00001 /* 00002 * Software License Agreement (BSD License) 00003 * 00004 * Copyright (c) 2010, Willow Garage, Inc. 00005 * All rights reserved. 00006 * 00007 * Redistribution and use in source and binary forms, with or without 00008 * modification, are permitted provided that the following conditions 00009 * are met: 00010 * 00011 * * Redistributions of source code must retain the above copyright 00012 * notice, this list of conditions and the following disclaimer. 00013 * * Redistributions in binary form must reproduce the above 00014 * copyright notice, this list of conditions and the following 00015 * disclaimer in the documentation and/or other materials provided 00016 * with the distribution. 00017 * * Neither the name of Willow Garage, Inc. nor the names of its 00018 * contributors may be used to endorse or promote products derived 00019 * from this software without specific prior written permission. 00020 * 00021 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 00022 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 00023 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS 00024 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE 00025 * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, 00026 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, 00027 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; 00028 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER 00029 * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 00030 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN 00031 * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 00032 * POSSIBILITY OF SUCH DAMAGE. 00033 * 00034 */ 00035 00036 #ifndef DOMINANT_PLANE_SEGMENTATION_H_ 00037 #define DOMINANT_PLANE_SEGMENTATION_H_ 00038 00039 #include <pcl/common/common.h> 00040 #include <pcl/point_cloud.h> 00041 #include <pcl/point_types.h> 00042 #include <pcl/console/parse.h> 00043 #include <pcl/filters/voxel_grid.h> 00044 #include <pcl/filters/passthrough.h> 00045 #include <pcl/filters/extract_indices.h> 00046 #include <pcl/features/normal_3d.h> 00047 #include <pcl/search/pcl_search.h> 00048 #include <pcl/sample_consensus/method_types.h> 00049 #include <pcl/sample_consensus/model_types.h> 00050 #include <pcl/segmentation/sac_segmentation.h> 00051 #include <pcl/filters/project_inliers.h> 00052 #include <pcl/surface/convex_hull.h> 00053 #include <pcl/segmentation/extract_polygonal_prism_data.h> 00054 #include <pcl/segmentation/extract_clusters.h> 00055 00056 namespace pcl 00057 { 00058 namespace apps 00059 { 00065 template<typename PointType> 00066 class PCL_EXPORTS DominantPlaneSegmentation 00067 { 00068 public: 00069 typedef pcl::PointCloud<PointType> Cloud; 00070 typedef typename Cloud::Ptr CloudPtr; 00071 typedef typename Cloud::ConstPtr CloudConstPtr; 00072 typedef typename pcl::search::KdTree<PointType>::Ptr KdTreePtr; 00073 00074 DominantPlaneSegmentation () 00075 { 00076 min_z_bounds_ = 0; 00077 max_z_bounds_ = 1.5; 00078 object_min_height_ = 0.01; 00079 object_max_height_ = 0.7; 00080 object_cluster_tolerance_ = 0.05f; 00081 object_cluster_min_size_ = 500; 00082 k_ = 50; 00083 sac_distance_threshold_ = 0.01; 00084 downsample_leaf_ = 0.005f; 00085 wsize_ = 5; 00086 } 00087 00088 /* \brief Extract the clusters. 00089 * \param clusters Clusters extracted from the initial point cloud at the resolution size 00090 * specified by downsample_leaf_ 00091 */ 00092 void 00093 compute (std::vector<CloudPtr> & clusters); 00094 00095 /* \brief Extract the clusters. 00096 * \param clusters Clusters extracted from the initial point cloud. The returned 00097 * clusters are not downsampled. 00098 */ 00099 void 00100 compute_full (std::vector<CloudPtr> & clusters); 00101 00102 /* \brief Extract clusters on a plane using connected components on an organized pointcloud. 00103 * The method expects a the input cloud to have the is_dense attribute set to false. 00104 * \param clusters Clusters extracted from the initial point cloud. The returned 00105 * clusters are not downsampled. 00106 */ 00107 void 00108 compute_fast (std::vector<CloudPtr> & clusters); 00109 00110 /* \brief Computes the table plane. 00111 */ 00112 void 00113 compute_table_plane(); 00114 00115 /* \brief Sets the input point cloud. 00116 * \param cloud_in The input point cloud. 