TensorContraction.h
Go to the documentation of this file.
1 // This file is part of Eigen, a lightweight C++ template library
2 // for linear algebra.
3 //
4 // Copyright (C) 2014 Benoit Steiner <benoit.steiner.goog@gmail.com>
5 //
6 // This Source Code Form is subject to the terms of the Mozilla
7 // Public License v. 2.0. If a copy of the MPL was not distributed
8 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
9 
10 #ifndef EIGEN_CXX11_TENSOR_TENSOR_CONTRACTION_H
11 #define EIGEN_CXX11_TENSOR_TENSOR_CONTRACTION_H
12 
13 namespace Eigen {
14 
22 namespace internal {
23 
24 template<typename Dimensions, typename LhsXprType, typename RhsXprType, typename OutputKernelType>
25 struct traits<TensorContractionOp<Dimensions, LhsXprType, RhsXprType, OutputKernelType> >
26 {
27  // Type promotion to handle the case where the types of the lhs and the rhs are different.
30 
35  typedef typename LhsXprType::Nested LhsNested;
36  typedef typename RhsXprType::Nested RhsNested;
39 
40  // From NumDims below.
42  static const int Layout = traits<LhsXprType>::Layout;
47 
48  enum {
49  Flags = 0
50  };
51 };
52 
53 template<typename Dimensions, typename LhsXprType, typename RhsXprType, typename OutputKernelType>
54 struct eval<TensorContractionOp<Dimensions, LhsXprType, RhsXprType, OutputKernelType>, Eigen::Dense>
55 {
57 };
58 
59 template<typename Dimensions, typename LhsXprType, typename RhsXprType, typename OutputKernelType>
60 struct nested<TensorContractionOp<Dimensions, LhsXprType, RhsXprType, OutputKernelType>, 1, typename eval<TensorContractionOp<Dimensions, LhsXprType, RhsXprType, OutputKernelType> >::type>
61 {
63 };
64 
65 template<typename Indices_, typename LeftArgType_, typename RightArgType_, typename OutputKernelType_, typename Device_>
66 struct traits<TensorEvaluator<const TensorContractionOp<Indices_, LeftArgType_, RightArgType_, OutputKernelType_>, Device_> > {
67  typedef Indices_ Indices;
68  typedef LeftArgType_ LeftArgType;
69  typedef RightArgType_ RightArgType;
70  typedef OutputKernelType_ OutputKernelType;
71  typedef Device_ Device;
72 
73  // From NumDims below.
75 };
76 
77 // Helper class to allocate and deallocate temporary memory for packed buffers.
78 template <typename LhsScalar, typename RhsScalar>
80  typedef void* BlockMemHandle;
81 
82  template <typename Device>
83  EIGEN_DEVICE_FUNC static BlockMemHandle allocate(Device& d, const Index bm,
84  const Index bk,
85  const Index bn,
86  LhsScalar** lhs_block,
87  RhsScalar** rhs_block) {
88  eigen_assert(lhs_block);
89  eigen_assert(rhs_block);
90  BlockSizes sz = ComputeLhsRhsBlockSizes(bm, bk, bn);
91  char* block_mem = static_cast<char*>(d.allocate(sz.lhs_size + sz.rhs_size));
92  eigen_assert(block_mem);
93  *lhs_block = reinterpret_cast<LhsScalar*>(block_mem);
94  *rhs_block = reinterpret_cast<RhsScalar*>(block_mem + sz.lhs_size);
95  return block_mem;
96  }
97 
98  template <typename Device>
100  Device& d, const Index bm, const Index bk, const Index bn,
101  const Index num_lhs, const Index num_rhs, const Index num_slices,
102  std::vector<LhsScalar*>* lhs_blocks,
103  std::vector<RhsScalar*>* rhs_blocks) {
104  eigen_assert(num_slices > 0);
105  eigen_assert(num_lhs >= 0 && num_rhs >= 0);
106  eigen_assert(num_lhs == 0 || lhs_blocks);
107  eigen_assert(num_rhs == 0 || rhs_blocks);
108  BlockSizes sz = ComputeLhsRhsBlockSizes(bm, bk, bn);
109  void* block_mem = d.allocate(
110  (num_lhs * sz.lhs_size + num_rhs * sz.rhs_size) * num_slices);
111  eigen_assert(block_mem);
112  char* mem = static_cast<char*>(block_mem);
113 
114  for (Index x = 0; x < num_slices; x++) {
115  if (num_lhs > 0) lhs_blocks[x].resize(num_lhs);
116  for (Index m = 0; m < num_lhs; m++) {
117  lhs_blocks[x][m] = reinterpret_cast<LhsScalar*>(mem);
118  mem += sz.lhs_size;
119  }
120  if (num_rhs > 0) rhs_blocks[x].resize(num_rhs);
121  for (Index n = 0; n < num_rhs; n++) {
122  rhs_blocks[x][n] = reinterpret_cast<RhsScalar*>(mem);
123  mem += sz.rhs_size;
124  }
125  }
126 
127  return block_mem;
128  }
129 
130  template <typename Device>
132  d.deallocate(handle);
133  }
134 
135  private:
136  struct BlockSizes {
139  };
141  const Index bk,
142  const Index bn) {
144  BlockSizes sz;
145  sz.lhs_size = divup<Index>(bm * bk * sizeof(LhsScalar), align) * align;
146  sz.rhs_size = divup<Index>(bn * bk * sizeof(RhsScalar), align) * align;
147  return sz;
148  }
149 };
150 
151 // WARNING: In this code we assume that Lhs and Rhs tensor expressions are in
152 // ColMajor storage order. This property is guaranteed by the
153 // TensorContractionOp evaluator. TensorContractionKernel specifies how we pack
154 // blocks of Lhs and Rhs tensor expressions, and how we invoke matrix
155 // multiplication for these blocks. Default tensor contraction uses
156 // gemm_pack_rhs, gemm_pack_lhs and gebp_kernel from Eigen Core (see
157 // GeneralBlocPanelKernel.h for details).
158 //
159 // By specializing contraction kernels we can use other low level libraries to
160 // perform matrix multiplication, and still rely on Eigen contraction evaluator.
161 // This also includes full support in TensorContractionThreadPool, assuming that
162 // underlying gemm do not use it's own threading.
163 //
164 // - ResScalar/LhsScalar/RhsScalar - scalar type for the result of
165 // multiplication, lhs tensor and rhs tensor respectively.
166 //
167 // - StorageIndex - index type for the tensor expressions. In practice almost
168 // always is Eigen::Index.
169 //
170 // - OutputMapper provides access to the memory of the output matrix. In
171 // practice it's always column major blas_data_mapper (it must be of ResScalar
172 // type).
173 //
174 // - LhsMapper/RhsMapper similarly to blas_data_mapper provide a two dimensional
175 // view into the Lhs/Rhs tensor expressions. In practice it's
176 // TensorContractionInputMapper, or some specialization of it based on the
177 // type of tensor expression (e.g. TensorImagePatchOp has optimized input
178 // mapper).
179 template <typename ResScalar, typename LhsScalar, typename RhsScalar,
180  typename StorageIndex, typename OutputMapper, typename LhsMapper,
181  typename RhsMapper>
183  // True if `invoke()` supports `beta` in `C <- alpha * A * B + beta * C`
184  // (otherwise beta should be always equal to 1).
185  enum { HasBeta = false };
186 
188  TensorContractionKernel(StorageIndex m_, StorageIndex k_, StorageIndex n_,
189  StorageIndex bm_, StorageIndex bk_, StorageIndex bn_)
190  : m(m_), k(k_), n(n_), bm(bm_), bk(bk_), bn(bn_) {}
191 
192  // Pack blocks of Lhs and Rhs into contiguous blocks in memory.
193  typedef LhsScalar* LhsBlock;
194  typedef RhsScalar* RhsBlock;
195 
196  // Packed Lhs/Rhs block memory allocator.
200 
202 
203  typedef internal::gemm_pack_lhs<
204  LhsScalar, StorageIndex, typename LhsMapper::SubMapper, Traits::mr,
207 
208  typedef internal::gemm_pack_rhs<RhsScalar, StorageIndex,
209  typename RhsMapper::SubMapper, Traits::nr,
210  ColMajor>
212 
213  typedef internal::gebp_kernel<LhsScalar, RhsScalar, StorageIndex,
214  OutputMapper, Traits::mr, Traits::nr,
215  /*ConjugateLhs*/ false, /*ConjugateRhs*/ false>
217 
218  template <typename Device>
220  RhsBlock* rhs_block) {
221  return BlockMemAllocator::allocate(d, bm, bk, bn, lhs_block, rhs_block);
222  }
223 
224  template <typename Device>
226  Device& d, const StorageIndex num_lhs, const StorageIndex num_rhs,
227  const StorageIndex num_slices, std::vector<LhsBlock>* lhs_blocks,
228  std::vector<RhsBlock>* rhs_blocks) {
230  d, bm, bk, bn, num_lhs, num_rhs, num_slices, lhs_blocks, rhs_blocks);
231  }
232 
233  template <typename Device>
236  }
237 
239  LhsBlock* lhsBlock, const typename LhsMapper::SubMapper& data_mapper,
240  const StorageIndex depth, const StorageIndex rows) {
241  LhsPacker()(*lhsBlock, data_mapper, depth, rows, /*stride*/ 0,
242  /*offset*/ 0);
243  }
244 
246  RhsBlock* rhsBlock, const typename RhsMapper::SubMapper& data_mapper,
247  const StorageIndex depth, const StorageIndex cols) {
248  RhsPacker()(*rhsBlock, data_mapper, depth, cols);
249  }
250 
252  const OutputMapper& output_mapper, const LhsBlock& lhsBlock,
253  const RhsBlock& rhsBlock, const StorageIndex rows,
254  const StorageIndex depth, const StorageIndex cols,
255  const ResScalar alpha, const ResScalar beta) {
256  // Default GEBP kernel does not support beta.
