88 template<
class POSE,
class VELOCITY>
115 typedef typename std::shared_ptr<EquivInertialNavFactor_GlobalVel_NoBias>
shared_ptr;
125 const Matrix& Jacobian_wrt_t0_Overall,
127 Base(model_equivalent, Pose1, Vel1, Pose2, Vel2),
138 const std::string&
s =
"EquivInertialNavFactor_GlobalVel_NoBias",
140 std::cout <<
s <<
"(" 141 << keyFormatter(this->key<1>()) <<
"," 142 << keyFormatter(this->key<2>()) <<
"," 143 << keyFormatter(this->key<3>()) <<
"," 144 << keyFormatter(this->key<4>()) <<
"\n";
145 std::cout <<
"delta_pos_in_t0: " << this->delta_pos_in_t0_.transpose() << std::endl;
146 std::cout <<
"delta_vel_in_t0: " << this->delta_vel_in_t0_.transpose() << std::endl;
147 std::cout <<
"delta_angles: " << this->delta_angles_ << std::endl;
148 std::cout <<
"dt12: " << this->dt12_ << std::endl;
149 std::cout <<
"gravity (in world frame): " << this->world_g_.transpose() << std::endl;
150 std::cout <<
"craft rate (in world frame): " << this->world_rho_.transpose() << std::endl;
151 std::cout <<
"earth's rotation (in world frame): " << this->world_omega_earth_.transpose() << std::endl;
152 if(this->body_P_sensor_)
153 this->body_P_sensor_->print(
" sensor pose in body frame: ");
159 const This *
e =
dynamic_cast<const This*
> (&
expected);
161 && (delta_pos_in_t0_ - e->delta_pos_in_t0_).norm() <
tol 162 && (delta_vel_in_t0_ - e->delta_vel_in_t0_).norm() <
tol 163 && (delta_angles_ - e->delta_angles_).norm() <
tol 164 && (dt12_ - e->dt12_) <
tol 165 && (world_g_ - e->world_g_).norm() <
tol 166 && (world_rho_ - e->world_rho_).norm() <
tol 167 && (world_omega_earth_ - e->world_omega_earth_).norm() <
tol 168 && ((!body_P_sensor_ && !e->body_P_sensor_) || (body_P_sensor_ && e->body_P_sensor_ && body_P_sensor_->
equals(*e->body_P_sensor_)));
181 delta_pos_in_t0_corrected, delta_angles_corrected,
182 dt12_, world_g_, world_rho_, world_omega_earth_);
187 const double dt12,
const Vector& world_g,
const Vector& world_rho,
const Vector& world_omega_earth){
189 const POSE& world_P1_body = Pose1;
190 const VELOCITY& world_V1_body = Vel1;
193 Vector body_deltaPos_body = delta_pos_in_t0;
195 Vector world_deltaPos_pls_body = world_P1_body.rotation().matrix() * body_deltaPos_body;
196 Vector world_deltaPos_body = world_V1_body * dt12 + 0.5*world_g*dt12*dt12 + world_deltaPos_pls_body;
199 world_deltaPos_body -= 2*
skewSymmetric(world_rho + world_omega_earth)*world_V1_body * dt12*dt12;
209 Vector body_deltaAngles_body = delta_angles;
212 Matrix body_R_world(world_P1_body.rotation().inverse().matrix());
217 body_deltaAngles_body -= (body_rho + body_omega_earth)*dt12;
219 return POSE(Pose1.rotation() *
POSE::Rotation::Expmap(body_deltaAngles_body), Pose1.translation() +
typename POSE::Translation(world_deltaPos_body));
229 delta_vel_in_t0_corrected,
230 dt12_, world_g_, world_rho_, world_omega_earth_);
234 const Vector& delta_vel_in_t0,
235 const double dt12,
const Vector& world_g,
const Vector& world_rho,
const Vector& world_omega_earth) {
237 const POSE& world_P1_body = Pose1;
238 const VELOCITY& world_V1_body = Vel1;
240 Vector body_deltaVel_body = delta_vel_in_t0;
241 Vector world_deltaVel_body = world_P1_body.rotation().matrix() * body_deltaVel_body;
243 VELOCITY VelDelta( world_deltaVel_body + world_g * dt12 );
246 VelDelta -= 2*
skewSymmetric(world_rho + world_omega_earth)*world_V1_body * dt12;
249 return Vel1.compose( VelDelta );
253 void predict(
