evaluators.cpp
Go to the documentation of this file.
1 
2 #include "main.h"
3 
4 namespace Eigen {
5 
6  template<typename Lhs,typename Rhs>
7  const Product<Lhs,Rhs>
8  prod(const Lhs& lhs, const Rhs& rhs)
9  {
10  return Product<Lhs,Rhs>(lhs,rhs);
11  }
12 
13  template<typename Lhs,typename Rhs>
15  lazyprod(const Lhs& lhs, const Rhs& rhs)
16  {
17  return Product<Lhs,Rhs,LazyProduct>(lhs,rhs);
18  }
19 
20  template<typename DstXprType, typename SrcXprType>
22  DstXprType& copy_using_evaluator(const EigenBase<DstXprType> &dst, const SrcXprType &src)
23  {
25  return dst.const_cast_derived();
26  }
27 
28  template<typename DstXprType, template <typename> class StorageBase, typename SrcXprType>
30  const DstXprType& copy_using_evaluator(const NoAlias<DstXprType, StorageBase>& dst, const SrcXprType &src)
31  {
33  return dst.expression();
34  }
35 
36  template<typename DstXprType, typename SrcXprType>
38  DstXprType& copy_using_evaluator(const PlainObjectBase<DstXprType> &dst, const SrcXprType &src)
39  {
40  #ifdef EIGEN_NO_AUTOMATIC_RESIZING
41  eigen_assert((dst.size()==0 || (IsVectorAtCompileTime ? (dst.size() == src.size())
42  : (dst.rows() == src.rows() && dst.cols() == src.cols())))
43  && "Size mismatch. Automatic resizing is disabled because EIGEN_NO_AUTOMATIC_RESIZING is defined");
44  #else
45  dst.const_cast_derived().resizeLike(src.derived());
46  #endif
47 
49  return dst.const_cast_derived();
50  }
51 
52  template<typename DstXprType, typename SrcXprType>
53  void add_assign_using_evaluator(const DstXprType& dst, const SrcXprType& src)
54  {
55  typedef typename DstXprType::Scalar Scalar;
56  call_assignment(const_cast<DstXprType&>(dst), src.derived(), internal::add_assign_op<Scalar,typename SrcXprType::Scalar>());
57  }
58 
59  template<typename DstXprType, typename SrcXprType>
60  void subtract_assign_using_evaluator(const DstXprType& dst, const SrcXprType& src)
61  {
62  typedef typename DstXprType::Scalar Scalar;
63  call_assignment(const_cast<DstXprType&>(dst), src.derived(), internal::sub_assign_op<Scalar,typename SrcXprType::Scalar>());
64  }
65 
66  template<typename DstXprType, typename SrcXprType>
67  void multiply_assign_using_evaluator(const DstXprType& dst, const SrcXprType& src)
68  {
69  typedef typename DstXprType::Scalar Scalar;
70  call_assignment(dst.const_cast_derived(), src.derived(), internal::mul_assign_op<Scalar,typename SrcXprType::Scalar>());
71  }
72 
73  template<typename DstXprType, typename SrcXprType>
74  void divide_assign_using_evaluator(const DstXprType& dst, const SrcXprType& src)
75  {
76  typedef typename DstXprType::Scalar Scalar;
77  call_assignment(dst.const_cast_derived(), src.derived(), internal::div_assign_op<Scalar,typename SrcXprType::Scalar>());
78  }
79 
80  template<typename DstXprType, typename SrcXprType>
81  void swap_using_evaluator(const DstXprType& dst, const SrcXprType& src)
82  {
83  typedef typename DstXprType::Scalar Scalar;
84  call_assignment(dst.const_cast_derived(), src.const_cast_derived(), internal::swap_assign_op<Scalar>());
85  }
86 
87  namespace internal {
88  template<typename Dst, template <typename> class StorageBase, typename Src, typename Func>
89  EIGEN_DEVICE_FUNC void call_assignment(const NoAlias<Dst,StorageBase>& dst, const Src& src, const Func& func)
90  {
92  }
93 
94  template<typename Dst, template <typename> class StorageBase, typename Src, typename Func>
96  {
98  }
99  }
100 
101 }
102 
103 template<typename XprType> long get_cost(const XprType& ) { return Eigen::internal::evaluator<XprType>::CoeffReadCost; }
104 
105 using namespace std;
106 
107 #define VERIFY_IS_APPROX_EVALUATOR(DEST,EXPR) VERIFY_IS_APPROX(copy_using_evaluator(DEST,(EXPR)), (EXPR).eval());
108 #define VERIFY_IS_APPROX_EVALUATOR2(DEST,EXPR,REF) VERIFY_IS_APPROX(copy_using_evaluator(DEST,(EXPR)), (REF).eval());
109 
111 {
112  // Testing Matrix evaluator and Transpose
113  Vector2d v = Vector2d::Random();
114  const Vector2d v_const(v);
115  Vector2d v2;
116  RowVector2d w;
117 
119  VERIFY_IS_APPROX_EVALUATOR(v2, v_const);
120 
121  // Testing Transpose
122  VERIFY_IS_APPROX_EVALUATOR(w, v.transpose()); // Transpose as rvalue
123  VERIFY_IS_APPROX_EVALUATOR(w, v_const.transpose());
124 
125  copy_using_evaluator(w.transpose(), v); // Transpose as lvalue
126  VERIFY_IS_APPROX(w,v.transpose().eval());
127 
128  copy_using_evaluator(w.transpose(), v_const);
129  VERIFY_IS_APPROX(w,v_const.transpose().eval());
130 
131  // Testing Array evaluator
132  {
133  ArrayXXf a(2,3);
134  ArrayXXf b(3,2);
135  a << 1,2,3, 4,5,6;
136  const ArrayXXf a_const(a);
137 
138  VERIFY_IS_APPROX_EVALUATOR(b, a.transpose());
139 
140  VERIFY_IS_APPROX_EVALUATOR(b, a_const.transpose());
141 
142  // Testing CwiseNullaryOp evaluator
143  copy_using_evaluator(w, RowVector2d::Random());
