[i] = pi;
1317  }
1318  }
1319 #ifdef EIGEN_BDCSVD_DEBUG_VERBOSE
1320  std::cout << "sorted: " << diag.transpose().format(bdcsvdfmt) << "\n";
1321  std::cout << " : " << col0.transpose() << "\n\n";
1322 #endif
1323 
1324  //condition 4.4
1325  {
1326  Index i = length-1;
1327  while(i>0 && (abs(diag(i))<considerZero || abs(col0(i))<considerZero)) --i;
1328  for(; i>1;--i)
1329  if( (diag(i) - diag(i-1)) < NumTraits<RealScalar>::epsilon()*maxDiag )
1330  {
1331 #ifdef EIGEN_BDCSVD_DEBUG_VERBOSE
1332  std::cout << "deflation 4.4 with i = " << i << " because " << diag(i) << " - " << diag(i-1) << " == " << (diag(i) - diag(i-1)) << " < " << NumTraits<RealScalar>::epsilon()*/*diag(i)*/maxDiag << "\n";
1333 #endif
1334  eigen_internal_assert(abs(diag(i) - diag(i-1))<epsilon_coarse && " diagonal entries are not properly sorted");
1335  deflation44(firstCol, firstCol + shift, firstRowW, firstColW, i-1, i, length);
1336  }
1337  }
1338 
1339 #ifdef EIGEN_BDCSVD_SANITY_CHECKS
1340  for(Index j=2;j<length;++j)
1341  assert(diag(j-1)<=diag(j) || abs(diag(j))<considerZero);
1342 #endif
1343 
1344 #ifdef EIGEN_BDCSVD_SANITY_CHECKS
1345  assert(m_naiveU.allFinite());
1346  assert(m_naiveV.allFinite());
1347  assert(m_computed.allFinite());
1348 #endif
1349 }//end deflation
1350 
1357 template<typename Derived>
1359 MatrixBase<Derived>::bdcSvd(unsigned int computationOptions) const
1360 {
1361  return BDCSVD<PlainObject>(*this, computationOptions);
1362 }
1363 
1364 } // end namespace Eigen
1365 
1366 #endif
Eigen::SVDBase::m_computeFullU
bool m_computeFullU
Definition: SVDBase.h:277
Eigen::BDCSVD::m_compU
bool m_compU
Definition: BDCSVD.h:201
Eigen::BDCSVD::MatrixOptions
@ MatrixOptions
Definition: BDCSVD.h:94
Eigen::BDCSVD::ArrayXr
Array< RealScalar, Dynamic, 1 > ArrayXr
Definition: BDCSVD.h:104
perm
idx_t idx_t idx_t idx_t idx_t * perm
Definition: include/metis.h:223
Eigen::BDCSVD::secularEq
static RealScalar secularEq(RealScalar x, const ArrayRef &col0, const ArrayRef &diag, const IndicesRef &perm, const ArrayRef &diagShifted, RealScalar shift)
Definition: BDCSVD.h:723
Eigen
Namespace containing all symbols from the Eigen library.
Definition: jet.h:637
Eigen::BDCSVD::MatrixType
_MatrixType MatrixType
Definition: BDCSVD.h:83
Eigen::BDCSVD::BDCSVD
BDCSVD()
Default Constructor.
Definition: BDCSVD.h:114
Eigen::BDCSVD::m_workspace
ArrayXr m_workspace
Definition: BDCSVD.h:198
Eigen::Block
Expression of a fixed-size or dynamic-size block.
Definition: Block.h:103
Eigen::BDCSVD::compute
BDCSVD & compute(const MatrixType &matrix)
Method performing the decomposition of given matrix using current options.
Definition: BDCSVD.h:168
Eigen::SVDBase::m_computeThinU
bool m_computeThinU
Definition: SVDBase.h:277
Eigen::ComputeFullV
@ ComputeFullV
Definition: Constants.h:397
Eigen::BDCSVD::Scalar
MatrixType::Scalar Scalar
Definition: BDCSVD.h:84
benchmark.n1
n1
Definition: benchmark.py:79
s
RealScalar s
Definition: level1_cplx_impl.h:126
e
Array< double, 1, 3 > e(1./3., 0.5, 2.)