257  eigen_assert(beta == ResScalar(1));
258  static const int kComputeStrideFromBlockDimensions = -1;
259  GebpKernel()(output_mapper, lhsBlock, rhsBlock, rows, depth, cols, alpha,
260  /*strideA*/ kComputeStrideFromBlockDimensions,
261  /*strideB*/ kComputeStrideFromBlockDimensions,
262  /*offsetA*/ 0, /*offsetB*/ 0);
263  }
264 
265  private:
266  // These are dimensions of the original Tensors, and selected block sizes. The
267  // actual block sizes passed to all function above might be smaller because of
268  // the partial blocks at the end.
269  const StorageIndex m;
270  const StorageIndex k;
271  const StorageIndex n;
272  const StorageIndex bm;
273  const StorageIndex bk;
274  const StorageIndex bn;
275 };
276 
277 } // end namespace internal
278 
279 // Tensor contraction params that should enable to get from output matrix
280 // 2-dimensional coordinates to the output tensor dimensions.
282  // TensorContraction evaluator assumes that both tensors are in ColMajor
283  // layout, if tensors are in RowMajor evaluator swap lhs with rhs.
285 };
286 
287 // Output kernel allows to fuse operations into the tensor contraction.
288 //
289 // Examples:
290 // 1. Elementwise Relu transformation following Conv2D.
291 // 2. AddBias to the Conv2D output channels dimension.
292 //
293 // The NoOpOutputKernel implements an output kernel that does absolutely nothing.
310  template <typename Index, typename Scalar>
314  Index j, Index num_rows, Index num_cols) const {
315  EIGEN_UNUSED_VARIABLE(output_mapper);
319  EIGEN_UNUSED_VARIABLE(num_rows);
320  EIGEN_UNUSED_VARIABLE(num_cols);
321  }
322 };
323 
324 template<typename Indices, typename LhsXprType, typename RhsXprType, typename OutputKernelType = const NoOpOutputKernel>
325 class TensorContractionOp : public TensorBase<TensorContractionOp<Indices, LhsXprType, RhsXprType, OutputKernelType>, ReadOnlyAccessors>
326 {
327  public:
329  typedef typename internal::gebp_traits<typename LhsXprType::CoeffReturnType,
330  typename RhsXprType::CoeffReturnType>::ResScalar CoeffReturnType;
334 
336  const LhsXprType& lhs, const RhsXprType& rhs, const Indices& dims,
337  const OutputKernelType& output_kernel = OutputKernelType())
338  : m_lhs_xpr(lhs), m_rhs_xpr(rhs), m_indices(dims),
339  m_output_kernel(output_kernel) {}
340 
342  const Indices& indices() const { return m_indices; }
343 
347  lhsExpression() const { return m_lhs_xpr; }
348 
351  rhsExpression() const { return m_rhs_xpr; }
352 
354  const OutputKernelType& outputKernel() const { return m_output_kernel; }
355 
356  protected:
357  typename LhsXprType::Nested m_lhs_xpr;
358  typename RhsXprType::Nested m_rhs_xpr;
360  const OutputKernelType m_output_kernel;
361 };
362 
363 
364 template<typename Derived>
366 {
372 
375  typedef typename XprType::Index Index;
380 
381  enum {
382  IsAligned = true,
384  BlockAccess = false,
387  CoordAccess = false, // to be implemented
388  RawAccess = true
389  };
390 
391  //===- Tensor block evaluation strategy (see TensorBlock.h) -------------===//
393  //===--------------------------------------------------------------------===//
394 
395  // Most of the code is assuming that both input tensors are ColMajor. If the
396  // inputs are RowMajor, we will "cheat" by swapping the LHS and RHS:
397  // If we want to compute A * B = C, where A is LHS and B is RHS, the code
398  // will pretend B is LHS and A is RHS.
399  typedef typename internal::conditional<
400  static_cast<int>(Layout) == static_cast<int>(ColMajor), LeftArgType, RightArgType>::type EvalLeftArgType;
401  typedef typename internal::conditional<
402  static_cast<int>(Layout) == static_cast<int>(ColMajor), RightArgType, LeftArgType>::type EvalRightArgType;
403 
406 
407  static const int LDims =
409  static const int RDims =
412  static const int NumDims = LDims + RDims - 2 * ContractDims;
413 
417 
419 
422  : m_leftImpl(choose(Cond<static_cast<int>(Layout) == static_cast<int>(ColMajor)>(),
423  op.lhsExpression(), op.rhsExpression()), device),
424  m_rightImpl(choose(Cond<static_cast<int>(Layout) == static_cast<int>(ColMajor)>(),
425  op.rhsExpression(), op.lhsExpression()), device),
426  m_device(device),
427  m_output_kernel(op.outputKernel()),
428  m_result(NULL) {
431  YOU_MADE_A_PROGRAMMING_MISTAKE);
432 
433 
434  DSizes<Index, LDims> eval_left_dims;
435  DSizes<Index, RDims> eval_right_dims;
436  array<IndexPair<Index>, ContractDims> eval_op_indices;
437  if (static_cast<int>(Layout) == static_cast<int>(ColMajor)) {
438  // For ColMajor, we keep using the existing dimensions
439  for (int i = 0; i < LDims; i++) {
440  eval_left_dims[i] = m_leftImpl.dimensions()[i];
441  }
442  for (int i = 0; i < RDims; i++) {
443  eval_right_dims[i] = m_rightImpl.dimensions()[i];
444  }
445  // We keep the pairs of contracting indices.
446  for (int i = 0; i < ContractDims; i++) {
447  eval_op_indices[i].first = op.indices()[i].first;
448  eval_op_indices[i].second = op.indices()[i].second;
449  }
450  } else {
451  // For RowMajor, we need to reverse the existing dimensions
452  for (int i = 0; i < LDims; i++) {
453  eval_left_dims[i] = m_leftImpl.dimensions()[LDims - i - 1];
454  }
455  for (int i = 0; i < RDims; i++) {
456  eval_right_dims[i] = m_rightImpl.dimensions()[RDims - i - 1];
457  }
458  // We need to flip all the pairs of contracting indices as well as
459  // reversing the dimensions.
460  for (int i = 0; i < ContractDims; i++) {
461  eval_op_indices[i].first = LDims - 1 - op.indices()[ContractDims - 1 - i].second;
462  eval_op_indices[i].second = RDims - 1 - op.indices()[ContractDims - 1 - i].first;
463  }
464  }
465 
466  // Check for duplicate axes and make sure the first index in eval_op_indices
467  // is increasing. Using O(n^2) sorting is OK since ContractDims is small
468  for (int i = 0; i < ContractDims; i++) {
469  for (int j = i + 1; j < ContractDims; j++) {
470  eigen_assert(eval_op_indices[j].first != eval_op_indices[i].first &&
471  eval_op_indices[j].second != eval_op_indices[i].second &&
472  "contraction axes should be unique");
473  if (eval_op_indices[j].first < eval_op_indices[i].first) {
474  numext::swap(eval_op_indices[j], eval_op_indices[i]);
475  }
476  }
477  }
478 
479  array<Index, LDims> lhs_strides;
480  lhs_strides[0] = 1;
481  for (int i = 0; i < LDims-1; ++i) {
482  lhs_strides[i+1] = lhs_strides[i] * eval_left_dims[i];
483  }
484 
485  array<Index, RDims> rhs_strides;
486  rhs_strides[0] = 1;
487  for (int i = 0; i < RDims-1; ++i) {
488  rhs_strides[i+1] = rhs_strides[i] * eval_right_dims[i];
489  }
490 
491  if (m_i_strides.size() > 0) m_i_strides[0] = 1;
492  if (m_j_strides.size() > 0) m_j_strides[0] = 1;
493  if (m_k_strides.size() > 0) m_k_strides[0] = 1;
494 
495  m_i_size = 1;
496  m_j_size = 1;
497  m_k_size = 1;
498 
499  // To compute the dimension, we simply concatenate the non-contracting
500  // dimensions of the left and then the right tensor. Additionally, we also
501  // compute the strides corresponding to the left non-contracting
502  // dimensions and right non-contracting dimensions.