144  VERIFY((w.array() >= -1).all() && (w.array() <= 1).all()); // not easy to test ...
145 
146  VERIFY_IS_APPROX_EVALUATOR(w, RowVector2d::Zero());
147 
148  VERIFY_IS_APPROX_EVALUATOR(w, RowVector2d::Constant(3));
149 
150  // mix CwiseNullaryOp and transpose
151  VERIFY_IS_APPROX_EVALUATOR(w, Vector2d::Zero().transpose());
152  }
153 
154  {
155  // test product expressions
156  int s = internal::random<int>(1,100);
157  MatrixXf a(s,s), b(s,s), c(s,s), d(s,s);
158  a.setRandom();
159  b.setRandom();
160  c.setRandom();
161  d.setRandom();
163  VERIFY_IS_APPROX_EVALUATOR(d, (a + b).transpose());
165  VERIFY_IS_APPROX_EVALUATOR2(d.noalias(), prod(a,b), a*b);
168  VERIFY_IS_APPROX_EVALUATOR2(d, prod(a,b).transpose(), (a*b).transpose());
170 
171  // check that prod works even with aliasing present
172  c = a*a;
175 
176  // check compound assignment of products
177  d = c;
178  add_assign_using_evaluator(c.noalias(), prod(a,b));
179  d.noalias() += a*b;
180  VERIFY_IS_APPROX(c, d);
181 
182  d = c;
184  d.noalias() -= a*b;
185  VERIFY_IS_APPROX(c, d);
186  }
187 
188  {
189  // test product with all possible sizes
190  int s = internal::random<int>(1,100);
191  Matrix<float, 1, 1> m11, res11; m11.setRandom(1,1);
192  Matrix<float, 1, 4> m14, res14; m14.setRandom(1,4);
193  Matrix<float, 1,Dynamic> m1X, res1X; m1X.setRandom(1,s);
194  Matrix<float, 4, 1> m41, res41; m41.setRandom(4,1);
195  Matrix<float, 4, 4> m44, res44; m44.setRandom(4,4);
196  Matrix<float, 4,Dynamic> m4X, res4X; m4X.setRandom(4,s);
197  Matrix<float,Dynamic, 1> mX1, resX1; mX1.setRandom(s,1);
198  Matrix<float,Dynamic, 4> mX4, resX4; mX4.setRandom(s,4);
199  Matrix<float,Dynamic,Dynamic> mXX, resXX; mXX.setRandom(s,s);
200 
201  VERIFY_IS_APPROX_EVALUATOR2(res11, prod(m11,m11), m11*m11);
202  VERIFY_IS_APPROX_EVALUATOR2(res11, prod(m14,m41), m14*m41);
203  VERIFY_IS_APPROX_EVALUATOR2(res11, prod(m1X,mX1), m1X*mX1);
204  VERIFY_IS_APPROX_EVALUATOR2(res14, prod(m11,m14), m11*m14);
205  VERIFY_IS_APPROX_EVALUATOR2(res14, prod(m14,m44), m14*m44);
206  VERIFY_IS_APPROX_EVALUATOR2(res14, prod(m1X,mX4), m1X*mX4);
207  VERIFY_IS_APPROX_EVALUATOR2(res1X, prod(m11,m1X), m11*m1X);
208  VERIFY_IS_APPROX_EVALUATOR2(res1X, prod(m14,m4X), m14*m4X);
209  VERIFY_IS_APPROX_EVALUATOR2(res1X, prod(m1X,mXX), m1X*mXX);
210  VERIFY_IS_APPROX_EVALUATOR2(res41, prod(m41,m11), m41*m11);
211  VERIFY_IS_APPROX_EVALUATOR2(res41, prod(m44,m41), m44*m41);
212  VERIFY_IS_APPROX_EVALUATOR2(res41, prod(m4X,mX1), m4X*mX1);
213  VERIFY_IS_APPROX_EVALUATOR2(res44, prod(m41,m14), m41*m14);
214  VERIFY_IS_APPROX_EVALUATOR2(res44, prod(m44,m44), m44*m44);
215  VERIFY_IS_APPROX_EVALUATOR2(res44, prod(m4X,mX4), m4X*mX4);
216  VERIFY_IS_APPROX_EVALUATOR2(res4X, prod(m41,m1X), m41*m1X);
217  VERIFY_IS_APPROX_EVALUATOR2(res4X, prod(m44,m4X), m44*m4X);
218  VERIFY_IS_APPROX_EVALUATOR2(res4X, prod(m4X,mXX), m4X*mXX);
219  VERIFY_IS_APPROX_EVALUATOR2(resX1, prod(mX1,m11), mX1*m11);
220  VERIFY_IS_APPROX_EVALUATOR2(resX1, prod(mX4,m41), mX4*m41);