MatrixType
MatrixXf MatrixType
Definition: benchmark-blocking-sizes.cpp:52
Eigen::BDCSVD::m_workspaceI
ArrayXi m_workspaceI
Definition: BDCSVD.h:199
Eigen::BDCSVD::ArrayRef
Ref< ArrayXr > ArrayRef
Definition: BDCSVD.h:106
Eigen::numext::isfinite
EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE bool() isfinite(const Eigen::bfloat16 &h)
Definition: BFloat16.h:671
mu
double mu
Definition: testBoundingConstraint.cpp:37
Eigen::SVDBase
Base class of SVD algorithms.
Definition: ForwardDeclarations.h:277
c
Scalar Scalar * c
Definition: benchVecAdd.cpp:17
b
Scalar * b
Definition: benchVecAdd.cpp:17
Eigen::BDCSVD::ColsAtCompileTime
@ ColsAtCompileTime
Definition: BDCSVD.h:89
eigen_assert
#define eigen_assert(x)
Definition: Macros.h:1037
Eigen::BDCSVD::copyUV
void copyUV(const HouseholderU &householderU, const HouseholderV &householderV, const NaiveU &naiveU, const NaiveV &naivev)
Definition: BDCSVD.h:332
gtsam::diag
Matrix diag(const std::vector< Matrix > &Hs)
Definition: Matrix.cpp:206
x
set noclip points set clip one set noclip two set bar set border lt lw set xdata set ydata set zdata set x2data set y2data set boxwidth set dummy x
Definition: gnuplot_common_settings.hh:12
Eigen::BDCSVD::m_nRec
Index m_nRec
Definition: BDCSVD.h:197
Eigen::BDCSVD::BDCSVD
BDCSVD(Index rows, Index cols, unsigned int computationOptions=0)
Default Constructor with memory preallocation.
Definition: BDCSVD.h:124
B
Definition: test_numpy_dtypes.cpp:299
Eigen::BDCSVD::MatrixVType
Base::MatrixVType MatrixVType
Definition: BDCSVD.h:98
Eigen::BDCSVD::deflation43
void deflation43(Index firstCol, Index shift, Index i, Index size)
Definition: BDCSVD.h:1111
Eigen::ComputeFullU
@ ComputeFullU
Definition: Constants.h:393
Eigen::Success
@ Success
Definition: Constants.h:442
Eigen::Array< RealScalar, Dynamic, 1 >
copy
int EIGEN_BLAS_FUNC() copy(int *n, RealScalar *px, int *incx, RealScalar *py, int *incy)
Definition: level1_impl.h:29
Eigen::SVDBase::m_singularValues
SingularValuesType m_singularValues
Definition: SVDBase.h:274
Eigen::SVDBase::m_computeFullV
bool m_computeFullV
Definition: SVDBase.h:278
Eigen::BDCSVD::setSwitchSize
void setSwitchSize(int s)
Definition: BDCSVD.h:173
res
cout<< "Here is the matrix m:"<< endl<< m<< endl;Matrix< ptrdiff_t, 3, 1 > res
Definition: PartialRedux_count.cpp:3
Eigen::BDCSVD::MatrixUType
Base::MatrixUType MatrixUType
Definition: BDCSVD.h:97
Eigen::BDCSVD::computeSingVecs
void computeSingVecs(const ArrayRef &zhat, const ArrayRef &diag, const IndicesRef &perm, const VectorType &singVals, const ArrayRef &shifts, const ArrayRef &mus, MatrixXr &U, MatrixXr &V)
Definition: BDCSVD.h:1066
Eigen::PlainObjectBase::resize
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void resize(Index rows, Index cols)
Definition: PlainObjectBase.h:271
Eigen::JacobiRotation
Rotation given by a cosine-sine pair.