const POSE& Pose1,
const VELOCITY& Vel1, POSE& Pose2, VELOCITY& Vel2)
const {
258 POSE
evaluatePoseError(
const POSE& Pose1,
const VELOCITY& Vel1,
const POSE& Pose2,
const VELOCITY& Vel2)
const {
263 return Pose2.between(Pose2Pred);
266 VELOCITY
evaluateVelocityError(
const POSE& Pose1,
const VELOCITY& Vel1,
const POSE& Pose2,
const VELOCITY& Vel2)
const {
271 return Vel2.between(Vel2Pred);
283 *H1 =
stack(2, &H1_Pose, &H1_Vel);
290 *H2 =
stack(2, &H2_Pose, &H2_Vel);
297 *H3 =
stack(2, &H3_Pose, &H3_Vel);
304 *H4 =
stack(2, &H4_Pose, &H4_Vel);
317 double dt12,
const Vector world_g,
const Vector world_rho,
318 const Vector& world_omega_earth,
const Matrix& Jacobian_wrt_t0_Overall) {
321 Vector delta_pos_in_t0_corrected = delta_pos_in_t0;
324 Vector delta_angles_corrected = delta_angles;
328 return predictPose_inertial(Pose1, Vel1, delta_pos_in_t0_corrected, delta_angles_corrected, dt12, world_g, world_rho, world_omega_earth);
332 const Vector& delta_vel_in_t0,
double dt12,
const Vector world_g,
const Vector world_rho,
333 const Vector& world_omega_earth,
const Matrix& Jacobian_wrt_t0_Overall) {
335 Vector delta_vel_in_t0_corrected = delta_vel_in_t0;
337 return predictVelocity_inertial(Pose1, Vel1, delta_vel_in_t0_corrected, dt12, world_g, world_rho, world_omega_earth);
342 double dt12,
const Vector world_g,
const Vector world_rho,
343 const Vector& world_omega_earth,
const Matrix& Jacobian_wrt_t0_Overall) {
345 Pose2 =
PredictPoseFromPreIntegration(Pose1, Vel1, delta_pos_in_t0, delta_angles, dt12, world_g, world_rho, world_omega_earth, Jacobian_wrt_t0_Overall);
353 Matrix& EquivCov_Overall,
Matrix& Jacobian_wrt_t0_Overall,
354 std::optional<POSE> p_body_P_sensor = {}){
359 bool flag_use_body_P_sensor =
false;
360 if (p_body_P_sensor){
361 body_P_sensor = *p_body_P_sensor;
362 flag_use_body_P_sensor =
true;
377 Matrix H_pos_angles = Z_3x3;
379 Matrix H_vel_vel = numericalDerivative11<Vector, Vector>(std::bind(&
PreIntegrateIMUObservations_delta_vel, msr_gyro_t, msr_acc_t, msr_dt, delta_angles, _1, flag_use_body_P_sensor, body_P_sensor), delta_vel_in_t0);
380 Matrix H_vel_angles = numericalDerivative11<Vector, Vector>(std::bind(&
PreIntegrateIMUObservations_delta_vel, msr_gyro_t, msr_acc_t, msr_dt, _1, delta_vel_in_t0, flag_use_body_P_sensor, body_P_sensor), delta_angles);
384 Matrix H_angles_pos = Z_3x3;
385 Matrix H_angles_vel = Z_3x3;
387 Matrix F_angles =
collect(3, &H_angles_angles, &H_angles_pos, &H_angles_vel);
388 Matrix F_pos =
collect(3, &H_pos_angles, &H_pos_pos, &H_pos_vel);
389 Matrix F_vel =
collect(3, &H_vel_angles, &H_vel_pos, &H_vel_vel);
393 Matrix Q_d =
inverse(model_discrete_curr->R().transpose() * model_discrete_curr->R() );
395 EquivCov_Overall = F * EquivCov_Overall * F.transpose() + Q_d;
398 Jacobian_wrt_t0_Overall = F * Jacobian_wrt_t0_Overall;
402 const Vector& delta_pos_in_t0,
const Vector& delta_vel_in_t0){
407 return delta_pos_in_t0 + delta_vel_in_t0 * msr_dt;
418 Vector AccCorrected = msr_acc_t;
420 if (flag_use_body_P_sensor){
421 Matrix body_R_sensor = body_P_sensor.rotation().matrix();
423 Vector GyroCorrected(msr_gyro_t);
425 Vector body_omega_body = body_R_sensor * GyroCorrected;
428 body_t_a_body = body_R_sensor * AccCorrected - body_omega_body__cross * body_omega_body__cross * body_P_sensor.translation().vector();
430 body_t_a_body = AccCorrected;
435 return delta_vel_in_t0 + R_t_to_t0.