221  VERIFY_IS_APPROX_EVALUATOR2(resX1, prod(mXX,mX1), mXX*mX1);
222  VERIFY_IS_APPROX_EVALUATOR2(resX4, prod(mX1,m14), mX1*m14);
223  VERIFY_IS_APPROX_EVALUATOR2(resX4, prod(mX4,m44), mX4*m44);
224  VERIFY_IS_APPROX_EVALUATOR2(resX4, prod(mXX,mX4), mXX*mX4);
225  VERIFY_IS_APPROX_EVALUATOR2(resXX, prod(mX1,m1X), mX1*m1X);
226  VERIFY_IS_APPROX_EVALUATOR2(resXX, prod(mX4,m4X), mX4*m4X);
227  VERIFY_IS_APPROX_EVALUATOR2(resXX, prod(mXX,mXX), mXX*mXX);
228  }
229 
230  {
231  ArrayXXf a(2,3);
232  ArrayXXf b(3,2);
233  a << 1,2,3, 4,5,6;
234  const ArrayXXf a_const(a);
235 
236  // this does not work because Random is eval-before-nested:
237  // copy_using_evaluator(w, Vector2d::Random().transpose());
238 
239  // test CwiseUnaryOp
241  VERIFY_IS_APPROX_EVALUATOR(w, (3 * v).transpose());
242  VERIFY_IS_APPROX_EVALUATOR(b, (a + 3).transpose());
243  VERIFY_IS_APPROX_EVALUATOR(b, (2 * a_const + 3).transpose());
244 
245  // test CwiseBinaryOp
246  VERIFY_IS_APPROX_EVALUATOR(v2, v + Vector2d::Ones());
247  VERIFY_IS_APPROX_EVALUATOR(w, (v + Vector2d::Ones()).transpose().cwiseProduct(RowVector2d::Constant(3)));
248 
249  // dynamic matrices and arrays
250  MatrixXd mat1(6,6), mat2(6,6);
251  VERIFY_IS_APPROX_EVALUATOR(mat1, MatrixXd::Identity(6,6));
253  copy_using_evaluator(mat2.transpose(), mat1);
254  VERIFY_IS_APPROX(mat2.transpose(), mat1);
255 
256  ArrayXXd arr1(6,6), arr2(6,6);
257  VERIFY_IS_APPROX_EVALUATOR(arr1, ArrayXXd::Constant(6,6, 3.0));
258  VERIFY_IS_APPROX_EVALUATOR(arr2, arr1);
259 
260  // test automatic resizing
261  mat2.resize(3,3);
263  arr2.resize(9,9);
264  VERIFY_IS_APPROX_EVALUATOR(arr2, arr1);
265 
266  // test direct traversal
267  Matrix3f m3;
268  Array33f a3;
269  VERIFY_IS_APPROX_EVALUATOR(m3, Matrix3f::Identity()); // matrix, nullary
270  // TODO: find a way to test direct traversal with array
271  VERIFY_IS_APPROX_EVALUATOR(m3.transpose(), Matrix3f::Identity().transpose()); // transpose
272  VERIFY_IS_APPROX_EVALUATOR(m3, 2 * Matrix3f::Identity()); // unary
273  VERIFY_IS_APPROX_EVALUATOR(m3, Matrix3f::Identity() + Matrix3f::Zero()); // binary
274  VERIFY_IS_APPROX_EVALUATOR(m3.block(0,0,2,2), Matrix3f::Identity().block(1,1,2,2)); // block
275 
276  // test linear traversal
277  VERIFY_IS_APPROX_EVALUATOR(m3, Matrix3f::Zero()); // matrix, nullary
278  VERIFY_IS_APPROX_EVALUATOR(a3, Array33f::Zero()); // array
279  VERIFY_IS_APPROX_EVALUATOR(m3.transpose(), Matrix3f::Zero().transpose()); // transpose
280  VERIFY_IS_APPROX_EVALUATOR(m3, 2 * Matrix3f::Zero()); // unary
281  VERIFY_IS_APPROX_EVALUATOR(m3, Matrix3f::Zero() + m3); // binary
282 
283  // test inner vectorization
284  Matrix4f m4, m4src = Matrix4f::Random();
285  Array44f a4, a4src = Matrix4f::Random();
286  VERIFY_IS_APPROX_EVALUATOR(m4, m4src); // matrix
287  VERIFY_IS_APPROX_EVALUATOR(a4, a4src); // array
288  VERIFY_IS_APPROX_EVALUATOR(m4.transpose(), m4src.transpose()); // transpose
289  // TODO: find out why Matrix4f::Zero() does not allow inner vectorization
290  VERIFY_IS_APPROX_EVALUATOR(m4, 2 * m4src); // unary