504  int dim_idx = 0;
505  Index nocontract_idx = 0;
506 
507  for (int i = 0; i < LDims; i++) {
508  // find if we are contracting on index i of left tensor
509  bool contracting = false;
510  for (int j = 0; j < ContractDims; j++) {
511  if (eval_op_indices[j].first == i) {
512  contracting = true;
513  break;
514  }
515  }
516  if (!contracting) {
517  // add dimension size to output dimensions
518  m_dimensions[dim_idx] = eval_left_dims[i];
519  m_left_nocontract_strides[nocontract_idx] = lhs_strides[i];
520  if (dim_idx != i) {
522  }
523  if (nocontract_idx+1 < internal::array_size<left_nocontract_t>::value) {
524  m_i_strides[nocontract_idx+1] =
525  m_i_strides[nocontract_idx] * eval_left_dims[i];
526  } else {
527  m_i_size = m_i_strides[nocontract_idx] * eval_left_dims[i];
528  }
529  dim_idx++;
530  nocontract_idx++;
531  }
532  }
533 
534  nocontract_idx = 0;
535  for (int i = 0; i < RDims; i++) {
536  bool contracting = false;
537  // find if we are contracting on index i of right tensor
538  for (int j = 0; j < ContractDims; j++) {
539  if (eval_op_indices[j].second == i) {
540  contracting = true;
541  break;
542  }
543  }
544  if (!contracting) {
545  m_dimensions[dim_idx] = eval_right_dims[i];
546  if (nocontract_idx+1 < internal::array_size<right_nocontract_t>::value) {
547  m_j_strides[nocontract_idx+1] =
548  m_j_strides[nocontract_idx] * eval_right_dims[i];
549  } else {
550  m_j_size = m_j_strides[nocontract_idx] * eval_right_dims[i];
551  }
552  m_right_nocontract_strides[nocontract_idx] = rhs_strides[i];
553  dim_idx++;
554  nocontract_idx++;
555  }
556  }
557 
558  // Now compute the strides corresponding to the contracting dimensions. We
559  // assumed above that non-contracting axes are represented in the same order
560  // in the matrix as they are in the tensor. This is not the case for
561  // contracting axes. As the contracting axes must be of the same size in
562  // each tensor, we'll only look at the first tensor here.
565  for (int i = 0; i < ContractDims; i++) {
566  Index left = eval_op_indices[i].first;
567  Index right = eval_op_indices[i].second;
568 
569  Index size = eval_left_dims[left];
570  eigen_assert(size == eval_right_dims[right] &&
571  "Contraction axes must be same size");
572 
573  if (i+1 < static_cast<int>(internal::array_size<contract_t>::value)) {
574  m_k_strides[i+1] = m_k_strides[i] * size;
575  } else {
576  m_k_size = m_k_strides[i] * size;
577  }
578  m_left_contracting_strides[i] = lhs_strides[left];
579  m_right_contracting_strides[i] = rhs_strides[right];
580 
581  if (i > 0 && right < eval_op_indices[i-1].second) {
583  }
584  if (right != i) {
586  }
587  }
588 
589  // If the layout is RowMajor, we need to reverse the m_dimensions
590  if (static_cast<int>(Layout) == static_cast<int>(RowMajor)) {
591  for (int i = 0, j = NumDims - 1; i < j; i++, j--) {
593  }
594  }
595 
596  // A set of parameters that will allow output kernel to get from output
597  // tensor dimensions (i, j) into the original tensor dimensions.
598  // TODO(ezhulenev): Add parameters required to infer output tensor index for
599  // more complex contractions than 2x2 on internal dimension.
601  }
602 
604 
606  m_leftImpl.evalSubExprsIfNeeded(NULL);
607  m_rightImpl.evalSubExprsIfNeeded(NULL);
608  if (data) {
609  evalTo(data);
610  return false;
611  } else {
612  m_result = static_cast<EvaluatorPointerType>(m_device.allocate(dimensions().TotalSize() * sizeof(Scalar)));
613  evalTo(m_result);
614  return true;
615  }
616  }
617 
618 #ifdef EIGEN_USE_THREADS
619  template <typename EvalSubExprsCallback>
620  EIGEN_STRONG_INLINE void evalSubExprsIfNeededAsync(
621  EvaluatorPointerType dest, EvalSubExprsCallback done) {
622  m_leftImpl.evalSubExprsIfNeededAsync(nullptr, [this, done, dest](bool) {
623  m_rightImpl.evalSubExprsIfNeededAsync(nullptr, [this, done, dest](bool) {
624  if (dest) {
625  evalToAsync(dest, [done]() { done(false); });
626  } else {
627  m_result = static_cast<EvaluatorPointerType>(
628  m_device.allocate(dimensions().TotalSize() * sizeof(Scalar)));
629  evalToAsync(m_result, [done]() { done(true); });
630  }
631  });
632  });
633  }
634 #endif // EIGEN_USE_THREADS
635 
636 #ifndef TENSOR_CONTRACTION_DISPATCH
637 #define TENSOR_CONTRACTION_DISPATCH(METHOD, ALIGNMENT, ARGS) \
638  if (this->m_lhs_inner_dim_contiguous) { \
639  if (this->m_rhs_inner_dim_contiguous) { \
640  if (this->m_rhs_inner_dim_reordered) { \
641  METHOD<true, true, true, ALIGNMENT> ARGS; \
642  } else { \
643  METHOD<true, true, false, ALIGNMENT> ARGS; \
644  } \
645  } else { \
646  if (this->m_rhs_inner_dim_reordered) { \
647  METHOD<true, false, true, ALIGNMENT> ARGS; \
648  } else { \
649  METHOD<true, false, false, ALIGNMENT> ARGS; \
650  } \
651  } \
652  } else { \
653  if (this->m_rhs_inner_dim_contiguous) { \
654  if (this->m_rhs_inner_dim_reordered) { \
655  METHOD<false, true, true, ALIGNMENT> ARGS; \
656  } else { \
657  METHOD<false, true, false, ALIGNMENT> ARGS; \
658  } \
659  } else { \
660  if (this->m_rhs_inner_dim_reordered) { \
661  METHOD<false, false, true, ALIGNMENT> ARGS; \
662  } else { \
663  METHOD<false, false, false, ALIGNMENT> ARGS; \
664  } \
665  } \
666  }
667 #endif
668 
669 #ifndef TENSOR_CONTRACTION_ASYNC_DISPATCH
670 #define TENSOR_CONTRACTION_ASYNC_DISPATCH(METHOD, DONE, ALIGNMENT, ARGS, FN) \
671  if (this->m_lhs_inner_dim_contiguous) { \
672  if (this->m_rhs_inner_dim_contiguous) { \
673  if (this->m_rhs_inner_dim_reordered) { \
674  (new METHOD<DONE, true, true, true, ALIGNMENT> ARGS)->FN; \
675  } else { \
676  (new METHOD<DONE, true, true, false, ALIGNMENT> ARGS)->FN; \
677  } \
678  } else { \
679  if (this->m_rhs_inner_dim_reordered) { \
680  (new METHOD<DONE, true, false, true, ALIGNMENT> ARGS)->FN; \
681  } else { \
682  (new METHOD<DONE, true, false, false, ALIGNMENT> ARGS)->FN; \
683  } \
684  } \
685  } else { \
686  if (this->m_rhs_inner_dim_contiguous) { \
687  if (this->m_rhs_inner_dim_reordered) { \
688  (new METHOD<DONE, false, true, true, ALIGNMENT> ARGS)->FN; \
689  } else { \
690  (new METHOD<DONE, false, true, false, ALIGNMENT> ARGS)->FN; \
691  } \
692  } else { \
693  if (this->m_rhs_inner_dim_reordered) { \
694  (new METHOD<DONE, false, false, true, ALIGNMENT> ARGS)->FN; \
695  } else { \
696  (new METHOD<DONE, false, false, false, ALIGNMENT> ARGS)->FN; \
697  } \
698  } \
699  }
700 #endif
701 
703  static_cast<const Derived*>(this)->template evalProduct<Unaligned>(buffer);
704  }
705 
706 #ifdef EIGEN_USE_THREADS
707  template <typename EvalToCallback>
708  void evalToAsync(Scalar* buffer, EvalToCallback done) const {
709  static_cast<const Derived*>(this)
710  ->template evalProductAsync<EvalToCallback, Unaligned>(buffer,
711  std::move(done));
712  }
713 #endif // EIGEN_USE_THREADS
714 
715  template <bool lhs_inner_dim_contiguous, bool rhs_inner_dim_contiguous,
716  bool rhs_inner_dim_reordered, int Alignment>
718  if (this->m_j_size == 1) {
719  this->template evalGemv<lhs_inner_dim_contiguous,
720  rhs_inner_dim_contiguous, rhs_inner_dim_reordered,
721  Alignment>(buffer);
722  } else {
723  this->template evalGemm<lhs_inner_dim_contiguous, rhs_inner_dim_contiguous,
724  rhs_inner_dim_reordered, Alignment>(buffer);
725  }
726  }
727 
728  template <bool lhs_inner_dim_contiguous, bool rhs_inner_dim_contiguous, bool rhs_inner_dim_reordered, int Alignment>
729  #if !defined(EIGEN_HIPCC)
731  #endif
732  void evalGemv(Scalar* buffer) const {
733  const Index rows = m_i_size;
734  const Index cols = m_k_size;
735 
738  typedef TensorEvaluator<EvalLeftArgType, Device> LeftEvaluator;