matrix() * body_t_a_body * msr_dt;
445 Vector GyroCorrected = msr_gyro_t;
448 if (flag_use_body_P_sensor){
449 body_t_omega_body = body_P_sensor.rotation().matrix() * GyroCorrected;
451 body_t_omega_body = GyroCorrected;
456 R_t_to_t0 = R_t_to_t0 *
Rot3::Expmap( body_t_omega_body*msr_dt );
463 Matrix cov_acc =
inverse( gaussian_acc->R().transpose() * gaussian_acc->R() );
464 Matrix cov_gyro =
inverse( gaussian_gyro->R().transpose() * gaussian_gyro->R() );
465 Matrix cov_process =
inverse( gaussian_process->R().transpose() * gaussian_process->R() );
467 cov_process.block(0,0, 3,3) += cov_gyro;
468 cov_process.block(6,6, 3,3) += cov_acc;
477 cov_acc =
inverse( gaussian_acc->R().transpose() * gaussian_acc->R() );
478 cov_gyro =
inverse( gaussian_gyro->R().transpose() * gaussian_gyro->R() );
479 cov_process_without_acc_gyro =
inverse( gaussian_process->R().transpose() * gaussian_process->R() );
488 0.0, 0.0, -1.0).finished();
493 0.0, 0.0, -1.0).finished();
496 Vector Pos_ENU = NED_to_ENU * Pos_NED;
497 Vector Vel_ENU = NED_to_ENU * Vel_NED;
498 Vector Pos_ENU_Initial = NED_to_ENU * Pos_NED_Initial;
507 g_NED = ENU_to_NED * g_ENU;
508 rho_NED = ENU_to_NED * rho_ENU;
509 omega_earth_NED = ENU_to_NED * omega_earth_ENU;
514 double R0 = 6.378388e6;
516 double Re( R0*( 1-e*(
sin( LatLonHeight_IC(0) ))*(
sin( LatLonHeight_IC(0) )) ) );
519 Vector delta_Pos_ENU(Pos_ENU - Pos_ENU_Initial);
520 double delta_lat(delta_Pos_ENU(1)/Re);
521 double delta_lon(delta_Pos_ENU(0)/(Re*
cos(LatLonHeight_IC(0))));
522 double lat_new(LatLonHeight_IC(0) + delta_lat);
523 double lon_new(LatLonHeight_IC(1) + delta_lon);
527 -
sin(lon_new),
cos(lon_new), 0.0,
533 -
sin(lat_new), 0.0,
cos(lat_new));
535 Rot3 UEN_to_ENU(0, 1, 0,
539 Rot3 R_ECEF_to_ENU( UEN_to_ENU * C2 * C1 );
541 Vector omega_earth_ECEF((
Vector(3) << 0.0, 0.0, 7.292115e-5));
542 omega_earth_ENU = R_ECEF_to_ENU.