291  VERIFY_IS_APPROX_EVALUATOR(m4, m4src + m4src); // binary
292 
293  // test linear vectorization
294  MatrixXf mX(6,6), mXsrc = MatrixXf::Random(6,6);
295  ArrayXXf aX(6,6), aXsrc = ArrayXXf::Random(6,6);
296  VERIFY_IS_APPROX_EVALUATOR(mX, mXsrc); // matrix
297  VERIFY_IS_APPROX_EVALUATOR(aX, aXsrc); // array
298  VERIFY_IS_APPROX_EVALUATOR(mX.transpose(), mXsrc.transpose()); // transpose
299  VERIFY_IS_APPROX_EVALUATOR(mX, MatrixXf::Zero(6,6)); // nullary
300  VERIFY_IS_APPROX_EVALUATOR(mX, 2 * mXsrc); // unary
301  VERIFY_IS_APPROX_EVALUATOR(mX, mXsrc + mXsrc); // binary
302 
303  // test blocks and slice vectorization
304  VERIFY_IS_APPROX_EVALUATOR(m4, (mXsrc.block<4,4>(1,0)));
305  VERIFY_IS_APPROX_EVALUATOR(aX, ArrayXXf::Constant(10, 10, 3.0).block(2, 3, 6, 6));
306 
307  Matrix4f m4ref = m4;
308  copy_using_evaluator(m4.block(1, 1, 2, 3), m3.bottomRows(2));
309  m4ref.block(1, 1, 2, 3) = m3.bottomRows(2);
310  VERIFY_IS_APPROX(m4, m4ref);
311 
312  mX.setIdentity(20,20);
313  MatrixXf mXref = MatrixXf::Identity(20,20);
314  mXsrc = MatrixXf::Random(9,12);
315  copy_using_evaluator(mX.block(4, 4, 9, 12), mXsrc);
316  mXref.block(4, 4, 9, 12) = mXsrc;
317  VERIFY_IS_APPROX(mX, mXref);
318 
319  // test Map
320  const float raw[3] = {1,2,3};
321  float buffer[3] = {0,0,0};
322  Vector3f v3;
323  Array3f a3f;
326  Vector3f::Map(buffer) = 2*v3;
327  VERIFY(buffer[0] == 2);
328  VERIFY(buffer[1] == 4);
329  VERIFY(buffer[2] == 6);
330 
331  // test CwiseUnaryView
332  mat1.setRandom();
333  mat2.setIdentity();
334  MatrixXcd matXcd(6,6), matXcd_ref(6,6);
335  copy_using_evaluator(matXcd.real(), mat1);
336  copy_using_evaluator(matXcd.imag(), mat2);
337  matXcd_ref.real() = mat1;
338  matXcd_ref.imag() = mat2;
339  VERIFY_IS_APPROX(matXcd, matXcd_ref);
340 
341  // test Select
342  VERIFY_IS_APPROX_EVALUATOR(aX, (aXsrc > 0).select(aXsrc, -aXsrc));
343 
344  // test Replicate
345  mXsrc = MatrixXf::Random(6, 6);
346  VectorXf vX = VectorXf::Random(6);
347  mX.resize(6, 6);
348  VERIFY_IS_APPROX_EVALUATOR(mX, mXsrc.colwise() + vX);
349  matXcd.resize(12, 12);
350  VERIFY_IS_APPROX_EVALUATOR(matXcd, matXcd_ref.replicate(2,2));
351  VERIFY_IS_APPROX_EVALUATOR(matXcd, (matXcd_ref.replicate<2,2>()));
352 
353  // test partial reductions
354  VectorXd vec1(6);
355  VERIFY_IS_APPROX_EVALUATOR(vec1, mat1.rowwise().sum());
356  VERIFY_IS_APPROX_EVALUATOR(vec1, mat1.colwise().sum().transpose());
357 
358  // test MatrixWrapper and ArrayWrapper
359  mat1.setRandom(6,6);
360  arr1.setRandom(6,6);
361  VERIFY_IS_APPROX_EVALUATOR(mat2, arr1.matrix());
362  VERIFY_IS_APPROX_EVALUATOR(arr2, mat1.array());
363  VERIFY_IS_APPROX_EVALUATOR(mat2, (arr1 + 2).matrix());
364  VERIFY_IS_APPROX_EVALUATOR(arr2, mat1.array() + 2);
365  mat2.array() = arr1 * arr1;
366  VERIFY_IS_APPROX(mat2, (arr1 * arr1).matrix());
367  arr2.matrix() = MatrixXd::Identity(6,6);
368  VERIFY_IS_APPROX(arr2, MatrixXd::Identity(6,6).array());
369 
370  // test Reverse
371  VERIFY_IS_APPROX_EVALUATOR(arr2, arr1.reverse());