739  typedef TensorEvaluator<EvalRightArgType, Device> RightEvaluator;
742  const int lhs_alignment = LeftEvaluator::IsAligned ? Aligned : Unaligned;
743  const int rhs_alignment = RightEvaluator::IsAligned ? Aligned : Unaligned;
745  LeftEvaluator, left_nocontract_t,
746  contract_t, lhs_packet_size,
747  lhs_inner_dim_contiguous,
748  false, lhs_alignment> LhsMapper;
749 
751  RightEvaluator, right_nocontract_t,
752  contract_t, rhs_packet_size,
753  rhs_inner_dim_contiguous,
754  rhs_inner_dim_reordered, rhs_alignment> RhsMapper;
755 
760 
761  const Scalar alpha(1);
762  const Index resIncr(1);
763 
764  // zero out the result buffer (which must be of size at least rows * sizeof(Scalar)
765  m_device.memset(buffer, 0, rows * sizeof(Scalar));
766 
768  rows, cols, lhs, rhs,
769  buffer, resIncr, alpha);
770 
773  static_cast<Index>(0), static_cast<Index>(0), rows,
774  static_cast<Index>(1));
775  }
776 
777  template <bool lhs_inner_dim_contiguous, bool rhs_inner_dim_contiguous, bool rhs_inner_dim_reordered, int Alignment>
778  #if !defined(EIGEN_HIPCC)
780  #endif
781  void evalGemm(Scalar* buffer) const {
782  // columns in left side, rows in right side
783  const Index k = this->m_k_size;
784  this->template evalGemmPartial<lhs_inner_dim_contiguous,
785  rhs_inner_dim_contiguous,
786  rhs_inner_dim_reordered,
787  Alignment, true>(buffer, 0, k, 1);
788  }
789 
790  template <bool lhs_inner_dim_contiguous, bool rhs_inner_dim_contiguous,
791  bool rhs_inner_dim_reordered, int Alignment>
793  Scalar* buffer, Index k_start, Index k_end, int num_threads) const {
794  evalGemmPartial<lhs_inner_dim_contiguous, rhs_inner_dim_contiguous,
795  rhs_inner_dim_reordered, Alignment,
796  /*use_output_kernel*/ false>(buffer, k_start, k_end,
797  num_threads);
798  }
799 
800  template <bool lhs_inner_dim_contiguous, bool rhs_inner_dim_contiguous, bool rhs_inner_dim_reordered, int Alignment, bool use_output_kernel>
801  EIGEN_DEVICE_FUNC void evalGemmPartial(Scalar* buffer, Index k_start, Index k_end, int num_threads) const {
802  eigen_assert(k_end >= k_start && k_start >= 0 && k_end <= this->m_k_size);
803  // columns in slice on left side, rows on right side
804  const Index k_slice = k_end - k_start;
805 
806  // rows in left side
807  const Index m = this->m_i_size;
808 
809  // columns in right side
810  const Index n = this->m_j_size;
811 
812  // define data mappers for Lhs and Rhs
815 
816  typedef TensorEvaluator<EvalLeftArgType, Device> LeftEvaluator;
817  typedef TensorEvaluator<EvalRightArgType, Device> RightEvaluator;
818 
821 
823  LeftEvaluator, left_nocontract_t,
824  contract_t, lhs_packet_size,
825  lhs_inner_dim_contiguous,
826  false, Unaligned> LhsMapper;
827 
829  RightEvaluator, right_nocontract_t,
830  contract_t, rhs_packet_size,
831  rhs_inner_dim_contiguous,
832  rhs_inner_dim_reordered, Unaligned> RhsMapper;
833 
835 
837  Scalar, LhsScalar, RhsScalar, Index, OutputMapper, LhsMapper, RhsMapper>
838  TensorContractionKernel;
839 
840  // initialize data mappers
841  LhsMapper lhs(this->m_leftImpl, this->m_left_nocontract_strides, this->m_i_strides,
843 
844  RhsMapper rhs(this->m_rightImpl, this->m_right_nocontract_strides, this->m_j_strides,
846 
847  OutputMapper output(buffer, m);
848 
849  // Sizes of the blocks to load in cache. See the Goto paper for details.
850  internal::TensorContractionBlocking<Scalar, LhsScalar, RhsScalar,
852  blocking(k_slice, m, n, num_threads);
853  const Index kc = blocking.kc();
854  const Index mc = numext::mini(m, blocking.mc());
855  const Index nc = numext::mini(n, blocking.nc());
856 
857  typedef typename TensorContractionKernel::LhsBlock LhsBlock;
858  typedef typename TensorContractionKernel::RhsBlock RhsBlock;
859 
860  LhsBlock blockA;
861  RhsBlock blockB;
862 
863  TensorContractionKernel kernel(m, k_slice, n, mc, kc, nc);
864 
865  typedef typename TensorContractionKernel::BlockMemHandle BlockMemHandle;
866  const BlockMemHandle packed_mem =
867  kernel.allocate(this->m_device, &blockA, &blockB);
868 
869  // If a contraction kernel does not support beta, explicitly initialize
870  // output buffer with zeroes.
871  if (!TensorContractionKernel::HasBeta) {
872  this->m_device.memset(buffer, 0, m * n * sizeof(Scalar));
873  }
874 
875  for(Index i2=0; i2<m; i2+=mc)
876  {
877  const Index actual_mc = numext::mini(i2+mc,m)-i2;
878  for (Index k2 = k_start; k2 < k_end; k2 += kc) {
879  // make sure we don't overshoot right edge of left matrix, then pack vertical panel
880  const Index actual_kc = numext::mini(k2 + kc, k_end) - k2;
881  kernel.packLhs(&blockA, lhs.getSubMapper(i2, k2), actual_kc, actual_mc);
882 
883  // If kernel supports beta, there is no need to initialize output
884  // buffer with zeroes.
885  const Scalar alpha = Scalar(1);
886  const Scalar beta = (TensorContractionKernel::HasBeta && k2 == k_start)
887  ? Scalar(0)
888  : Scalar(1);
889 
890  // series of horizontal blocks
891  for (Index j2 = 0; j2 < n; j2 += nc) {
892  // make sure we don't overshoot right edge of right matrix, then pack block
893  const Index actual_nc = numext::mini(j2 + nc, n) - j2;
894  kernel.packRhs(&blockB, rhs.getSubMapper(k2, j2), actual_kc,
895  actual_nc);
896 
897  // call gebp (matrix kernel)
898  // The parameters here are copied from Eigen's GEMM implementation
899  const OutputMapper output_mapper = output.getSubMapper(i2, j2);
900  kernel.invoke(output_mapper, blockA, blockB, actual_mc, actual_kc,
901  actual_nc, alpha, beta);
902 
903  // We are done with this [i2, j2] output block.
904  if (use_output_kernel && k2 + kc >= k_end) {
905  m_output_kernel(output_mapper, m_tensor_contraction_params, i2, j2,
906  actual_mc, actual_nc);
907  }
908  }
909  }
910  }
911 
912  kernel.deallocate(this->m_device, packed_mem);
913  }
914 
916  m_leftImpl.cleanup();
917  m_rightImpl.cleanup();
918 
919  if (m_result != NULL) {
920  m_device.deallocate(m_result);
921  m_result = NULL;
922  }
923  }
924 
926  return m_result[index];
927  }
928 
930  return TensorOpCost(sizeof(CoeffReturnType), 0, 0);
931  }
932 
933  template<int LoadMode>
935  return internal::ploadt<PacketReturnType, LoadMode>(m_result + index);
936  }
937 
939 
940 protected:
942 
946 
950 
955 
959 
961 
967 };
968 
969 
970 // evaluator for default device
971 template<typename Indices, typename LeftArgType, typename RightArgType, typename OutputKernelType, typename Device>
974  TensorEvaluator<const TensorContractionOp<Indices, LeftArgType, RightArgType, OutputKernelType>, Device> > {
977 
980  typedef typename XprType::Index Index;
983 
984  enum {
986  };
987 
988  // Most of the code is assuming that both input tensors are ColMajor. If the
989  // inputs are RowMajor, we will "cheat" by swapping the LHS and RHS:
990  // If we want to compute A * B = C, where A is LHS and B is RHS, the code
991  // will pretend B is LHS and A is RHS.
992  typedef typename internal::conditional<
993  static_cast<int>(Layout) == static_cast<int>(ColMajor), LeftArgType, RightArgType>::type EvalLeftArgType;
994  typedef typename internal::conditional<
995  static_cast<int>(Layout) == static_cast<int>(ColMajor), RightArgType, LeftArgType>::type EvalRightArgType;
996 
997  static const int LDims =
999  static const int RDims =
1001  static const int ContractDims = internal::array_size<Indices>::value;
1002 
1004  typedef array<Index, LDims - ContractDims> left_nocontract_t;
1005  typedef array<Index, RDims - ContractDims> right_nocontract_t;
1006 
1007  static const int NumDims = LDims + RDims - 2 * ContractDims;
1008 
1009  // Could we use NumDimensions here?
