Go to the documentation of this file.
   16 template<
typename MatrixType, 
int UpLo> 
struct LLT_Traits;
 
   56 template<
typename _MatrixType, 
int _UpLo> 
class LLT 
   95     template<
typename InputType>
 
  110     template<
typename InputType>
 
  119     inline typename Traits::MatrixU 
matrixU()
 const 
  126     inline typename Traits::MatrixL 
matrixL()
 const 
  142     template<
typename Rhs>
 
  148                 && 
"LLT::solve(): invalid number of rows of the right hand side matrix b");
 
  152     template<
typename Derived>
 
  155     template<
typename InputType>
 
  202     template<
typename VectorType>
 
  205     #ifndef EIGEN_PARSED_BY_DOXYGEN 
  206     template<
typename RhsType, 
typename DstType>
 
  208     void _solve_impl(
const RhsType &rhs, DstType &dst) 
const;
 
  232 template<
typename MatrixType, 
typename VectorType>
 
  254     temp = 
sqrt(sigma) * vec;
 
  264         ColXprSegment 
x(
mat.col(i).tail(rs));
 
  265         TempVecSegment 
y(temp.tail(rs));
 
  278       Scalar wj = temp.coeff(j);
 
  286       mat.coeffRef(j,j) = nLjj;
 
  293         temp.tail(rs) -= (wj/Ljj) * 
mat.col(j).tail(rs);
 
  295           mat.col(j).tail(rs) = (nLjj/Ljj) * 
mat.col(j).tail(rs) + (nLjj * sigma*
numext::conj(wj)/gamma)*temp.tail(rs);
 
  305   template<
typename MatrixType>
 
  321       if (k>0) 
x -= A10.squaredNorm();
 
  325       if (k>0 && rs>0) A21.noalias() -= A20 * A10.adjoint();
 
  331   template<
typename MatrixType>
 
  340     blockSize = (blockSize/16)*16;
 
  356       if((
ret=unblocked(A11))>=0) 
return k+
ret;
 
  357       if(rs>0) A11.adjoint().template triangularView<Upper>().template solveInPlace<OnTheRight>(A21);
 
  363   template<
typename MatrixType, 
typename VectorType>
 
  374   template<
typename MatrixType>
 
  380   template<
typename MatrixType>
 
  386   template<
typename MatrixType, 
typename VectorType>
 
  423 template<
typename MatrixType, 
int _UpLo>
 
  424 template<
typename InputType>
 
  427   check_template_parameters();
 
  433     m_matrix = 
a.derived();
 
  441       abs_col_sum = m_matrix.col(
col).tail(
size - 
col).template lpNorm<1>() + m_matrix.row(
col).head(
col).template lpNorm<1>();
 
  443       abs_col_sum = m_matrix.col(
col).head(
col).template lpNorm<1>() + m_matrix.row(
col).tail(
size - 
col).template lpNorm<1>();
 
  444     if (abs_col_sum > m_l1_norm)
 
  445       m_l1_norm = abs_col_sum;
 
  448   m_isInitialized = 
true;
 
  449   bool ok = Traits::inplace_decomposition(m_matrix);
 
  460 template<
typename _MatrixType, 
int _UpLo>
 
  461 template<
typename VectorType>
 
  475 #ifndef EIGEN_PARSED_BY_DOXYGEN 
  476 template<
typename _MatrixType,
int _UpLo>
 
  477 template<
typename RhsType, 
typename DstType>
 
  498 template<
typename MatrixType, 
int _UpLo>
 
  499 template<
typename Derived>
 
  502   eigen_assert(m_isInitialized && 
"LLT is not initialized.");
 
  504   matrixL().solveInPlace(bAndX);
 
  505   matrixU().solveInPlace(bAndX);
 
  511 template<
typename MatrixType, 
int _UpLo>
 
  514   eigen_assert(m_isInitialized && 
"LLT is not initialized.");
 
  515   return matrixL() * matrixL().adjoint().toDenseMatrix();
 
