Modules | |
Global aligned box typedefs | |
Classes | |
class | Eigen::AlignedBox |
An axis aligned box. More... | |
class | Eigen::AngleAxis |
Represents a 3D rotation as a rotation angle around an arbitrary 3D axis. More... | |
class | Eigen::Homogeneous |
Expression of one (or a set of) homogeneous vector(s) More... | |
class | Eigen::Hyperplane |
A hyperplane. More... | |
class | Eigen::Map< const Quaternion< _Scalar >, _Options > |
Quaternion expression mapping a constant memory buffer. More... | |
class | Eigen::Map< Quaternion< _Scalar >, _Options > |
Expression of a quaternion from a memory buffer. More... | |
class | Eigen::ParametrizedLine |
A parametrized line. More... | |
class | Eigen::Quaternion |
The quaternion class used to represent 3D orientations and rotations. More... | |
class | Eigen::QuaternionBase |
Base class for quaternion expressions. More... | |
class | Eigen::Rotation2D |
Represents a rotation/orientation in a 2 dimensional space. More... | |
class | Scaling |
Represents a generic uniform scaling transformation. More... | |
class | Eigen::Transform |
Represents an homogeneous transformation in a N dimensional space. More... | |
class | Eigen::Translation |
Represents a translation transformation. More... | |
Functions | |
template<typename OtherDerived > | |
EIGEN_DEVICE_FUNC MatrixBase< Derived >::template cross_product_return_type< OtherDerived >::type | Eigen::MatrixBase< Derived >::cross (const MatrixBase< OtherDerived > &other) const |
template<typename OtherDerived > | |
const EIGEN_DEVICE_FUNC CrossReturnType | Eigen::VectorwiseOp::cross (const MatrixBase< OtherDerived > &other) const |
template<typename OtherDerived > | |
EIGEN_DEVICE_FUNC PlainObject | Eigen::MatrixBase< Derived >::cross3 (const MatrixBase< OtherDerived > &other) const |
EIGEN_DEVICE_FUNC Matrix< Scalar, 3, 1 > | Eigen::MatrixBase< Derived >::eulerAngles (Index a0, Index a1, Index a2) const |
const EIGEN_DEVICE_FUNC HNormalizedReturnType | Eigen::MatrixBase< Derived >::hnormalized () const |
homogeneous normalization More... | |
const EIGEN_DEVICE_FUNC HNormalizedReturnType | Eigen::VectorwiseOp::hnormalized () const |
column or row-wise homogeneous normalization More... | |
EIGEN_DEVICE_FUNC HomogeneousReturnType | Eigen::MatrixBase< Derived >::homogeneous () const |
EIGEN_DEVICE_FUNC HomogeneousReturnType | Eigen::VectorwiseOp::homogeneous () const |
template<typename Derived , typename OtherDerived > | |
internal::umeyama_transform_matrix_type< Derived, OtherDerived >::type | Eigen::umeyama (const MatrixBase< Derived > &src, const MatrixBase< OtherDerived > &dst, bool with_scaling=true) |
Returns the transformation between two point sets. More... | |
EIGEN_DEVICE_FUNC PlainObject | Eigen::MatrixBase< Derived >::unitOrthogonal (void) const |
typedef Transform<double,2,Affine> Eigen::Affine2d |
Definition at line 712 of file Transform.h.
typedef Transform<float,2,Affine> Eigen::Affine2f |
Definition at line 708 of file Transform.h.
typedef Transform<double,3,Affine> Eigen::Affine3d |
Definition at line 714 of file Transform.h.
typedef Transform<float,3,Affine> Eigen::Affine3f |
Definition at line 710 of file Transform.h.
typedef Transform<double,2,AffineCompact> Eigen::AffineCompact2d |
Definition at line 721 of file Transform.h.
typedef Transform<float,2,AffineCompact> Eigen::AffineCompact2f |
Definition at line 717 of file Transform.h.
typedef Transform<double,3,AffineCompact> Eigen::AffineCompact3d |
Definition at line 723 of file Transform.h.
typedef Transform<float,3,AffineCompact> Eigen::AffineCompact3f |
Definition at line 719 of file Transform.h.
typedef AngleAxis<double> Eigen::AngleAxisd |
double precision angle-axis type
Definition at line 160 of file AngleAxis.h.
typedef AngleAxis<float> Eigen::AngleAxisf |
single precision angle-axis type
Definition at line 157 of file AngleAxis.h.
typedef Transform<double,2,Isometry> Eigen::Isometry2d |
Definition at line 703 of file Transform.h.
typedef Transform<float,2,Isometry> Eigen::Isometry2f |
Definition at line 699 of file Transform.h.
typedef Transform<double,3,Isometry> Eigen::Isometry3d |
Definition at line 705 of file Transform.h.
typedef Transform<float,3,Isometry> Eigen::Isometry3f |
Definition at line 701 of file Transform.h.
typedef Transform<double,2,Projective> Eigen::Projective2d |
Definition at line 730 of file Transform.h.
typedef Transform<float,2,Projective> Eigen::Projective2f |
Definition at line 726 of file Transform.h.