1011 
1012  TensorEvaluator(const XprType& op, const Device& device) :
1013  Base(op, device) { }
1014 
1015  template <int Alignment>
1016  void evalProduct(Scalar* buffer) const {
1017  TENSOR_CONTRACTION_DISPATCH(this->template evalProductSequential, Alignment, (buffer));
1018  }
1019 };
1020 
1021 } // end namespace Eigen
1022 
1023 #endif // EIGEN_CXX11_TENSOR_TENSOR_CONTRACTION_H
Eigen::TensorContractionOp::m_rhs_xpr
RhsXprType::Nested m_rhs_xpr
Definition: TensorContraction.h:358
Eigen::TensorContractionOp::TensorContractionOp
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorContractionOp(const LhsXprType &lhs, const RhsXprType &rhs, const Indices &dims, const OutputKernelType &output_kernel=OutputKernelType())
Definition: TensorContraction.h:335
Eigen::TensorContractionEvaluatorBase::right_nocontract_t
array< Index, RDims - ContractDims > right_nocontract_t
Definition: TensorContraction.h:416
Eigen::internal::TensorContractionBlockMemAllocator::BlockSizes::lhs_size
Index lhs_size
Definition: TensorContraction.h:137
gtsam.examples.DogLegOptimizerExample.int
int
Definition: DogLegOptimizerExample.py:111
Eigen::TensorContractionEvaluatorBase::TensorContractionEvaluatorBase
EIGEN_STRONG_INLINE TensorContractionEvaluatorBase(const XprType &op, const Device &device)
Definition: TensorContraction.h:421
Eigen::internal::Lhs
@ Lhs
Definition: TensorContractionMapper.h:19
Eigen::TensorContractionOp::Index
Eigen::internal::traits< TensorContractionOp >::Index Index
Definition: TensorContraction.h:333
EIGEN_DEVICE_FUNC
#define EIGEN_DEVICE_FUNC
Definition: Macros.h:976
Eigen::internal::gebp_traits::LhsProgress
@ LhsProgress
Definition: products/GeneralBlockPanelKernel.h:455
Eigen::TensorContractionEvaluatorBase::CoordAccess
@ CoordAccess
Definition: TensorContraction.h:387
Eigen
Namespace containing all symbols from the Eigen library.
Definition: jet.h:637
Eigen::TensorEvaluator< const TensorContractionOp< Indices, LeftArgType, RightArgType, OutputKernelType >, Device >::EvalRightArgType
internal::conditional< static_cast< int >Layout)==static_cast< int >ColMajor), RightArgType, LeftArgType >::type EvalRightArgType
Definition: TensorContraction.h:995
Eigen::TensorEvaluator< const TensorContractionOp< Indices, LeftArgType, RightArgType, OutputKernelType >, Device >::Self
TensorEvaluator< const TensorContractionOp< Indices, LeftArgType, RightArgType, OutputKernelType >, Device > Self
Definition: TensorContraction.h:975
Eigen::internal::TensorBlockNotImplemented
Definition: TensorBlock.h:617
Eigen::TensorContractionEvaluatorBase::m_k_strides
contract_t m_k_strides
Definition: TensorContraction.h:943
Eigen::internal::gebp_traits
Definition: products/GeneralBlockPanelKernel.h:25
alpha
RealScalar alpha
Definition: level1_cplx_impl.h:147
Eigen::TensorEvaluator< const TensorContractionOp< Indices, LeftArgType, RightArgType, OutputKernelType >, Device >::Base
TensorContractionEvaluatorBase< Self > Base
Definition: TensorContraction.h:976
Eigen::internal::TensorContractionKernel::HasBeta
@ HasBeta
Definition: TensorContraction.h:185
d
static const double d[K][N]
Definition: igam.h:11
Eigen::TensorContractionEvaluatorBase::LDims
static const int LDims
Definition: TensorContraction.h:407
Eigen::internal::TensorContractionKernel::bm
const StorageIndex bm
Definition: TensorContraction.h:272
Eigen::array< Index, ContractDims >
Eigen::TensorContractionEvaluatorBase::left_nocontract_t
array< Index, LDims - ContractDims > left_nocontract_t
Definition: TensorContraction.h:415
Eigen::TensorContractionOp::StorageKind
Eigen::internal::traits< TensorContractionOp >::StorageKind StorageKind
Definition: TensorContraction.h:332
Eigen::internal::nested
Definition: TensorTraits.h:174
Eigen::Unaligned
@ Unaligned
Definition: Constants.h:233
Eigen::TensorContractionEvaluatorBase::PacketReturnType
PacketType< CoeffReturnType, Device >::type PacketReturnType
Definition: TensorContraction.h:377
Eigen::internal::TensorContractionBlockMemAllocator::allocate
static EIGEN_DEVICE_FUNC BlockMemHandle allocate(Device &d, const Index bm, const Index bk, const Index bn, LhsScalar **lhs_block, RhsScalar **rhs_block)
Definition: TensorContraction.h:83
Eigen::TensorContractionEvaluatorBase::EvaluatorPointerType
Storage::Type EvaluatorPointerType
Definition: TensorContraction.h:379
Eigen::TensorContractionEvaluatorBase::m_dimensions
Dimensions m_dimensions
Definition: TensorContraction.h:941
eigen_assert
#define eigen_assert(x)
Definition: Macros.h:1037
Eigen::internal::TensorContractionKernel::Traits
internal::gebp_traits< LhsScalar, RhsScalar > Traits
Definition: TensorContraction.h:201
x
set noclip points set clip one set noclip two set bar set border lt lw set xdata set ydata set zdata set x2data set y2data set boxwidth set dummy x
Definition: gnuplot_common_settings.hh:12
Eigen::TensorEvaluator< const TensorContractionOp< Indices, LeftArgType, RightArgType, OutputKernelType >, Device >::Dimensions
DSizes< Index, NumDims > Dimensions
Definition: TensorContraction.h:1010
Eigen::internal::TensorContractionKernel::bk
const StorageIndex bk
Definition: TensorContraction.h:273
ret
DenseIndex ret
Definition: level1_cplx_impl.h:44
Eigen::TensorEvaluator::Index
Derived::Index Index
Definition: TensorEvaluator.h:30
Eigen::TensorContractionOp::Scalar
Eigen::internal::traits< TensorContractionOp >::Scalar Scalar
Definition: TensorContraction.h:328
Eigen::TensorEvaluator::Layout
@ Layout
Definition: TensorEvaluator.h:50
Eigen::internal::TensorContractionKernel::allocate
EIGEN_DEVICE_FUNC BlockMemHandle allocate(Device &d, LhsBlock *lhs_block, RhsBlock *rhs_block)
Definition: TensorContraction.h:219
type
Definition: pytypes.h:1525
Eigen::TensorContractionEvaluatorBase::m_tensor_contraction_params
TensorContractionParams m_tensor_contraction_params
Definition: TensorContraction.h:960
Eigen::TensorContractionEvaluatorBase::evalGemm
EIGEN_DEVICE_FUNC void evalGemm(Scalar *buffer) const
Definition: TensorContraction.h:781
Eigen::TensorContractionEvaluatorBase::RawAccess
@ RawAccess
Definition: TensorContraction.h:388
Eigen::TensorContractionEvaluatorBase::EvalLeftArgType
internal::conditional< static_cast< int >Layout)==static_cast< int >ColMajor), LeftArgType, RightArgType >::type EvalLeftArgType
Definition: TensorContraction.h:400
Eigen::TensorContractionEvaluatorBase::m_j_strides
right_nocontract_t m_j_strides
Definition: TensorContraction.h:952
buffer
Definition: pytypes.h:2270
Eigen::TensorContractionEvaluatorBase::Device
internal::traits< Derived >::Device Device
Definition: TensorContraction.h:371
Eigen::internal::traits< TensorEvaluator< const TensorContractionOp< Indices_, LeftArgType_, RightArgType_, OutputKernelType_ >, Device_ > >::LeftArgType
LeftArgType_ LeftArgType
Definition: TensorContraction.h:68
gtsam::internal::align
static Similarity3 align(const Point3Pairs &d_abPointPairs, const Rot3 &aRb, const Point3Pair &centroids)
This method estimates the similarity transform from differences point pairs,.