372  VERIFY_IS_APPROX_EVALUATOR(arr2, arr1.colwise().reverse());
373  VERIFY_IS_APPROX_EVALUATOR(arr2, arr1.rowwise().reverse());
374  arr2.reverse() = arr1;
375  VERIFY_IS_APPROX(arr2, arr1.reverse());
376  mat2.array() = mat1.array().reverse();
377  VERIFY_IS_APPROX(mat2.array(), mat1.array().reverse());
378 
379  // test Diagonal
380  VERIFY_IS_APPROX_EVALUATOR(vec1, mat1.diagonal());
381  vec1.resize(5);
382  VERIFY_IS_APPROX_EVALUATOR(vec1, mat1.diagonal(1));
383  VERIFY_IS_APPROX_EVALUATOR(vec1, mat1.diagonal<-1>());
384  vec1.setRandom();
385 
386  mat2 = mat1;
387  copy_using_evaluator(mat1.diagonal(1), vec1);
388  mat2.diagonal(1) = vec1;
389  VERIFY_IS_APPROX(mat1, mat2);
390 
391  copy_using_evaluator(mat1.diagonal<-1>(), mat1.diagonal(1));
392  mat2.diagonal<-1>() = mat2.diagonal(1);
393  VERIFY_IS_APPROX(mat1, mat2);
394  }
395 
396  {
397  // test swapping
398  MatrixXd mat1, mat2, mat1ref, mat2ref;
399  mat1ref = mat1 = MatrixXd::Random(6, 6);
400  mat2ref = mat2 = 2 * mat1 + MatrixXd::Identity(6, 6);
401  swap_using_evaluator(mat1, mat2);
402  mat1ref.swap(mat2ref);
403  VERIFY_IS_APPROX(mat1, mat1ref);
404  VERIFY_IS_APPROX(mat2, mat2ref);
405 
406  swap_using_evaluator(mat1.block(0, 0, 3, 3), mat2.block(3, 3, 3, 3));
407  mat1ref.block(0, 0, 3, 3).swap(mat2ref.block(3, 3, 3, 3));
408  VERIFY_IS_APPROX(mat1, mat1ref);
409  VERIFY_IS_APPROX(mat2, mat2ref);
410 
411  swap_using_evaluator(mat1.row(2), mat2.col(3).transpose());
412  mat1.row(2).swap(mat2.col(3).transpose());
413  VERIFY_IS_APPROX(mat1, mat1ref);
414  VERIFY_IS_APPROX(mat2, mat2ref);
415  }
416 
417  {
418  // test compound assignment
419  const Matrix4d mat_const = Matrix4d::Random();
420  Matrix4d mat, mat_ref;
421  mat = mat_ref = Matrix4d::Identity();
422  add_assign_using_evaluator(mat, mat_const);
423  mat_ref += mat_const;
424  VERIFY_IS_APPROX(mat, mat_ref);
425 
426  subtract_assign_using_evaluator(mat.row(1), 2*mat.row(2));
427  mat_ref.row(1) -= 2*mat_ref.row(2);
428  VERIFY_IS_APPROX(mat, mat_ref);
429 
430  const ArrayXXf arr_const = ArrayXXf::Random(5,3);
431  ArrayXXf arr, arr_ref;
432  arr = arr_ref = ArrayXXf::Constant(5, 3, 0.5);
434  arr_ref *= arr_const;
435  VERIFY_IS_APPROX(arr, arr_ref);
436 
437  divide_assign_using_evaluator(arr.row(1), arr.row(2) + 1);
438  arr_ref.row(1) /= (arr_ref.row(2) + 1);
439  VERIFY_IS_APPROX(arr, arr_ref);
440  }
441 
442  {
443  // test triangular shapes
444  MatrixXd A = MatrixXd::Random(6,6), B(6,6), C(6,6), D(6,6);
445  A.setRandom();B.setRandom();
446  VERIFY_IS_APPROX_EVALUATOR2(B, A.triangularView<Upper>(), MatrixXd(A.triangularView<Upper>()));
447 
448  A.setRandom();B.setRandom();
449  VERIFY_IS_APPROX_EVALUATOR2(B, A.triangularView<UnitLower>(), MatrixXd(A.triangularView<UnitLower>()));
450 
451  A.setRandom();B.setRandom();
452  VERIFY_IS_APPROX_EVALUATOR2(B, A.triangularView<UnitUpper>(), MatrixXd(A.triangularView<UnitUpper>()));
453 
454  A.setRandom();B.setRandom();
455  C = B; C.triangularView<Upper>() = A;
456  copy_using_evaluator(B.triangularView<Upper>(), A);
