Rotation given by a cosine-sine pair. More...
#include <ForwardDeclarations.h>
Public Types | |
| typedef NumTraits< Scalar >::Real | RealScalar |
Public Member Functions | |
| JacobiRotation | adjoint () const |
| Scalar & | c () |
| Scalar | c () const |
| JacobiRotation () | |
| JacobiRotation (const Scalar &c, const Scalar &s) | |
| void | makeGivens (const Scalar &p, const Scalar &q, Scalar *r=0) |
| template<typename Derived > | |
| bool | makeJacobi (const MatrixBase< Derived > &, Index p, Index q) |
| bool | makeJacobi (const RealScalar &x, const Scalar &y, const RealScalar &z) |
| template<typename Scalar > | |
| bool | makeJacobi (const RealScalar &x, const Scalar &y, const RealScalar &z) |
| JacobiRotation | operator* (const JacobiRotation &other) |
| Scalar & | s () |
| Scalar | s () const |
| JacobiRotation | transpose () const |
Protected Member Functions | |
| void | makeGivens (const Scalar &p, const Scalar &q, Scalar *r, internal::false_type) |
| void | makeGivens (const Scalar &p, const Scalar &q, Scalar *r, internal::true_type) |
Protected Attributes | |
| Scalar | m_c |
| Scalar | m_s |
Rotation given by a cosine-sine pair.
\jacobi_module
This class represents a Jacobi or Givens rotation. This is a 2D rotation in the plane J of angle
defined by its cosine c and sine s as follow: 
You can apply the respective counter-clockwise rotation to a column vector v by applying its adjoint on the left:
that translates to the following Eigen code:
Definition at line 263 of file ForwardDeclarations.h.
| typedef NumTraits<Scalar>::Real Eigen::JacobiRotation::RealScalar |
|
inline |
|
inline |
|
protected |
|
protected |
|
inline |
Makes *this as a Jacobi rotation J such that applying J on both the right and left sides of the 2x2 selfadjoint matrix
yields a diagonal matrix 
Example:
Output:
| bool Eigen::JacobiRotation::makeJacobi | ( | const RealScalar & | x, |
| const Scalar & | y, | ||
| const RealScalar & | z | ||
| ) |
| bool Eigen::JacobiRotation::makeJacobi | ( | const RealScalar & | x, |
| const Scalar & | y, | ||
| const RealScalar & | z | ||
| ) |
Makes *this as a Jacobi rotation J such that applying J on both the right and left sides of the selfadjoint 2x2 matrix
yields a diagonal matrix 
|
inline |
|
inline |