Definition: Similarity3.cpp:69
Eigen::RowMajor
@ RowMajor
Definition: Constants.h:321
Eigen::internal::TensorContractionKernel
Definition: TensorContraction.h:182
Eigen::NoOpOutputKernel::operator()
EIGEN_ALWAYS_INLINE void operator()(const internal::blas_data_mapper< Scalar, Index, ColMajor > &output_mapper, const TensorContractionParams &params, Index i, Index j, Index num_rows, Index num_cols) const
Definition: TensorContraction.h:311
Eigen::TensorEvaluator< const TensorContractionOp< Indices, LeftArgType, RightArgType, OutputKernelType >, Device >::PacketReturnType
PacketType< CoeffReturnType, Device >::type PacketReturnType
Definition: TensorContraction.h:982
vanilla::params
static const SmartProjectionParams params
Definition: smartFactorScenarios.h:69
Eigen::internal::TensorContractionKernel::packRhs
EIGEN_DEVICE_FUNC EIGEN_DONT_INLINE void packRhs(RhsBlock *rhsBlock, const typename RhsMapper::SubMapper &data_mapper, const StorageIndex depth, const StorageIndex cols)
Definition: TensorContraction.h:245
Eigen::TensorContractionEvaluatorBase::m_rightImpl
TensorEvaluator< EvalRightArgType, Device > m_rightImpl
Definition: TensorContraction.h:963
beta
double beta(double a, double b)
Definition: beta.c:61
Eigen::TensorContractionParams
Definition: TensorContraction.h:281
Eigen::internal::traits< TensorContractionOp< Dimensions, LhsXprType, RhsXprType, OutputKernelType > >::LhsNested
LhsXprType::Nested LhsNested
Definition: TensorContraction.h:35
TENSOR_CONTRACTION_DISPATCH
#define TENSOR_CONTRACTION_DISPATCH(METHOD, ALIGNMENT, ARGS)
Definition: TensorContraction.h:637
rows
int rows
Definition: Tutorial_commainit_02.cpp:1
Eigen::internal::traits< TensorContractionOp< Dimensions, LhsXprType, RhsXprType, OutputKernelType > >::Scalar
gebp_traits< typename remove_const< typename LhsXprType::Scalar >::type, typename remove_const< typename RhsXprType::Scalar >::type >::ResScalar Scalar
Definition: TensorContraction.h:29
Eigen::internal::TensorContractionKernel::n
const StorageIndex n
Definition: TensorContraction.h:271
Eigen::TensorEvaluator< const TensorContractionOp< Indices, LeftArgType, RightArgType, OutputKernelType >, Device >::TensorEvaluator
TensorEvaluator(const XprType &op, const Device &device)
Definition: TensorContraction.h:1012
Eigen::internal::TensorContractionBlockMemAllocator::deallocate
static EIGEN_DEVICE_FUNC void deallocate(Device &d, BlockMemHandle handle)
Definition: TensorContraction.h:131
Eigen::internal::TensorContractionKernel::TensorContractionKernel
EIGEN_DEVICE_FUNC TensorContractionKernel(StorageIndex m_, StorageIndex k_, StorageIndex n_, StorageIndex bm_, StorageIndex bk_, StorageIndex bn_)
Definition: TensorContraction.h:188
Eigen::DSizes< Index, NumDims >
Eigen::TensorEvaluator< const TensorContractionOp< Indices, LeftArgType, RightArgType, OutputKernelType >, Device >::Scalar
internal::remove_const< typename XprType::Scalar >::type Scalar
Definition: TensorContraction.h:979
Eigen::internal::TensorContractionBlockMemAllocator
Definition: TensorContraction.h:79
size
Scalar Scalar int size
Definition: benchVecAdd.cpp:17
Eigen::internal::traits< TensorContractionOp< Dimensions, LhsXprType, RhsXprType, OutputKernelType > >::PointerType
conditional< Pointer_type_promotion< typename LhsXprType::Scalar, Scalar >::val, typename traits< LhsXprType >::PointerType, typename traits< RhsXprType >::PointerType >::type PointerType
Definition: TensorContraction.h:46
Eigen::TensorContractionOp::m_lhs_xpr
LhsXprType::Nested m_lhs_xpr
Definition: TensorContraction.h:357
n
int n
Definition: BiCGSTAB_simple.cpp:1
Eigen::PacketType
Definition: TensorMeta.h:50
Eigen::TensorContractionEvaluatorBase::EvalRightArgType
internal::conditional< static_cast< int >Layout)==static_cast< int >ColMajor), RightArgType, LeftArgType >::type EvalRightArgType
Definition: TensorContraction.h:402
Eigen::TensorContractionEvaluatorBase::m_output_kernel
OutputKernelType m_output_kernel
Definition: TensorContraction.h:965
Eigen::internal::TensorContractionKernel::RhsPacker
internal::gemm_pack_rhs< RhsScalar, StorageIndex, typename RhsMapper::SubMapper, Traits::nr, ColMajor > RhsPacker
Definition: TensorContraction.h:211
Eigen::TensorContractionEvaluatorBase::evalGemmPartialWithoutOutputKernel
EIGEN_DEVICE_FUNC void evalGemmPartialWithoutOutputKernel(Scalar *buffer, Index k_start, Index k_end, int num_threads) const
Definition: TensorContraction.h:792
Eigen::internal::true_type
Definition: Meta.h:96
Eigen::internal::traits< TensorContractionOp< Dimensions, LhsXprType, RhsXprType, OutputKernelType > >::_LhsNested
remove_reference< LhsNested >::type _LhsNested
Definition: TensorContraction.h:37
Eigen::internal::traits< TensorEvaluator< const TensorContractionOp< Indices_, LeftArgType_, RightArgType_, OutputKernelType_ >, Device_ > >::Indices
Indices_ Indices
Definition: TensorContraction.h:67
Eigen::TensorContractionEvaluatorBase::m_right_nocontract_strides
right_nocontract_t m_right_nocontract_strides
Definition: TensorContraction.h:954
Eigen::NoOpOutputKernel
Definition: TensorContraction.h:294
Eigen::TensorContractionEvaluatorBase::m_leftImpl
TensorEvaluator< EvalLeftArgType, Device > m_leftImpl
Definition: TensorContraction.h:962
handle
Definition: pytypes.h:226
Eigen::Cond
Definition: TensorMeta.h:15
EIGEN_UNUSED_VARIABLE
#define EIGEN_UNUSED_VARIABLE(var)
Definition: Macros.h:1076
j
std::ptrdiff_t j
Definition: tut_arithmetic_redux_minmax.cpp:2
Eigen::internal::traits< TensorContractionOp< Dimensions, LhsXprType, RhsXprType, OutputKernelType > >::StorageKind
promote_storage_type< typename traits< LhsXprType >::StorageKind, typename traits< RhsXprType >::StorageKind >::ret StorageKind
Definition: TensorContraction.h:32
Eigen::TensorContractionEvaluatorBase::Layout
@ Layout
Definition: TensorContraction.h:386
Eigen::internal::TensorContractionKernel::bn
const StorageIndex bn
Definition: TensorContraction.h:274
left
static char left
Definition: blas_interface.hh:62
Eigen::internal::TensorContractionBlockMemAllocator::BlockSizes
Definition: TensorContraction.h:136
Eigen::TensorEvaluator< const TensorContractionOp< Indices, LeftArgType, RightArgType, OutputKernelType >, Device >::evalProduct
void evalProduct(Scalar *buffer) const
Definition: TensorContraction.h:1016
Eigen::TensorContractionEvaluatorBase::LeftEvaluatorType
TensorEvaluator< EvalLeftArgType, Device > LeftEvaluatorType
Definition: TensorContraction.h:404
Eigen::internal::TensorContractionBlocking
Definition: TensorContractionBlocking.h:25
Eigen::TensorContractionOp::rhsExpression
const EIGEN_DEVICE_FUNC internal::remove_all< typename RhsXprType::Nested >::type & rhsExpression() const
Definition: TensorContraction.h:351
Eigen::internal::ShardByCol
@ ShardByCol
Definition: TensorContractionBlocking.h:19
Eigen::internal::TensorContractionKernel::invoke
EIGEN_DEVICE_FUNC EIGEN_DONT_INLINE void invoke(const OutputMapper &output_mapper, const LhsBlock &lhsBlock, const RhsBlock &rhsBlock, const StorageIndex rows, const StorageIndex depth, const StorageIndex cols, const ResScalar alpha, const ResScalar beta)
Definition: TensorContraction.h:251
Eigen::TensorContractionOp::CoeffReturnType
internal::gebp_traits< typename LhsXprType::CoeffReturnType, typename RhsXprType::CoeffReturnType >::ResScalar CoeffReturnType
Definition: TensorContraction.h:330
Eigen::numext::mini
EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE T mini(const T &x, const T &y)
Definition: Eigen/src/Core/MathFunctions.h:1085
Eigen::internal::unpacket_traits
Definition: GenericPacketMath.h:132
Eigen::internal::TensorContractionBlockMemAllocator::BlockMemHandle
void * BlockMemHandle
Definition: TensorContraction.h:80
Eigen::TensorContractionEvaluatorBase::OutputKernelType
internal::traits< Derived >::OutputKernelType OutputKernelType
Definition: TensorContraction.h:370
Eigen::TensorEvaluator< const TensorContractionOp< Indices, LeftArgType, RightArgType, OutputKernelType >, Device >::XprType
TensorContractionOp< Indices, LeftArgType, RightArgType, OutputKernelType > XprType
Definition: TensorContraction.h:978
Eigen::TensorEvaluator< const TensorContractionOp< Indices, LeftArgType, RightArgType, OutputKernelType >, Device >::right_nocontract_t
array< Index, RDims - ContractDims > right_nocontract_t
Definition: TensorContraction.h:1005
Eigen::TensorEvaluator< const TensorContractionOp< Indices, LeftArgType, RightArgType, OutputKernelType >, Device >::Index
XprType::Index Index
Definition: TensorContraction.h:980
EIGEN_STRONG_INLINE
#define EIGEN_STRONG_INLINE
Definition: Macros.h:917
Eigen::TensorContractionEvaluatorBase::Storage
StorageMemory< Scalar, Device > Storage
Definition: TensorContraction.h:378
Eigen::internal::traits< TensorContractionOp< Dimensions, LhsXprType, RhsXprType, OutputKernelType > >::RhsNested
RhsXprType::Nested RhsNested
Definition: TensorContraction.h:36
Eigen::TensorContractionEvaluatorBase::data
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE EvaluatorPointerType data() const
Definition: TensorContraction.h:938
Eigen::DSizes::TotalSize
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE DenseIndex TotalSize() const
Definition: TensorDimensions.h:271
Eigen::TensorContractionEvaluatorBase::Indices