457  VERIFY(B.isApprox(C) && "copy_using_evaluator(B.triangularView<Upper>(), A)");
458 
459  A.setRandom();B.setRandom();
460  C = B; C.triangularView<Lower>() = A.triangularView<Lower>();
461  copy_using_evaluator(B.triangularView<Lower>(), A.triangularView<Lower>());
462  VERIFY(B.isApprox(C) && "copy_using_evaluator(B.triangularView<Lower>(), A.triangularView<Lower>())");
463 
464 
465  A.setRandom();B.setRandom();
466  C = B; C.triangularView<Lower>() = A.triangularView<Upper>().transpose();
467  copy_using_evaluator(B.triangularView<Lower>(), A.triangularView<Upper>().transpose());
468  VERIFY(B.isApprox(C) && "copy_using_evaluator(B.triangularView<Lower>(), A.triangularView<Lower>().transpose())");
469 
470 
471  A.setRandom();B.setRandom(); C = B; D = A;
472  C.triangularView<Upper>().swap(D.triangularView<Upper>());
473  swap_using_evaluator(B.triangularView<Upper>(), A.triangularView<Upper>());
474  VERIFY(B.isApprox(C) && "swap_using_evaluator(B.triangularView<Upper>(), A.triangularView<Upper>())");
475 
476 
477  VERIFY_IS_APPROX_EVALUATOR2(B, prod(A.triangularView<Upper>(),A), MatrixXd(A.triangularView<Upper>()*A));
478 
479  VERIFY_IS_APPROX_EVALUATOR2(B, prod(A.selfadjointView<Upper>(),A), MatrixXd(A.selfadjointView<Upper>()*A));
480  }
481 
482  {
483  // test diagonal shapes
484  VectorXd d = VectorXd::Random(6);
485  MatrixXd A = MatrixXd::Random(6,6), B(6,6);
486  A.setRandom();B.setRandom();
487 
488  VERIFY_IS_APPROX_EVALUATOR2(B, lazyprod(d.asDiagonal(),A), MatrixXd(d.asDiagonal()*A));
489  VERIFY_IS_APPROX_EVALUATOR2(B, lazyprod(A,d.asDiagonal()), MatrixXd(A*d.asDiagonal()));
490  }
491 
492  {
493  // test CoeffReadCost
494  Matrix4d a, b;
495  VERIFY_IS_EQUAL( get_cost(a), 1 );
496  VERIFY_IS_EQUAL( get_cost(a+b), 3);
497  VERIFY_IS_EQUAL( get_cost(2*a+b), 4);
498  VERIFY_IS_EQUAL( get_cost(a*b), 1);
499  VERIFY_IS_EQUAL( get_cost(a.lazyProduct(b)), 15);
500  VERIFY_IS_EQUAL( get_cost(a*(a*b)), 1);
501  VERIFY_IS_EQUAL( get_cost(a.lazyProduct(a*b)), 15);
502  VERIFY_IS_EQUAL( get_cost(a*(a+b)), 1);
503  VERIFY_IS_EQUAL( get_cost(a.lazyProduct(a+b)), 15);
504  }
505 
506  // regression test for PR 544 and bug 1622 (introduced in #71609c4)
507  {
508  // test restricted_packet_assignment with an unaligned destination
509  const size_t M = 2;
510  const size_t K = 2;
511  const size_t N = 5;
512  float *destMem = new float[(M*N) + 1];
513  float *dest = (internal::UIntPtr(destMem)%EIGEN_MAX_ALIGN_BYTES) == 0 ? destMem+1 : destMem;
514 
517 
520  internal::call_restricted_packet_assignment(z.noalias(), tmp.derived(), internal::assign_op<float, float>());
521 
522  VERIFY_IS_APPROX(z, a*b);
523  delete[] destMem;
524  }
525 }
w
RowVector3d w
Definition: Matrix_resize_int.cpp:3
Eigen::internal::Lhs
@ Lhs
Definition: TensorContractionMapper.h:19
get_cost
long get_cost(const XprType &)
Definition: evaluators.cpp:103
EIGEN_DEVICE_FUNC
#define EIGEN_DEVICE_FUNC
Definition: Macros.h:976
Eigen
Namespace containing all symbols from the Eigen library.