Definition: ForwardDeclarations.h:283
Eigen::SVDBase::m_computeThinV
bool m_computeThinV
Definition: SVDBase.h:278
rows
int rows
Definition: Tutorial_commainit_02.cpp:1
Eigen::internal::traits< BDCSVD< _MatrixType > >::MatrixType
_MatrixType MatrixType
Definition: BDCSVD.h:44
Eigen::BDCSVD::structured_update
void structured_update(Block< MatrixXr, Dynamic, Dynamic > A, const MatrixXr &B, Index n1)
Definition: BDCSVD.h:360
eigen_internal_assert
#define eigen_internal_assert(x)
Definition: Macros.h:1043
size
Scalar Scalar int size
Definition: benchVecAdd.cpp:17
Eigen::BDCSVD::MatrixX
Matrix< Scalar, Dynamic, Dynamic, ColMajor > MatrixX
Definition: BDCSVD.h:101
n
int n
Definition: BiCGSTAB_simple.cpp:1
epsilon
static double epsilon
Definition: testRot3.cpp:37
Eigen::internal::true_type
Definition: Meta.h:96
Eigen::BDCSVD::MaxRowsAtCompileTime
@ MaxRowsAtCompileTime
Definition: BDCSVD.h:91
Eigen::SVDBase::m_info
ComputationInfo m_info
Definition: SVDBase.h:275
benchmark.n2
n2
Definition: benchmark.py:85
Eigen::NoConvergence
@ NoConvergence
Definition: Constants.h:446
J
JacobiRotation< float > J
Definition: Jacobi_makeJacobi.cpp:3
A
Definition: test_numpy_dtypes.cpp:298
Eigen::BDCSVD::~BDCSVD
~BDCSVD()
Definition: BDCSVD.h:146
scale
set noclip points set clip one set noclip two set bar set border lt lw set xdata set ydata set zdata set x2data set y2data set boxwidth set dummy y set format x g set format y g set format x2 g set format y2 g set format z g set angles radians set nogrid set key title set key left top Right noreverse box linetype linewidth samplen spacing width set nolabel set noarrow set nologscale set logscale x set set pointsize set encoding default set nopolar set noparametric set set set set surface set nocontour set clabel set mapping cartesian set nohidden3d set cntrparam order set cntrparam linear set cntrparam levels auto set cntrparam points set size set set xzeroaxis lt lw set x2zeroaxis lt lw set yzeroaxis lt lw set y2zeroaxis lt lw set tics in set ticslevel set tics scale
Definition: gnuplot_common_settings.hh:54
j
std::ptrdiff_t j
Definition: tut_arithmetic_redux_minmax.cpp:2
left
static char left
Definition: blas_interface.hh:62
k1
double k1(double x)
Definition: k1.c:133
Eigen::SVDBase::m_matrixU
MatrixUType m_matrixU
Definition: SVDBase.h:272
Eigen::BDCSVD
class Bidiagonal Divide and Conquer SVD
Definition: ForwardDeclarations.h:279
Eigen::Dynamic
const int Dynamic
Definition: Constants.h:22
Eigen::all
static const Eigen::internal::all_t all
Definition: IndexedViewHelper.h:171
Eigen::SVDBase::computeV
bool computeV() const
Definition: SVDBase.h:210
l
static const Line3 l(Rot3(), 1, 1)
Eigen::Diagonal
Expression of a diagonal/subdiagonal/superdiagonal in a matrix.
Definition: Diagonal.h:63
Eigen::BDCSVD::MaxDiagSizeAtCompileTime
@ MaxDiagSizeAtCompileTime
Definition: BDCSVD.h:93
A2
static const double A2[]
Definition: expn.h:7
Eigen::BDCSVD::computeSingVals
void computeSingVals(const ArrayRef &col0, const ArrayRef &diag, const IndicesRef &perm, VectorType &singVals, ArrayRef shifts, ArrayRef mus)
Definition: BDCSVD.h:739
std::swap
void swap(GeographicLib::NearestNeighbor< dist_t, pos_t, distfun_t > &a, GeographicLib::NearestNeighbor< dist_t, pos_t, distfun_t > &b)
Definition: NearestNeighbor.hpp:827
EIGEN_SIZE_MIN_PREFER_DYNAMIC
#define EIGEN_SIZE_MIN_PREFER_DYNAMIC(a, b)
Definition: Macros.h:1294
Eigen::SVDBase::m_nonzeroSingularValues
Index m_nonzeroSingularValues
Definition: SVDBase.h:280
Eigen::BDCSVD::ArrayXi
Array< Index, 1, Dynamic > ArrayXi
Definition: BDCSVD.h:105
Eigen::BDCSVD::RowsAtCompileTime
@ RowsAtCompileTime
Definition: BDCSVD.h:88
Eigen::SVDBase::rows
Index rows() const
Definition: SVDBase.h:212
m
Matrix3f m
Definition: AngleAxis_mimic_euler.cpp:1
Eigen::SVDBase::cols
Index cols() const
Definition: SVDBase.h:213
head
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE FixedSegmentReturnType< internal::get_fixed_value< NType >::value >::Type head(NType n)
Definition: BlockMethods.h:1208
ceres::pow
Jet< T, N > pow(const Jet< T, N > &f, double g)
Definition: jet.h:570
conj
AnnoyingScalar conj(const AnnoyingScalar &x)
Definition: AnnoyingScalar.h:104
Eigen::MatrixBase::bdcSvd
BDCSVD< PlainObject > bdcSvd(unsigned int computationOptions=0) const
Definition: BDCSVD.h:1359
Eigen::Map
A matrix or vector expression mapping an existing array of data.