internal::traits< Derived >::Indices Indices
Definition: TensorContraction.h:367
Eigen::TensorContractionEvaluatorBase::RDims
static const int RDims
Definition: TensorContraction.h:409
Eigen::internal::gebp_kernel
Definition: products/GeneralBlockPanelKernel.h:1057
Eigen::TensorContractionEvaluatorBase::evalGemv
EIGEN_DEVICE_FUNC void evalGemv(Scalar *buffer) const
Definition: TensorContraction.h:732
Eigen::TensorContractionOp::lhsExpression
const EIGEN_DEVICE_FUNC internal::remove_all< typename LhsXprType::Nested >::type & lhsExpression() const
Definition: TensorContraction.h:347
Eigen::internal::gebp_traits::mr
@ mr
Definition: products/GeneralBlockPanelKernel.h:452
EIGEN_MAX_ALIGN_BYTES
#define EIGEN_MAX_ALIGN_BYTES
Definition: ConfigureVectorization.h:175
Eigen::TensorContractionEvaluatorBase::BlockAccess
@ BlockAccess
Definition: TensorContraction.h:384
Eigen::TensorContractionEvaluatorBase::ContractDims
static const int ContractDims
Definition: TensorContraction.h:411
Eigen::internal::TensorContractionInputMapper
Definition: TensorContractionMapper.h:524
gtsam.examples.DogLegOptimizerExample.run
def run(args)
Definition: DogLegOptimizerExample.py:21
Eigen::internal::TensorContractionKernel::BlockMemHandle
BlockMemAllocator::BlockMemHandle BlockMemHandle
Definition: TensorContraction.h:199
Eigen::TensorContractionEvaluatorBase::coeff
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE CoeffReturnType coeff(Index index) const
Definition: TensorContraction.h:925
Eigen::TensorContractionEvaluatorBase::CoeffReturnType
XprType::CoeffReturnType CoeffReturnType
Definition: TensorContraction.h:376
Eigen::internal::promote_storage_type
Definition: XprHelper.h:518
m
Matrix3f m
Definition: AngleAxis_mimic_euler.cpp:1
EIGEN_ALWAYS_INLINE
#define EIGEN_ALWAYS_INLINE
Definition: Macros.h:932
Eigen::internal::TensorContractionKernel::m
const StorageIndex m
Definition: TensorContraction.h:269
Eigen::TensorContractionEvaluatorBase::m_j_size
Index m_j_size
Definition: TensorContraction.h:957
Eigen::Triplet< double >
Eigen::TensorEvaluator< const TensorContractionOp< Indices, LeftArgType, RightArgType, OutputKernelType >, Device >::CoeffReturnType
XprType::CoeffReturnType CoeffReturnType
Definition: TensorContraction.h:981
Eigen::TensorContractionEvaluatorBase::dimensions
EIGEN_DEVICE_FUNC const EIGEN_STRONG_INLINE Dimensions & dimensions() const
Definition: TensorContraction.h:603
Eigen::TensorContractionEvaluatorBase::TensorBlock
internal::TensorBlockNotImplemented TensorBlock
Definition: TensorContraction.h:392
Eigen::StorageMemory
Definition: TensorForwardDeclarations.h:37
Eigen::TensorBase
The tensor base class.
Definition: TensorBase.h:973
Eigen::internal::gemm_pack_rhs
Definition: BlasUtil.h:25
Eigen::TensorContractionEvaluatorBase::evalProductSequential
void evalProductSequential(Scalar *buffer) const
Definition: TensorContraction.h:717
Eigen::internal::array_size
Definition: Meta.h:445
Eigen::TensorContractionEvaluatorBase::evalTo
EIGEN_DEVICE_FUNC void evalTo(Scalar *buffer) const
Definition: TensorContraction.h:702
Eigen::internal::TensorContractionKernel::k
const StorageIndex k
Definition: TensorContraction.h:270
Eigen::TensorContractionEvaluatorBase::NumDims
static const int NumDims
Definition: TensorContraction.h:412
Eigen::TensorContractionEvaluatorBase::m_result
EvaluatorPointerType m_result
Definition: TensorContraction.h:966
Eigen::internal::TensorContractionKernel::allocateSlices
EIGEN_DEVICE_FUNC BlockMemHandle allocateSlices(Device &d, const StorageIndex num_lhs, const StorageIndex num_rhs, const StorageIndex num_slices, std::vector< LhsBlock > *lhs_blocks, std::vector< RhsBlock > *rhs_blocks)
Definition: TensorContraction.h:225
right
static char right
Definition: blas_interface.hh:61
Eigen::internal::traits< TensorContractionOp< Dimensions, LhsXprType, RhsXprType, OutputKernelType > >::Index
promote_index_type< typename traits< LhsXprType >::Index, typename traits< RhsXprType >::Index >::type Index
Definition: TensorContraction.h:34
Eigen::TensorContractionEvaluatorBase::m_left_nocontract_strides
left_nocontract_t m_left_nocontract_strides
Definition: TensorContraction.h:953
Eigen::internal::TensorContractionKernel::deallocate
static EIGEN_DEVICE_FUNC void deallocate(Device &d, BlockMemHandle handle)
Definition: TensorContraction.h:234
Eigen::internal::TensorContractionKernel::GebpKernel
internal::gebp_kernel< LhsScalar, RhsScalar, StorageIndex, OutputMapper, Traits::mr, Traits::nr, false, false > GebpKernel
Definition: TensorContraction.h:216
Eigen::TensorContractionEvaluatorBase::Scalar
internal::remove_const< typename XprType::Scalar >::type Scalar
Definition: TensorContraction.h:374
Eigen::TensorEvaluator< const TensorContractionOp< Indices, LeftArgType, RightArgType, OutputKernelType >, Device >::EvalLeftArgType
internal::conditional< static_cast< int >Layout)==static_cast< int >ColMajor), LeftArgType, RightArgType >::type EvalLeftArgType
Definition: TensorContraction.h:993
Eigen::internal::traits< TensorEvaluator< const TensorContractionOp< Indices_, LeftArgType_, RightArgType_, OutputKernelType_ >, Device_ > >::RightArgType
RightArgType_ RightArgType
Definition: TensorContraction.h:69
Eigen::TensorEvaluator< const TensorContractionOp< Indices, LeftArgType, RightArgType, OutputKernelType >, Device >::left_nocontract_t
array< Index, LDims - ContractDims > left_nocontract_t
Definition: TensorContraction.h:1004
Eigen::TensorContractionEvaluatorBase::m_device
const Device EIGEN_DEVICE_REF m_device
Definition: TensorContraction.h:964
Eigen::internal::blas_data_mapper
Definition: BlasUtil.h:112
Eigen::internal::traits
Definition: ForwardDeclarations.h:17
Eigen::internal::gemm_pack_lhs
Definition: BlasUtil.h:28
Eigen::TensorContractionEvaluatorBase::m_rhs_inner_dim_contiguous
bool m_rhs_inner_dim_contiguous
Definition: TensorContraction.h:948
EIGEN_STATIC_ASSERT
#define EIGEN_STATIC_ASSERT(CONDITION, MSG)
Definition: StaticAssert.h:127
Eigen::TensorContractionOp::indices
const EIGEN_DEVICE_FUNC Indices & indices() const
Definition: TensorContraction.h:342
Eigen::internal::TensorContractionBlockMemAllocator::ComputeLhsRhsBlockSizes
static EIGEN_DEVICE_FUNC BlockSizes ComputeLhsRhsBlockSizes(const Index bm, const Index bk, const Index bn)
Definition: TensorContraction.h:140
Eigen::numext::swap
EIGEN_STRONG_INLINE void swap(T &a, T &b)
Definition: Meta.h:766
Eigen::TensorContractionParams::swapped_arguments
bool swapped_arguments
Definition: TensorContraction.h:284
Eigen::internal::traits< TensorEvaluator< const TensorContractionOp< Indices_, LeftArgType_, RightArgType_, OutputKernelType_ >, Device_ > >::Device
Device_ Device
Definition: TensorContraction.h:71
Eigen::TensorContractionEvaluatorBase::m_rhs_inner_dim_reordered
bool m_rhs_inner_dim_reordered
Definition: TensorContraction.h:949
Eigen::TensorContractionEvaluatorBase::evalSubExprsIfNeeded
EIGEN_STRONG_INLINE bool evalSubExprsIfNeeded(EvaluatorPointerType data)
Definition: TensorContraction.h:605
Eigen::internal::Rhs
@ Rhs
Definition: TensorContractionMapper.h:18
Eigen::internal::gebp_traits::nr
@ nr
Definition: products/GeneralBlockPanelKernel.h:440
Eigen::internal::TensorContractionKernel::RhsBlock
RhsScalar * RhsBlock
Definition: TensorContraction.h:194
Eigen::TensorContractionEvaluatorBase::IsAligned
@ IsAligned
Definition: TensorContraction.h:382
Eigen::internal::conditional
Definition: Meta.h:109
Eigen::TensorContractionEvaluatorBase::Dimensions
DSizes< Index, NumDims > Dimensions
Definition: TensorContraction.h:418
Eigen::TensorContractionOp::Nested
Eigen::internal::nested< TensorContractionOp >::type Nested
Definition: TensorContraction.h:331
Eigen::array::size
EIGEN_DEVICE_FUNC static EIGEN_ALWAYS_INLINE std::size_t size()
Definition: EmulateArray.h:44
Eigen::TensorContractionOp
Definition: TensorContraction.h:325
Eigen::TensorContractionEvaluatorBase::XprType
TensorContractionOp< Indices, LeftArgType, RightArgType, OutputKernelType > XprType
Definition: TensorContraction.h:373
Eigen::TensorContractionEvaluatorBase::contract_t
array< Index, ContractDims > contract_t
Definition: TensorContraction.h:414
Eigen::TensorContractionEvaluatorBase::m_k_size
Index m_k_size
Definition: TensorContraction.h:958
Eigen::TensorContractionEvaluatorBase::costPerCoeff
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorOpCost costPerCoeff(bool) const
Definition: TensorContraction.h:929
Eigen::internal::nested< TensorContractionOp< Dimensions, LhsXprType, RhsXprType, OutputKernelType >, 1, typename eval< TensorContractionOp< Dimensions, LhsXprType, RhsXprType, OutputKernelType > >::type >::type
TensorContractionOp< Dimensions, LhsXprType, RhsXprType, OutputKernelType > type
Definition: TensorContraction.h:62
EIGEN_DEVICE_REF
#define EIGEN_DEVICE_REF
Definition: TensorMacros.h:50
Eigen::TensorContractionEvaluatorBase::m_left_contracting_strides
contract_t m_left_contracting_strides
Definition: TensorContraction.h:944
Eigen::TensorContractionOp::outputKernel
const EIGEN_DEVICE_FUNC OutputKernelType & outputKernel() const
Definition: TensorContraction.h:354
Eigen::TensorEvaluator
A cost model used to limit the number of threads used for evaluating tensor expression.
