14 std::ifstream ifs0((
dataPath +
"default-convert.yaml").c_str());
20 std::ifstream ifs1((
dataPath +
"default.yaml").c_str());
23 std::ifstream ifs2((
dataPath +
"unit_tests/badIcpConfig_InvalidParameter.yaml").c_str());
26 std::ifstream ifs3((
dataPath +
"unit_tests/badIcpConfig_InvalidModuleType.yaml").c_str());
29 std::ifstream ifs4((
dataPath +
"add_descriptor_config.yaml").c_str());
36 std::istringstream is;
37 std::ostringstream os;
81 pts = IO::loadCSV(is);
101 pts = IO::loadCSV(is);
121 pts = IO::loadCSV(is);
132 "x, y, z, nx, ny, nz\n"
141 pts = IO::loadCSV(is);
150 int64_t time0 = 1410264593275569438;
151 int64_t time1 = 1410264593325569391;
152 int64_t time2 = 1410264593425569295;
153 int64_t time3 = 1410264593522569417;
159 "1, 1, 1, " << time0 <<
"\n"
160 "2, 1, 1, " << time1 <<
"\n"
161 "3, 1, 1, " << time2 <<
"\n"
162 "4, 1, 1, " << time3 <<
"\n"
168 pts = IO::loadCSV(is);
187 std::istringstream is;
198 "format binary_big_endian 1.0\n"
228 "property float grrrr\n"
229 "property float nz\n"
230 "property float ny\n"
231 "property float nx\n"
233 "3 2 1 99 33 22 11\n"
234 "3 2 1 99 33 22 11\n"
236 "3 2 1 99 33 22 11 3 2 1 99 33 22 11\n"
237 "3 2 1 99 33 22 11\n"
241 DP pointCloud = IO::loadPLY(is);
261 std::istringstream is;
273 "# .PCD v.7 - Point Cloud Data file format\n"
282 "# .PCD v.7 - Point Cloud Data file format\n"
290 "VIEWPOINT 0 0 0 1 0 0 0\n"
300 "# .PCD v.7 - Point Cloud Data file format\n"
302 "FIELDS x y z grrr\n"
308 "VIEWPOINT 0 0 0 1 0 0 0\n"
311 "0.44912094 0.49084857 1.153 22\n"
312 "0.34907714 0.48914573 1.149 22\n"
313 "0.33813429 0.48914573 1.149 22\n"
314 "0.32833049 0.49084857 1.153 22\n"
315 "0.24395333 0.42856666 0.98900002 22\n"
316 "0.20816095 0.42856666 0.98900002 22\n"
317 "0.1987419 0.42291525 0.98900002 22\n"
318 "0.18178761 0.42291525 0.98900002 22\n"
319 "0.17990381 0.42291525 0.98900002 22\n"
320 "-0.035590474 0.42997143 1.01 22\n"
321 "-0.035907622 0.43962574 1.0190001 22\n"
322 "-0.043542858 0.43639618 1.016 22\n"
323 "-0.15246001 0.36058003 0.84700006 22\n"
324 "0.21956001 0.44007048 0.99800003 22\n"
325 "-0.16635144 0.3699457 0.86900002 22\n"
326 "-0.33879143 0.36143145 0.84900004 22\n"
327 "-0.35055432 0.36853144 0.85800004 22\n"
328 "-0.39932001 0.38058859 0.89400005 22\n"
331 DP pointCloud = IO::loadPCD(is);
353 addRandomFeature(
"x", 1);
354 addRandomFeature(
"y", 1);
355 addRandomFeature(
"z", 1);
356 ptCloud.addFeature(
"pad", PM::Matrix::Ones(1, nbPts));
358 addRandomDescriptor(
"normals",3);
359 addRandomDescriptor(
"eigValues",3);
360 addRandomDescriptor(
"eigVectors",9);
361 addRandomDescriptor(
"color",4);
366 ptCloud.addFeature(featureName,PM::Matrix::Random(rows, nbPts));
371 ptCloud.addDescriptor(descriptorName, PM::Matrix::Random(rows, nbPts));
374 virtual void loadSaveTest(
const string& testFileName,
bool plyFormat =
false,
const int nbPts = 10,
bool binary =
false,
unsigned precision=12)
376 this->testFileName = testFileName;
378 if (plyFormat || binary) {
380 int pointCount(ptCloud.features.cols());
381 int descRows(ptCloud.descriptors.rows());