Definition: Map.h:94
Eigen::BDCSVD::divide
void divide(Index firstCol, Index lastCol, Index firstRowW, Index firstColW, Index shift)
Definition: BDCSVD.h:411
Eigen::SVDBase::computeU
bool computeU() const
Definition: SVDBase.h:208
Eigen::BDCSVD::computeSVDofM
void computeSVDofM(Index firstCol, Index n, MatrixXr &U, VectorType &singVals, MatrixXr &V)
Definition: BDCSVD.h:595
lambda
static double lambda[]
Definition: jv.c:524
matrix
Map< Matrix< T, Dynamic, Dynamic, ColMajor >, 0, OuterStride<> > matrix(T *data, int rows, int cols, int stride)
Definition: gtsam/3rdparty/Eigen/blas/common.h:110
Eigen::BDCSVD::BDCSVD
BDCSVD(const MatrixType &matrix, unsigned int computationOptions=0)
Constructor performing the decomposition of given matrix.
Definition: BDCSVD.h:140
tree::f
Point2(* f)(const Point3 &, OptionalJacobian< 2, 3 >)
Definition: testExpression.cpp:218
Eigen::internal::UpperBidiagonalization::householderV
const HouseholderVSequenceType householderV()
Definition: UpperBidiagonalization.h:76
RealScalar
NumTraits< Scalar >::Real RealScalar
Definition: bench_gemm.cpp:47
Eigen::BDCSVD::m_naiveV
MatrixXr m_naiveV
Definition: BDCSVD.h:195
right
static char right
Definition: blas_interface.hh:61
Eigen::JacobiSVD
Two-sided Jacobi SVD decomposition of a rectangular matrix.
Definition: ForwardDeclarations.h:278
a
ArrayXXi a
Definition: Array_initializer_list_23_cxx11.cpp:1
Eigen::BDCSVD::Base
SVDBase< BDCSVD > Base
Definition: BDCSVD.h:75
Eigen::BDCSVD::allocate
void allocate(Index rows, Index cols, unsigned int computationOptions)
Definition: BDCSVD.h:222
Eigen::numext::abs2
EIGEN_DEVICE_FUNC bool abs2(bool x)
Definition: Eigen/src/Core/MathFunctions.h:1294
Eigen::Ref
A matrix or vector expression mapping an existing expression.
Definition: Ref.h:281
Eigen::BDCSVD::m_isTranspose
bool m_isTranspose
Definition: BDCSVD.h:201
Eigen::BDCSVD::deflation44
void deflation44(Index firstColu, Index firstColm, Index firstRowW, Index firstColW, Index i, Index j, Index size)
Definition: BDCSVD.h:1140
Eigen::BDCSVD::IndicesRef
Ref< ArrayXi > IndicesRef
Definition: BDCSVD.h:107
Eigen::internal::traits
Definition: ForwardDeclarations.h:17
Eigen::BDCSVD::compute
BDCSVD & compute(const MatrixType &matrix, unsigned int computationOptions)
Method performing the decomposition of given matrix using custom options.
Definition: BDCSVD.h:245
Eigen::BDCSVD::DiagSizeAtCompileTime
@ DiagSizeAtCompileTime
Definition: BDCSVD.h:90
Eigen::BDCSVD::VectorType
Matrix< RealScalar, Dynamic, 1 > VectorType
Definition: BDCSVD.h:103
Eigen::BDCSVD::MaxColsAtCompileTime
@ MaxColsAtCompileTime
Definition: BDCSVD.h:92
Eigen::BDCSVD::deflation
void deflation(Index firstCol, Index lastCol, Index k, Index firstRowW, Index firstColW, Index shift)
Definition: BDCSVD.h:1180
p
float * p
Definition: Tutorial_Map_using.cpp:9
A1
static const double A1[]
Definition: expn.h:6
Eigen::VectorBlock
Expression of a fixed-size or dynamic-size sub-vector.