Definition: TensorEvaluator.h:28
Eigen::TensorContractionEvaluatorBase::m_i_strides
left_nocontract_t m_i_strides
Definition: TensorContraction.h:951
Eigen::TensorContractionEvaluatorBase::RightArgType
internal::traits< Derived >::RightArgType RightArgType
Definition: TensorContraction.h:369
Eigen::TensorContractionEvaluatorBase::LeftArgType
internal::traits< Derived >::LeftArgType LeftArgType
Definition: TensorContraction.h:368
Eigen::internal::no_assignment_operator
Definition: XprHelper.h:109
Eigen::TensorContractionEvaluatorBase::PacketAccess
@ PacketAccess
Definition: TensorContraction.h:383
internal
Definition: BandTriangularSolver.h:13
Eigen::numext::maxi
EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE T maxi(const T &x, const T &y)
Definition: Eigen/src/Core/MathFunctions.h:1093
Eigen::TensorContractionOp::m_output_kernel
const OutputKernelType m_output_kernel
Definition: TensorContraction.h:360
Eigen::TensorContractionEvaluatorBase::Index
XprType::Index Index
Definition: TensorContraction.h:375
NULL
#define NULL
Definition: ccolamd.c:609
Eigen::TensorContractionEvaluatorBase::m_lhs_inner_dim_contiguous
bool m_lhs_inner_dim_contiguous
Definition: TensorContraction.h:947
Eigen::TensorEvaluator< const TensorContractionOp< Indices, LeftArgType, RightArgType, OutputKernelType >, Device >::contract_t
array< Index, ContractDims > contract_t
Definition: TensorContraction.h:1003
Eigen::choose
EIGEN_DEVICE_FUNC const EIGEN_ALWAYS_INLINE T1 & choose(Cond< true >, const T1 &first, const T2 &)
Definition: TensorMeta.h:18
Eigen::ColMajor
@ ColMajor
Definition: Constants.h:319
cols
int cols
Definition: Tutorial_commainit_02.cpp:1
Eigen::internal::traits< TensorContractionOp< Dimensions, LhsXprType, RhsXprType, OutputKernelType > >::_RhsNested
remove_reference< RhsNested >::type _RhsNested
Definition: TensorContraction.h:38
Indices
std::vector< size_t > Indices
Definition: testPartialPriorFactor.cpp:37
Eigen::internal::TensorContractionKernel::BlockMemAllocator
TensorContractionBlockMemAllocator< LhsScalar, RhsScalar > BlockMemAllocator
Definition: TensorContraction.h:198
Eigen::internal::promote_index_type
Definition: XprHelper.h:120
Eigen::TensorContractionOp::m_indices
const Indices m_indices
Definition: TensorContraction.h:359
Eigen::TensorContractionEvaluatorBase::packet
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE PacketReturnType packet(Index index) const
Definition: TensorContraction.h:934
depth
static double depth
Definition: testSphericalCamera.cpp:64
Eigen::TensorContractionEvaluatorBase::RightEvaluatorType
TensorEvaluator< EvalRightArgType, Device > RightEvaluatorType
Definition: TensorContraction.h:405
Eigen::internal::eval
Definition: XprHelper.h:332
Eigen::TensorContractionEvaluatorBase
Definition: TensorContraction.h:365
Eigen::TensorContractionEvaluatorBase::m_right_contracting_strides
contract_t m_right_contracting_strides
Definition: TensorContraction.h:945
Eigen::TensorContractionEvaluatorBase::cleanup
EIGEN_STRONG_INLINE void cleanup()
Definition: TensorContraction.h:915
Eigen::internal::TensorContractionKernel::LhsBlock
LhsScalar * LhsBlock
Definition: TensorContraction.h:193
Eigen::TensorOpCost
Definition: TensorCostModel.h:25
Eigen::internal::gebp_traits::LhsPacket4Packing
LhsPacket LhsPacket4Packing
Definition: products/GeneralBlockPanelKernel.h:463
test_callbacks.value
value
Definition: test_callbacks.py:160
Eigen::internal::TensorContractionKernel::packLhs
EIGEN_DEVICE_FUNC EIGEN_DONT_INLINE void packLhs(LhsBlock *lhsBlock, const typename LhsMapper::SubMapper &data_mapper, const StorageIndex depth, const StorageIndex rows)
Definition: TensorContraction.h:238
i
int i
Definition: BiCGSTAB_step_by_step.cpp:9
Eigen::internal::eval< TensorContractionOp< Dimensions, LhsXprType, RhsXprType, OutputKernelType >, Eigen::Dense >::type
const typedef TensorContractionOp< Dimensions, LhsXprType, RhsXprType, OutputKernelType > & type
Definition: TensorContraction.h:56
Eigen::TensorContractionEvaluatorBase::PreferBlockAccess
@ PreferBlockAccess
Definition: TensorContraction.h:385
Eigen::internal::TensorContractionBlockMemAllocator::BlockSizes::rhs_size
Index rhs_size
Definition: TensorContraction.h:138
Eigen::internal::TensorContractionBlockMemAllocator::allocateSlices
static EIGEN_DEVICE_FUNC BlockMemHandle allocateSlices(Device &d, const Index bm, const Index bk, const Index bn, const Index num_lhs, const Index num_rhs, const Index num_slices, std::vector< LhsScalar * > *lhs_blocks, std::vector< RhsScalar * > *rhs_blocks)
Definition: TensorContraction.h:99
Eigen::internal::traits< TensorEvaluator< const TensorContractionOp< Indices_, LeftArgType_, RightArgType_, OutputKernelType_ >, Device_ > >::OutputKernelType
OutputKernelType_ OutputKernelType
Definition: TensorContraction.h:70
Eigen::TensorContractionEvaluatorBase::evalGemmPartial
EIGEN_DEVICE_FUNC void evalGemmPartial(Scalar *buffer, Index k_start, Index k_end, int num_threads) const
Definition: TensorContraction.h:801
Scalar
SCALAR Scalar
Definition: bench_gemm.cpp:46
Eigen::TensorContractionEvaluatorBase::m_i_size
Index m_i_size
Definition: TensorContraction.h:956
Eigen::Index
EIGEN_DEFAULT_DENSE_INDEX_TYPE Index
The Index type as used for the API.
Definition: Meta.h:74
Eigen::Aligned
@ Aligned
Definition: Constants.h:240
EIGEN_DONT_INLINE
#define EIGEN_DONT_INLINE
Definition: Macros.h:940
Eigen::Dense
Definition: Constants.h:507
test_virtual_functions.nc
nc
Definition: test_virtual_functions.py:207
Eigen::internal::TensorContractionKernel::LhsPacker
internal::gemm_pack_lhs< LhsScalar, StorageIndex, typename LhsMapper::SubMapper, Traits::mr, Traits::LhsProgress, typename Traits::LhsPacket4Packing, ColMajor > LhsPacker
Definition: TensorContraction.h:206


gtsam
Author(s):
autogenerated on Fri Nov 1 2024 03:37:20