typedef Transform<double,3,Projective> Eigen::Projective3d |
Definition at line 732 of file Transform.h.
typedef Transform<float,3,Projective> Eigen::Projective3f |
Definition at line 728 of file Transform.h.
typedef Quaternion<double> Eigen::Quaterniond |
double precision quaternion type
Definition at line 310 of file Quaternion.h.
typedef Quaternion<float> Eigen::Quaternionf |
single precision quaternion type
Definition at line 307 of file Quaternion.h.
typedef Map<Quaternion<double>, Aligned> Eigen::QuaternionMapAlignedd |
Map a 16-byte aligned array of double precision scalars as a quaternion
Definition at line 422 of file Quaternion.h.
typedef Map<Quaternion<float>, Aligned> Eigen::QuaternionMapAlignedf |
Map a 16-byte aligned array of single precision scalars as a quaternion
Definition at line 419 of file Quaternion.h.
typedef Map<Quaternion<double>, 0> Eigen::QuaternionMapd |
Map an unaligned array of double precision scalars as a quaternion
Definition at line 416 of file Quaternion.h.
typedef Map<Quaternion<float>, 0> Eigen::QuaternionMapf |
Map an unaligned array of single precision scalars as a quaternion
Definition at line 413 of file Quaternion.h.
typedef Rotation2D<double> Eigen::Rotation2Dd |
double precision 2D rotation type
Definition at line 168 of file Rotation2D.h.
typedef Rotation2D<float> Eigen::Rotation2Df |
single precision 2D rotation type
Definition at line 165 of file Rotation2D.h.
|
inline |
\geometry_module
*this
and other Here is a very good explanation of cross-product: http://xkcd.com/199/
With complex numbers, the cross product is implemented as
Definition at line 34 of file OrthoMethods.h.
const EIGEN_DEVICE_FUNC VectorwiseOp< ExpressionType, Direction >::CrossReturnType Eigen::VectorwiseOp::cross | ( | const MatrixBase< OtherDerived > & | other | ) | const |
\geometry_module
The referenced matrix must have one dimension equal to 3. The result matrix has the same dimensions than the referenced one.
Definition at line 110 of file OrthoMethods.h.
|
inline |
\geometry_module
*this
and other using only the x, y, and z coefficientsThe size of *this
and other must be four. This function is especially useful when using 4D vectors instead of 3D ones to get advantage of SSE/AltiVec vectorization.
Definition at line 82 of file OrthoMethods.h.
|
inline |
\geometry_module
*this
using the convention defined by the triplet (a0,a1,a2)Each of the three parameters a0,a1,a2 represents the respective rotation axis as an integer in {0,1,2}. For instance, in:
"2" represents the z axis and "0" the x axis, etc. The returned angles are such that we have the following equality:
This corresponds to the right-multiply conventions (with right hand side frames).
The returned angles are in the ranges [0:pi]x[-pi:pi]x[-pi:pi].
Definition at line 37 of file Eigen/src/Geometry/EulerAngles.h.
|
inline |
homogeneous normalization
\geometry_module
*this
divided by that last coefficient.This can be used to convert homogeneous coordinates to affine coordinates.
It is essentially a shortcut for:
Example:
Output:
Definition at line 172 of file Homogeneous.h.
|
inline |
column or row-wise homogeneous normalization
\geometry_module
*this
divided by the last coefficient of each column (or row).This can be used to convert homogeneous coordinates to affine coordinates.
It is conceptually equivalent to calling MatrixBase::hnormalized() to each column (or row) of *this
.
Example:
Output:
Definition at line 196 of file Homogeneous.h.
|
inline |
\geometry_module
This can be used to convert affine coordinates to homogeneous coordinates.
\only_for_vectors
Example:
Output:
Definition at line 130 of file Homogeneous.h.
|
inline |
\geometry_module
This can be used to convert affine coordinates to homogeneous coordinates.
Example:
Output:
Definition at line 148 of file Homogeneous.h.
internal::umeyama_transform_matrix_type<Derived, OtherDerived>::type Eigen::umeyama | ( | const MatrixBase< Derived > & | src, |
const MatrixBase< OtherDerived > & | dst, | ||
bool | with_scaling = true |
||
) |
Returns the transformation between two point sets.
\geometry_module
The algorithm is based on: "Least-squares estimation of transformation parameters between two point patterns", Shinji Umeyama, PAMI 1991, DOI: 10.1109/34.88573
It estimates parameters and
such that
is minimized.
The algorithm is based on the analysis of the covariance matrix of the input point sets
and
where
is corresponding to the dimension (which is typically small). The analysis is involving the SVD having a complexity of
though the actual computational effort lies in the covariance matrix computation which has an asymptotic lower bound of
when the input point sets have dimension
.
Currently the method is working only for floating point matrices.
src | Source points ![]() |
dst | Destination points ![]() |
with_scaling | Sets ![]() false is passed. |
|
inline |
\geometry_module
*this
The size of *this
must be at least 2. If the size is exactly 2, then the returned vector is a counter clock wise rotation of *this
, i.e., (-y,x).normalized().
Definition at line 226 of file OrthoMethods.h.