Definition: ForwardDeclarations.h:85
Eigen::internal::UpperBidiagonalization::householderU
const HouseholderUSequenceType householderU() const
Definition: UpperBidiagonalization.h:70
Eigen::SVDBase::m_diagSize
Index m_diagSize
Definition: SVDBase.h:280
Eigen::BDCSVD::m_numIters
int m_numIters
Definition: BDCSVD.h:216
min
#define min(a, b)
Definition: datatypes.h:19
Eigen::BDCSVD::SingularValuesType
Base::SingularValuesType SingularValuesType
Definition: BDCSVD.h:99
Eigen::BDCSVD::m_naiveU
MatrixXr m_naiveU
Definition: BDCSVD.h:195
U
@ U
Definition: testDecisionTree.cpp:349
V
MatrixXcd V
Definition: EigenSolver_EigenSolver_MatrixType.cpp:15
Eigen::Matrix< Scalar, RowsAtCompileTime, RowsAtCompileTime, MatrixOptions, MaxRowsAtCompileTime, MaxRowsAtCompileTime >
Eigen::BDCSVD::perturbCol0
void perturbCol0(const ArrayRef &col0, const ArrayRef &diag, const IndicesRef &perm, const VectorType &singVals, const ArrayRef &shifts, const ArrayRef &mus, ArrayRef zhat)
Definition: BDCSVD.h:986
Eigen::numext::abs
EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE internal::enable_if< NumTraits< T >::IsSigned||NumTraits< T >::IsComplex, typename NumTraits< T >::Real >::type abs(const T &x)
Definition: Eigen/src/Core/MathFunctions.h:1511
abs
#define abs(x)
Definition: datatypes.h:17
Eigen::InvalidInput
@ InvalidInput
Definition: Constants.h:449
internal
Definition: BandTriangularSolver.h:13
VectorType
Definition: FFTW.cpp:65
Eigen::SVDBase::m_isInitialized
bool m_isInitialized
Definition: SVDBase.h:276
Eigen::internal::UpperBidiagonalization::bidiagonal
const BidiagonalType & bidiagonal() const
Definition: UpperBidiagonalization.h:68
cols
int cols
Definition: Tutorial_commainit_02.cpp:1
pos
Definition: example-NearestNeighbor.cpp:32
Eigen::BDCSVD::MatrixXr
Matrix< RealScalar, Dynamic, Dynamic, ColMajor > MatrixXr
Definition: BDCSVD.h:102
max
#define max(a, b)
Definition: datatypes.h:20
swap
int EIGEN_BLAS_FUNC() swap(int *n, RealScalar *px, int *incx, RealScalar *py, int *incy)
Definition: level1_impl.h:130
Eigen::SVDBase::m_matrixV
MatrixVType m_matrixV
Definition: SVDBase.h:273
Eigen::internal::UpperBidiagonalization
Definition: UpperBidiagonalization.h:20
Eigen::prod
const Product< Lhs, Rhs > prod(const Lhs &lhs, const Rhs &rhs)
Definition: evaluators.cpp:8
Eigen::NumTraits
Holds information about the various numeric (i.e. scalar) types allowed by Eigen.
Definition: NumTraits.h:232
ceres::sqrt
Jet< T, N > sqrt(const Jet< T, N > &f)
Definition: jet.h:418
i
int i
Definition: BiCGSTAB_step_by_step.cpp:9
EIGEN_SIZE_MIN_PREFER_FIXED
#define EIGEN_SIZE_MIN_PREFER_FIXED(a, b)
Definition: Macros.h:1302
Eigen::BDCSVD::Literal
NumTraits< RealScalar >::Literal Literal
Definition: BDCSVD.h:86
Eigen::BDCSVD::m_compV
bool m_compV
Definition: BDCSVD.h:201
Eigen::BDCSVD::RealScalar
NumTraits< typename MatrixType::Scalar >::Real RealScalar
Definition: BDCSVD.h:85
Scalar
SCALAR Scalar
Definition: bench_gemm.cpp:46
Eigen::BDCSVD::m_algoswap
int m_algoswap
Definition: BDCSVD.h:200
Eigen::Index
EIGEN_DEFAULT_DENSE_INDEX_TYPE Index
The Index type as used for the API.
Definition: Meta.h:74
Eigen::Aligned
@ Aligned
Definition: Constants.h:240
Eigen::BDCSVD::m_computed
MatrixXr m_computed
Definition: BDCSVD.h:196


gtsam
Author(s):
autogenerated on Sat Nov 16 2024 04:01:54