  522 template<
typename Derived>
 
  533 template<
typename MatrixType, 
unsigned int UpLo>
 
  542 #endif // EIGEN_LLT_H 
  
static bool inplace_decomposition(MatrixType &m)
const AutoDiffScalar< DerType > & conj(const AutoDiffScalar< DerType > &x)
const EIGEN_DEVICE_FUNC SqrtReturnType sqrt() const
const LLT & adjoint() const
static MatrixL getL(const MatrixType &m)
NumTraits< typename MatrixType::Scalar >::Real RealScalar
Expression of a fixed-size or dynamic-size block.
Map< Matrix< Scalar, Dynamic, Dynamic, ColMajor >, 0, OuterStride<> > MatrixType
bool is_same_dense(const T1 &mat1, const T2 &mat2, typename enable_if< has_direct_access< T1 >::ret &&has_direct_access< T2 >::ret, T1 >::type *=0)
internal::LLT_Traits< MatrixType, UpLo > Traits
const LLT< PlainObject > llt() const
void solveInPlace(const MatrixBase< Derived > &bAndX) const
VectorBlock< Derived > SegmentReturnType
NumTraits< Scalar >::Real RealScalar
NumTraits< Scalar >::Real RealScalar
EIGEN_DEVICE_FUNC ColXpr col(Index i)
This is the const version of col().
static Index unblocked(MatrixType &mat)
const LLT< PlainObject, UpLo > llt() const
NumTraits< Scalar >::Real RealScalar
const typedef TriangularView< const MatrixType, Upper > MatrixU
#define EIGEN_STATIC_ASSERT_VECTOR_ONLY(TYPE)
EIGEN_DEVICE_FUNC const EIGEN_STRONG_INLINE Abs2ReturnType abs2() const
const typedef TriangularView< const typename MatrixType::AdjointReturnType, Upper > MatrixU
Map< Matrix< T, Dynamic, Dynamic, ColMajor >, 0, OuterStride<> > matrix(T *data, int rows, int cols, int stride)
Rotation given by a cosine-sine pair.
Decomposition::RealScalar rcond_estimate_helper(typename Decomposition::RealScalar matrix_norm, const Decomposition &dec)
Reciprocal condition number estimator.
static bool inplace_decomposition(MatrixType &m)
void makeGivens(const Scalar &p, const Scalar &q, Scalar *r=0)
LLT rankUpdate(const VectorType &vec, const RealScalar &sigma=1)
Expression of the transpose of a matrix.
static Index blocked(MatrixType &m)
LLT & compute(const EigenBase< InputType > &matrix)
Traits::MatrixL matrixL() const
static MatrixL getL(const MatrixType &m)
const typedef TriangularView< const typename MatrixType::AdjointReturnType, Lower > MatrixL
MatrixType::Scalar Scalar
#define EIGEN_STRONG_INLINE
static Index rankUpdate(MatrixType &mat, const VectorType &vec, const RealScalar &sigma)
static MatrixU getU(const MatrixType &m)
MatrixType reconstructedMatrix() const
const typedef TriangularView< const MatrixType, Lower > MatrixL
static void check_template_parameters()
static MatrixU getU(const MatrixType &m)
Block< Derived, internal::traits< Derived >::RowsAtCompileTime, 1, !IsRowMajor > ColXpr
static Index llt_rank_update_lower(MatrixType &mat, const VectorType &vec, const typename MatrixType::RealScalar &sigma)
static Index rankUpdate(MatrixType &mat, const VectorType &vec, const RealScalar &sigma)
static EIGEN_STRONG_INLINE Index blocked(MatrixType &mat)
MatrixType::StorageIndex StorageIndex
Standard Cholesky decomposition (LL^T) of a matrix and associated features.
static EIGEN_STRONG_INLINE Index unblocked(MatrixType &mat)
Pseudo expression representing a solving operation.
ComputationInfo info() const
Reports whether previous computation was successful.
EIGEN_DEVICE_FUNC void _solve_impl(const RhsType &rhs, DstType &dst) const
LLT(Index size)
Default Constructor with memory preallocation.
LLT(EigenBase< InputType > &matrix)
Constructs a LDLT factorization from a given matrix.
LLT(const EigenBase< InputType > &matrix)
static constexpr size_t size(Tuple< Args... > &)
Provides access to the number of elements in a tuple as a compile-time constant expression.
void apply_rotation_in_the_plane(DenseBase< VectorX > &xpr_x, DenseBase< VectorY > &xpr_y, const JacobiRotation< OtherScalar > &j)
Traits::MatrixU matrixU() const
Base class for all dense matrices, vectors, and expressions.
const Solve< LLT, Rhs > solve(const MatrixBase< Rhs > &b) const
const MatrixType & matrixLLT() const
bool ok()
global method to check whether to proceed or cancel the current action
Expression of a triangular part in a matrix.
LLT()
Default Constructor.
Holds information about the various numeric (i.e. scalar) types allowed by Eigen.
EIGEN_DEFAULT_DENSE_INDEX_TYPE Index
The Index type as used for the API.
#define EIGEN_STATIC_ASSERT_NON_INTEGER(TYPE)
control_box_rst
Author(s): Christoph Rösmann 
autogenerated on Wed Mar 2 2022 00:05:53