Go to the documentation of this file.
   11 #ifndef EIGEN_ORTHOMETHODS_H 
   12 #define EIGEN_ORTHOMETHODS_H 
   27 template<
typename Derived>
 
   28 template<
typename OtherDerived>
 
   29 #ifndef EIGEN_PARSED_BY_DOXYGEN 
   30 EIGEN_DEVICE_FUNC 
inline typename MatrixBase<Derived>::template cross_product_return_type<OtherDerived>::type
 
   43   return typename cross_product_return_type<OtherDerived>::type(
 
   44     numext::conj(lhs.coeff(1) * rhs.coeff(2) - lhs.coeff(2) * rhs.coeff(1)),
 
   45     numext::conj(lhs.coeff(2) * rhs.coeff(0) - lhs.coeff(0) * rhs.coeff(2)),
 
   46     numext::conj(lhs.coeff(0) * rhs.coeff(1) - lhs.coeff(1) * rhs.coeff(0))
 
   52 template< 
int Arch,
typename VectorLhs,
typename VectorRhs,
 
   54           bool Vectorizable = bool((VectorLhs::Flags&VectorRhs::Flags)&
PacketAccessBit)>
 
   57   run(
const VectorLhs& lhs, 
const VectorRhs& rhs)
 
   60       numext::conj(lhs.coeff(1) * rhs.coeff(2) - lhs.coeff(2) * rhs.coeff(1)),
 
   61       numext::conj(lhs.coeff(2) * rhs.coeff(0) - lhs.coeff(0) * rhs.coeff(2)),
 
   62       numext::conj(lhs.coeff(0) * rhs.coeff(1) - lhs.coeff(1) * rhs.coeff(0)),
 
   79 template<
typename Derived>
 
   80 template<
typename OtherDerived>
 
   89   DerivedNested lhs(derived());
 
   90   OtherDerivedNested rhs(other.derived());
 
  106 template<
typename ExpressionType, 
int Direction>
 
  107 template<
typename OtherDerived>
 
  114     YOU_MIXED_DIFFERENT_NUMERIC_TYPES__YOU_NEED_TO_USE_THE_CAST_METHOD_OF_MATRIXBASE_TO_CAST_NUMERIC_TYPES_EXPLICITLY)
 
  122     eigen_assert(CrossReturnType::RowsAtCompileTime==3 && 
"the matrix must have exactly 3 rows");
 
  123     res.row(0) = (
mat.row(1) * vec.coeff(2) - 
mat.row(2) * vec.coeff(1)).
conjugate();
 
  124     res.row(1) = (
mat.row(2) * vec.coeff(0) - 
mat.row(0) * vec.coeff(2)).
conjugate();
 
  125     res.row(2) = (
mat.row(0) * vec.coeff(1) - 
mat.row(1) * vec.coeff(0)).
conjugate();
 
  129     eigen_assert(CrossReturnType::ColsAtCompileTime==3 && 
"the matrix must have exactly 3 columns");
 
  130     res.col(0) = (
mat.col(1) * vec.coeff(2) - 
mat.col(2) * vec.coeff(1)).
conjugate();
 
  131     res.col(1) = (
mat.col(2) * vec.coeff(0) - 
mat.col(0) * vec.coeff(2)).
conjugate();
 
  132     res.col(2) = (
mat.col(0) * vec.coeff(1) - 
mat.col(1) * vec.coeff(0)).
conjugate();
 
  139 template<
typename Derived, 
int Size = Derived::SizeAtCompileTime>
 
  149     VectorType perp = VectorType::Zero(src.size());
 
  152     src.cwiseAbs().maxCoeff(&
maxi);
 
  163 template<
typename Derived>
 
  186       perp.coeffRef(2) = 0;
 
  195       perp.coeffRef(0) = 0;
 
  204 template<
typename Derived>
 
  224 template<
typename Derived>
 
  234 #endif // EIGEN_ORTHOMETHODS_H 
  
const EIGEN_DEVICE_FUNC CrossReturnType cross(const MatrixBase< OtherDerived > &other) const
const AutoDiffScalar< DerType > & conj(const AutoDiffScalar< DerType > &x)
plain_matrix_type< Derived >::type VectorType
static EIGEN_DEVICE_FUNC internal::plain_matrix_type< VectorLhs >::type run(const VectorLhs &lhs, const VectorRhs &rhs)
#define EIGEN_STATIC_ASSERT_VECTOR_ONLY(TYPE)
EIGEN_DEVICE_FUNC bool isMuchSmallerThan(const Scalar &x, const OtherScalar &y, const typename NumTraits< Scalar >::Real &precision=NumTraits< Scalar >::dummy_precision())
static EIGEN_DEVICE_FUNC VectorType run(const Derived &src)
EIGEN_DEVICE_FUNC cross_product_return_type< OtherDerived >::type cross(const MatrixBase< OtherDerived > &other) const
const unsigned int PacketAccessBit
traits< Derived >::Scalar Scalar
EIGEN_DEVICE_FUNC PlainObject cross3(const MatrixBase< OtherDerived > &other) const
plain_matrix_type< Derived >::type VectorType
NumTraits< Scalar >::Real RealScalar
static EIGEN_DEVICE_FUNC VectorType run(const Derived &src)
#define EIGEN_STATIC_ASSERT_VECTOR_SPECIFIC_SIZE(TYPE, SIZE)
Base::PlainObject PlainObject
EIGEN_DEVICE_FUNC ConjugateReturnType conjugate() const
#define EIGEN_STATIC_ASSERT(CONDITION, MSG)
Matrix< Scalar, 2, 1 > Vector2
void run(Expr &expr, Dev &dev)
traits< Derived >::Scalar Scalar
plain_matrix_type< Derived >::type VectorType
The matrix class, also used for vectors and row-vectors.
NumTraits< Scalar >::Real RealScalar
EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE T maxi(const T &x, const T &y)
Base class for all dense matrices, vectors, and expressions.
ExpressionType::PlainObject CrossReturnType
Holds information about the various numeric (i.e. scalar) types allowed by Eigen.
static EIGEN_DEVICE_FUNC VectorType run(const Derived &src)
EIGEN_DEFAULT_DENSE_INDEX_TYPE Index
The Index type as used for the API.
EIGEN_DEVICE_FUNC PlainObject unitOrthogonal(void) const
control_box_rst
Author(s): Christoph Rösmann 
autogenerated on Wed Mar 2 2022 00:05:59