Definition: jet.h:637
B
Matrix< SCALARB, Dynamic, Dynamic, opt_B > B
Definition: bench_gemm.cpp:49
Eigen::PlainObjectBase< Matrix< _Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols > >::setRandom
Matrix< _Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols > & setRandom(Index size)
Definition: Random.h:151
D
MatrixXcd D
Definition: EigenSolver_EigenSolver_MatrixType.cpp:14
array
int array[24]
Definition: Map_general_stride.cpp:1
Eigen::internal::call_restricted_packet_assignment
EIGEN_DEVICE_FUNC void call_restricted_packet_assignment(const NoAlias< Dst, StorageBase > &dst, const Src &src, const Func &func)
Definition: evaluators.cpp:95
Eigen::internal::UIntPtr
std::size_t UIntPtr
Definition: Meta.h:92
s
RealScalar s
Definition: level1_cplx_impl.h:126
Eigen::CwiseBinaryOp
Generic expression where a coefficient-wise binary operator is applied to two expressions.
Definition: CwiseBinaryOp.h:77
d
static const double d[K][N]
Definition: igam.h:11
mat1
MatrixXd mat1(size, size)
Eigen::lazyprod
const Product< Lhs, Rhs, LazyProduct > lazyprod(const Lhs &lhs, const Rhs &rhs)
Definition: evaluators.cpp:15
VERIFY_IS_EQUAL
#define VERIFY_IS_EQUAL(a, b)
Definition: main.h:386
c
Scalar Scalar * c
Definition: benchVecAdd.cpp:17
b
Scalar * b
Definition: benchVecAdd.cpp:17
Eigen::EigenBase
Definition: EigenBase.h:29
eigen_assert
#define eigen_assert(x)
Definition: Macros.h:1037
Eigen::UnitUpper
@ UnitUpper
Definition: Constants.h:219
Eigen::Upper
@ Upper
Definition: Constants.h:211
buffer
Definition: pytypes.h:2270
mat
MatrixXf mat
Definition: Tutorial_AdvancedInitialization_CommaTemporary.cpp:1
Eigen::internal::call_assignment_no_alias
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void call_assignment_no_alias(Dst &dst, const Src &src, const Func &func)
Definition: AssignEvaluator.h:873
Eigen::NoAlias
Pseudo expression providing an operator = assuming no aliasing.
Definition: NoAlias.h:31
Eigen::subtract_assign_using_evaluator
void subtract_assign_using_evaluator(const DstXprType &dst, const SrcXprType &src)
Definition: evaluators.cpp:60
Eigen::add_assign_using_evaluator
void add_assign_using_evaluator(const DstXprType &dst, const SrcXprType &src)
Definition: evaluators.cpp:53
block
m m block(1, 0, 2, 2)<< 4
VERIFY_IS_APPROX_EVALUATOR2
#define VERIFY_IS_APPROX_EVALUATOR2(DEST, EXPR, REF)
Definition: evaluators.cpp:108
A
Matrix< SCALARA, Dynamic, Dynamic, opt_A > A
Definition: bench_gemm.cpp:48
Eigen::internal::call_restricted_packet_assignment_no_alias
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void call_restricted_packet_assignment_no_alias(Dst &dst, const Src &src, const Func &func)
Definition: AssignEvaluator.h:895
Eigen::multiply_assign_using_evaluator
void multiply_assign_using_evaluator(const DstXprType &dst, const SrcXprType &src)
Definition: evaluators.cpp:67
align_3::a3
Point2 a3
Definition: testPose2.cpp:771
Eigen::copy_using_evaluator
EIGEN_STRONG_INLINE DstXprType & copy_using_evaluator(const PlainObjectBase< DstXprType > &dst, const SrcXprType &src)
Definition: evaluators.cpp:38
Eigen::swap_using_evaluator
void swap_using_evaluator(const DstXprType &dst, const SrcXprType &src)
Definition: evaluators.cpp:81
Eigen::internal::mul_assign_op
Definition: AssignmentFunctors.h:89
Eigen::PlainObjectBase::resizeLike
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void resizeLike(const EigenBase< OtherDerived > &_other)
Definition: PlainObjectBase.h:354
Eigen::PlainObjectBase::rows
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE EIGEN_CONSTEXPR Index rows() const EIGEN_NOEXCEPT
Definition: PlainObjectBase.h:143
Eigen::internal::swap_assign_op
Definition: AssignmentFunctors.h:142
EIGEN_STRONG_INLINE
#define EIGEN_STRONG_INLINE
Definition: Macros.h:917
Eigen::internal::call_assignment
EIGEN_DEVICE_FUNC void call_assignment(const NoAlias< Dst, StorageBase > &dst, const Src &src, const Func &func)
Definition: evaluators.cpp:89
std::swap
void swap(GeographicLib::NearestNeighbor< dist_t, pos_t, distfun_t > &a, GeographicLib::NearestNeighbor< dist_t, pos_t, distfun_t > &b)
Definition: NearestNeighbor.hpp:827
EIGEN_MAX_ALIGN_BYTES
#define EIGEN_MAX_ALIGN_BYTES
Definition: ConfigureVectorization.h:175
Eigen::PlainObjectBase
Definition: PlainObjectBase.h:98
Eigen::Product< Lhs, Rhs >
Eigen::NoAlias::expression
EIGEN_DEVICE_FUNC ExpressionType & expression() const
Definition: NoAlias.h:64
pybind_wrapper_test_script.z
z
Definition: pybind_wrapper_test_script.py:61
Eigen::internal::evaluator
Definition: CoreEvaluators.h:90
Eigen::Lower
@ Lower
Definition: Constants.h:209
Eigen::Map
A matrix or vector expression mapping an existing array of data.