matrix() * omega_earth_ECEF;
545 double height(LatLonHeight_IC(2));
546 double EQUA_RADIUS = 6378137.0;
547 double ECCENTRICITY = 0.0818191908426;
548 double e2(
pow(ECCENTRICITY,2) );
549 double den( 1-e2*
pow(
sin(lat_new),2) );
550 double Rm( (EQUA_RADIUS*(1-e2))/(
pow(den,(3/2)) ) );
551 double Rp( EQUA_RADIUS/(
sqrt(den) ) );
552 double Ro(
sqrt(Rp*Rm) );
553 double g0( 9.780318*( 1 + 5.3024e-3 *
pow(
sin(lat_new),2) - 5.9e-6 *
pow(
sin(2*lat_new),2) ) );
554 double g_calc( g0/(
pow(1 + height/Ro, 2) ) );
555 g_ENU = (
Vector(3) << 0.0, 0.0, -g_calc);
559 double Ve( Vel_ENU(0) );
560 double Vn( Vel_ENU(1) );
561 double rho_E = -Vn/(Rm + height);
562 double rho_N = Ve/(Rp + height);
563 double rho_U = Ve*
tan(lat_new)/(Rp + height);
564 rho_ENU = (
Vector(3) << rho_E, rho_N, rho_U);
576 #ifdef GTSAM_ENABLE_BOOST_SERIALIZATION 578 friend class boost::serialization::access;
579 template<
class ARCHIVE>
580 void serialize(ARCHIVE & ar,
const unsigned int ) {
581 ar & boost::serialization::make_nvp(
"NonlinearFactor2",
582 boost::serialization::base_object<Base>(*
this));
Vector evaluateError(const POSE &Pose1, const VELOCITY &Vel1, const POSE &Pose2, const VELOCITY &Vel2, OptionalMatrixType H1, OptionalMatrixType H2, OptionalMatrixType H3, OptionalMatrixType H4) const
Jet< T, N > cos(const Jet< T, N > &f)
VELOCITY evaluateVelocityError(const POSE &Pose1, const VELOCITY &Vel1, const POSE &Pose2, const VELOCITY &Vel2) const
static shared_ptr Covariance(const Matrix &covariance, bool smart=true)
std::string serialize(const T &input)
serializes to a string
noiseModel::Diagonal::shared_ptr model
bool equals(const NonlinearFactor &f, double tol=1e-9) const override
Matrix Jacobian_wrt_t0_Overall_
virtual Vector evaluateError(const ValueTypes &... x, OptionalMatrixTypeT< ValueTypes >... H) const=0
bool equals(const NonlinearFactor &expected, double tol=1e-9) const override
static void CalcEquivalentNoiseCov_DifferentParts(const noiseModel::Gaussian::shared_ptr &gaussian_acc, const noiseModel::Gaussian::shared_ptr &gaussian_gyro, const noiseModel::Gaussian::shared_ptr &gaussian_process, Matrix &cov_acc, Matrix &cov_gyro, Matrix &cov_process_without_acc_gyro)
static Pose3 body_P_sensor(Rot3::RzRyRx(-M_PI_2, 0.0, -M_PI_2), Point3(0.25, -0.10, 1.0))
Jet< T, N > sin(const Jet< T, N > &f)
Pose2_ Expmap(const Vector3_ &xi)
static VELOCITY PredictVelocityFromPreIntegration(const POSE &Pose1, const VELOCITY &Vel1, const Vector &delta_vel_in_t0, double dt12, const Vector world_g, const Vector world_rho, const Vector &world_omega_earth, const Matrix &Jacobian_wrt_t0_Overall)
Some functions to compute numerical derivatives.
static Vector PreIntegrateIMUObservations_delta_angles(const Vector &msr_gyro_t, const double msr_dt, const Vector3 &delta_angles, const bool flag_use_body_P_sensor, const POSE &body_P_sensor)
static void Calc_g_rho_omega_earth_NED(const Vector &Pos_NED, const Vector &Vel_NED, const Vector &LatLonHeight_IC, const Vector &Pos_NED_Initial, Vector &g_NED, Vector &rho_NED, Vector &omega_earth_NED)
POSE predictPose(const POSE &Pose1, const VELOCITY &Vel1) const
static const KeyFormatter DefaultKeyFormatter
Rot3 is a 3D rotation represented as a rotation matrix if the preprocessor symbol GTSAM_USE_QUATERNIO...
