Template Class RtEiquadprog
Defined in File eiquadprog-rt.hpp
Class Documentation
-
template<int nVars, int nEqCon, int nIneqCon>
class RtEiquadprog Public Functions
-
EIGEN_MAKE_ALIGNED_OPERATOR_NEW RtEiquadprog()
-
virtual ~RtEiquadprog()
-
inline int getMaxIter() const
-
inline bool setMaxIter(int maxIter)
-
inline int getActiveSetSize() const
- Returns:
The size of the active set, namely the number of active constraints (including the equalities).
-
inline int getIteratios() const
- Returns:
The number of active-set iteratios.
-
inline double getObjValue() const
- Returns:
The value of the objective function.
-
inline const RtVectorX<nIneqCon + nEqCon>::d &getLagrangeMultipliers() const
- Returns:
The Lagrange multipliers
-
inline const RtVectorX<nIneqCon + nEqCon>::i &getActiveSet() const
Return the active set, namely the indeces of active constraints. The first nEqCon indexes are for the equalities and are negative. The last nIneqCon indexes are for the inequalities and start from 0. Only the first q elements of the return vector are valid, where q is the size of the active set.
- Returns:
The set of indexes of the active constraints.
-
RtEiquadprog_status solve_quadprog(const typename RtMatrixX<nVars, nVars>::d &Hess, const typename RtVectorX<nVars>::d &g0, const typename RtMatrixX<nEqCon, nVars>::d &CE, const typename RtVectorX<nEqCon>::d &ce0, const typename RtMatrixX<nIneqCon, nVars>::d &CI, const typename RtVectorX<nIneqCon>::d &ci0, typename RtVectorX<nVars>::d &x)
solves the problem min. x’ Hess x + 2 g0’ x s.t. CE x + ce0 = 0 CI x + ci0 >= 0
-
EIGEN_MAKE_ALIGNED_OPERATOR_NEW RtEiquadprog()