Definition: Map.h:94
VERIFY_IS_APPROX_EVALUATOR
#define VERIFY_IS_APPROX_EVALUATOR(DEST, EXPR)
Definition: evaluators.cpp:107
matrix
Map< Matrix< T, Dynamic, Dynamic, ColMajor >, 0, OuterStride<> > matrix(T *data, int rows, int cols, int stride)
Definition: gtsam/3rdparty/Eigen/blas/common.h:110
Eigen::internal::div_assign_op
Definition: AssignmentFunctors.h:110
VERIFY_IS_APPROX
#define VERIFY_IS_APPROX(a, b)
Definition: integer_types.cpp:15
Eigen::internal::assign_op
Definition: AssignmentFunctors.h:21
m3
static const DiscreteKey m3(M(3), 2)
a
ArrayXXi a
Definition: Array_initializer_list_23_cxx11.cpp:1
arr
py::array arr
Definition: test_numpy_array.cpp:77
C
Matrix< Scalar, Dynamic, Dynamic > C
Definition: bench_gemm.cpp:50
Eigen::PlainObjectBase::cols
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE EIGEN_CONSTEXPR Index cols() const EIGEN_NOEXCEPT
Definition: PlainObjectBase.h:145
K
#define K
Definition: igam.h:8
EIGEN_DECLARE_TEST
EIGEN_DECLARE_TEST(evaluators)
Definition: evaluators.cpp:110
main.h
Eigen::internal::Rhs
@ Rhs
Definition: TensorContractionMapper.h:18
std
Definition: BFloat16.h:88
Eigen::internal::sub_assign_op
Definition: AssignmentFunctors.h:67
v2
Vector v2
Definition: testSerializationBase.cpp:39
v
Array< int, Dynamic, 1 > v
Definition: Array_initializer_list_vector_cxx11.cpp:1
Eigen::Matrix
The matrix class, also used for vectors and row-vectors.
Definition: 3rdparty/Eigen/Eigen/src/Core/Matrix.h:178
Eigen::internal::add_assign_op
Definition: AssignmentFunctors.h:46
N
#define N
Definition: igam.h:9
internal
Definition: BandTriangularSolver.h:13
v3
Vector v3
Definition: testSerializationBase.cpp:40
func
Definition: benchGeometry.cpp:23
Eigen::UnitLower
@ UnitLower
Definition: Constants.h:217
prod
EIGEN_DONT_INLINE void prod(const Lhs &a, const Rhs &b, Res &c)
Definition: product_threshold.cpp:39
Eigen::LazyProduct
@ LazyProduct
Definition: Constants.h:500
Eigen::EigenBase::const_cast_derived
EIGEN_DEVICE_FUNC Derived & const_cast_derived() const
Definition: EigenBase.h:52
Eigen::internal::call_assignment
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void call_assignment(Dst &dst, const Src &src)
Definition: AssignEvaluator.h:834
Eigen::prod
const Product< Lhs, Rhs > prod(const Lhs &lhs, const Rhs &rhs)
Definition: evaluators.cpp:8
vec1
RowVectorXd vec1(3)
Eigen::copy_using_evaluator
EIGEN_STRONG_INLINE DstXprType & copy_using_evaluator(const EigenBase< DstXprType > &dst, const SrcXprType &src)
Definition: evaluators.cpp:22
Scalar
SCALAR Scalar
Definition: bench_gemm.cpp:46
VERIFY
#define VERIFY(a)
Definition: main.h:380
Eigen::divide_assign_using_evaluator
void divide_assign_using_evaluator(const DstXprType &dst, const SrcXprType &src)
Definition: evaluators.cpp:74
M
Matrix< RealScalar, Dynamic, Dynamic > M
Definition: bench_gemm.cpp:51


gtsam
Author(s):
autogenerated on Sat Nov 16 2024 04:02:16