382 bool datawithColor = ptCloud.descriptorExists(
"color");
383 int colorStartingRow = ptCloud.getDescriptorStartingRow(
"color");
384 int colorEndRow = colorStartingRow + ptCloud.getDescriptorDimension(
"color");
385 for (
int p = 0; p < pointCount; ++p)
387 for (
int d = 0; d < descRows; ++d)
389 if (datawithColor && d >= colorStartingRow && d < colorEndRow) {
390 if (ptCloud.descriptors(d, p) < 0) { ptCloud.descriptors.coeffRef(d, p) = -(ptCloud.descriptors(d, p)); }
391 ptCloud.descriptors.coeffRef(d, p) = (
static_cast<unsigned>(ptCloud.descriptors(d, p) * 255.0)) / 255.0;
397 ptCloud.save(testFileName, binary, precision);
399 ptCloudFromFile =
DP::load(testFileName);
401 EXPECT_TRUE(ptCloudFromFile.features.cols() == ptCloud.features.cols());
402 EXPECT_TRUE(ptCloudFromFile.descriptorExists(
"normals",3));
403 EXPECT_TRUE(ptCloudFromFile.getDescriptorViewByName(
"normals").isApprox(ptCloud.getDescriptorViewByName(
"normals")));
404 EXPECT_TRUE(ptCloudFromFile.descriptorExists(
"eigValues",3));
405 EXPECT_TRUE(ptCloudFromFile.getDescriptorViewByName(
"eigValues").isApprox(ptCloud.getDescriptorViewByName(
"eigValues")));
406 EXPECT_TRUE(ptCloudFromFile.descriptorExists(
"eigVectors",9));
407 EXPECT_TRUE(ptCloudFromFile.getDescriptorViewByName(
"eigVectors").isApprox(ptCloud.getDescriptorViewByName(
"eigVectors")));
408 EXPECT_TRUE(ptCloudFromFile.descriptorExists(
"color",4));
409 if (plyFormat || binary) {
410 EXPECT_TRUE(((ptCloudFromFile.getDescriptorViewByName(
"color") * 255.0)).isApprox((ptCloud.getDescriptorViewByName(
"color") * 255.0), 1.0));
412 EXPECT_TRUE(ptCloudFromFile.getDescriptorViewByName(
"color").isApprox(ptCloud.getDescriptorViewByName(
"color")));
415 EXPECT_TRUE(ptCloudFromFile.features.isApprox(ptCloud.features));
421 EXPECT_TRUE(std::filesystem::remove(std::filesystem::path(testFileName)));
436 ptCloud.addDescriptor(
"genericScalar", PM::Matrix::Random(1, nbPts));
437 ptCloud.addDescriptor(
"genericVector", PM::Matrix::Random(3, nbPts));
438 ptCloud.addTime(
"genericTime", PM::Int64Matrix::Random(1, nbPts));
440 loadSaveTest(
dataPath +
"unit_test.vtk");
442 EXPECT_TRUE(ptCloudFromFile.descriptorExists(
"genericScalar",1));
443 EXPECT_TRUE(ptCloudFromFile.descriptorExists(
"genericVector",3));
444 EXPECT_TRUE(ptCloudFromFile.timeExists(
"genericTime",1));
450 ptCloud.addDescriptor(
"genericScalar", PM::Matrix::Random(1, nbPts));
451 ptCloud.addDescriptor(
"genericVector", PM::Matrix::Random(3, nbPts));
452 ptCloud.addTime(
"genericTime", PM::Int64Matrix::Random(1, nbPts));
454 loadSaveTest(
dataPath +
"unit_test.bin.vtk",
false, 10,
true);
456 EXPECT_TRUE(ptCloudFromFile.descriptorExists(
"genericScalar",1));
457 EXPECT_TRUE(ptCloudFromFile.descriptorExists(
"genericVector",3));
458 EXPECT_TRUE(ptCloudFromFile.timeExists(
"genericTime",1));
463 loadSaveTest(
dataPath +
"unit_test.ply",
true);
468 loadSaveTest(
dataPath +
"unit_test.bin.ply",
true, 1,
true);
473 loadSaveTest(
dataPath +
"unit_test.pcd");
478 loadSaveTest(
dataPath +
"unit_test.csv");