00117 */ 00118 void 00119 setInputCloud (CloudPtr & cloud_in) 00120 { 00121 input_ = cloud_in; 00122 } 00123 00124 /* \brief Returns the table coefficients after computation 00125 * \param model represents the normal and the position of the plane (a,b,c,d) 00126 */ 00127 void 00128 getTableCoefficients (Eigen::Vector4f & model) 00129 { 00130 model = table_coeffs_; 00131 } 00132 00133 /* \brief Sets minimum distance between clusters 00134 * \param d distance (in meters) 00135 */ 00136 void 00137 setDistanceBetweenClusters (float d) 00138 { 00139 object_cluster_tolerance_ = d; 00140 } 00141 00142 /* \brief Sets minimum size of the clusters. 00143 * \param size number of points 00144 */ 00145 void 00146 setMinClusterSize (int size) 00147 { 00148 object_cluster_min_size_ = size; 00149 } 00150 00151 /* \brief Sets the min height of the clusters in order to be considered. 00152 * \param h minimum height (in meters) 00153 */ 00154 void 00155 setObjectMinHeight (double h) 00156 { 00157 object_min_height_ = h; 00158 } 00159 00160 /* \brief Sets the max height of the clusters in order to be considered. 00161 * \param h max height (in meters) 00162 */ 00163 void 00164 setObjectMaxHeight (double h) 00165 { 00166 object_max_height_ = h; 00167 } 00168 00169 /* \brief Sets minimum distance from the camera for a point to be considered. 00170 * \param z distance (in meters) 00171 */ 00172 void 00173 setMinZBounds (double z) 00174 { 00175 min_z_bounds_ = z; 00176 } 00177 /* \brief Sets maximum distance from the camera for a point to be considered. 00178 * \param z distance (in meters) 00179 */ 00180 void 00181 setMaxZBounds (double z) 00182 { 00183 max_z_bounds_ = z; 00184 } 00185 00186 /* \brief Sets the number of neighbors used for normal estimation. 00187 * \param k number of neighbors 00188 */ 00189 void setKNeighbors(int k) { 00190 k_ = k; 00191 } 00192 00193 /* \brief Set threshold for SAC plane segmentation 00194 * \param d threshold (in meters) 00195 */ 00196 void setSACThreshold(double d) { 00197 sac_distance_threshold_ = d; 00198 } 00199 00200 /* \brief Set downsampling resolution. 00201 * \param d resolution (in meters) 00202 */ 00203 void 00204 setDownsamplingSize (float d) 00205 { 00206 downsample_leaf_ = d; 00207 } 00208 00209 /* \brief Set window size in pixels for CC used in compute_fast method 00210 * \param w window size (in pixels) 00211 */ 00212 void setWSize(int w) { 00213 wsize_ = w; 00214 } 00215 00216 /* \brief Returns the indices of the clusters found by the segmentation 00217 * NOTE: This function returns only valid indices if the compute_fast method is used 00218 * \param indices indices of the clusters 00219 */ 00220 void getIndicesClusters(std::vector<pcl::PointIndices> & indices) { 00221 indices = indices_clusters_; 00222 } 00223 00224 private: 00225 00226 int 00227 check (pcl::PointXYZI & p1, pcl::PointXYZI & p2, float, float max_dist) 00228 { 00229 if (p1.intensity == 0) //new label 00230 return 1; 00231 else 00232 { 00233 //compute distance and check aginst max_dist 00234 if ((p1.getVector3fMap () - p2.getVector3fMap ()).norm () <= max_dist) 00235 { 00236 p2.intensity = p1.intensity; 00237 return 0; 00238 } 00239 else //new label 00240 return 1; 00241 } 00242 } 00243 00244 //components needed for cluster segmentation and plane extraction 00245 pcl::PassThrough<PointType> pass_; 00246 pcl::VoxelGrid<PointType> grid_; 00247 pcl::NormalEstimation<PointType, pcl::Normal> n3d_; 00248 pcl::SACSegmentationFromNormals<PointType, pcl::Normal> seg_; 00249 pcl::ProjectInliers<PointType> proj_; 00250 pcl::ProjectInliers<PointType> bb_cluster_proj_; 00251 pcl::ConvexHull<PointType> hull_; 00252 pcl::ExtractPolygonalPrismData<PointType> prism_; 00253 pcl::EuclideanClusterExtraction<PointType> cluster_; 00254 00256 CloudPtr input_; 00258 Eigen::Vector4f table_coeffs_; 00260 float downsample_leaf_; 00262 int k_; 00264 double min_z_bounds_; 00266 double max_z_bounds_; 00268 double sac_distance_threshold_; 00270 double object_min_height_; 00272 double object_max_height_; 00274 float object_cluster_tolerance_; 00276 int object_cluster_min_size_; 00278 int wsize_; 00280 std::vector<pcl::PointIndices> indices_clusters_; 00281 00282 }; 00283 } 00284 } 00285 00286 #ifdef PCL_NO_PRECOMPILE 00287 #include <pcl/apps/impl/dominant_plane_segmentation.hpp> 00288 #endif 00289 00290 #endif /* DOMINANT_PLANE_SEGMENTATION_H_ */