EIGEN_DEVICE_FUNC const InverseReturnType inverse() const
static Rot3 Expmap(const Vector3 &v, OptionalJacobian< 3, 3 > H={})
static void PreIntegrateIMUObservations(const Vector &msr_acc_t, const Vector &msr_gyro_t, const double msr_dt, Vector &delta_pos_in_t0, Vector3 &delta_angles, Vector &delta_vel_in_t0, double &delta_t, const noiseModel::Gaussian::shared_ptr &model_continuous_overall, Matrix &EquivCov_Overall, Matrix &Jacobian_wrt_t0_Overall, std::optional< POSE > p_body_P_sensor={})
gtsam::Vector world_omega_earth(world_R_ECEF.matrix() *ECEF_omega_earth)
Matrix * OptionalMatrixType
static VELOCITY predictVelocity_inertial(const POSE &Pose1, const VELOCITY &Vel1, const Vector &delta_vel_in_t0, const double dt12, const Vector &world_g, const Vector &world_rho, const Vector &world_omega_earth)
static POSE predictPose_inertial(const POSE &Pose1, const VELOCITY &Vel1, const Vector &delta_pos_in_t0, const Vector3 &delta_angles, const double dt12, const Vector &world_g, const Vector &world_rho, const Vector &world_omega_earth)
NoiseModelFactorN< POSE, VELOCITY, POSE, VELOCITY > Base
static Vector3 Logmap(const Rot3 &R, OptionalJacobian< 3, 3 > H={})
void predict(const POSE &Pose1, const VELOCITY &Vel1, POSE &Pose2, VELOCITY &Vel2) const
Matrix stack(size_t nrMatrices,...)
Matrix collect(const std::vector< const Matrix *> &matrices, size_t m, size_t n)
EquivInertialNavFactor_GlobalVel_NoBias< POSE, VELOCITY > This
Array< double, 1, 3 > e(1./3., 0.5, 2.)
static void PredictFromPreIntegration(const POSE &Pose1, const VELOCITY &Vel1, POSE &Pose2, VELOCITY &Vel2, const Vector &delta_pos_in_t0, const Vector &delta_vel_in_t0, const Vector3 &delta_angles, double dt12, const Vector world_g, const Vector world_rho, const Vector &world_omega_earth, const Matrix &Jacobian_wrt_t0_Overall)
Vector world_omega_earth_
static const Vector3 world_g(0.0, 0.0, 9.81)
EquivInertialNavFactor_GlobalVel_NoBias()
std::function< std::string(Key)> KeyFormatter
Typedef for a function to format a key, i.e. to convert it to a string.
virtual ~EquivInertialNavFactor_GlobalVel_NoBias()
static Vector PreIntegrateIMUObservations_delta_vel(const Vector &msr_gyro_t, const Vector &msr_acc_t, const double msr_dt, const Vector3 &delta_angles, const Vector &delta_vel_in_t0, const bool flag_use_body_P_sensor, const POSE &body_P_sensor)
Matrix3 skewSymmetric(double wx, double wy, double wz)
SharedNoiseModel noiseModel_
static noiseModel::Gaussian::shared_ptr calc_descrete_noise_model(const noiseModel::Gaussian::shared_ptr &model, double delta_t)
Non-linear factor base classes.
static const Vector3 world_rho(0.0, -1.5724e-05, 0.0)
static noiseModel::Gaussian::shared_ptr CalcEquivalentNoiseCov(const noiseModel::Gaussian::shared_ptr &gaussian_acc, const noiseModel::Gaussian::shared_ptr &gaussian_gyro, const noiseModel::Gaussian::shared_ptr &gaussian_process)
EIGEN_DEVICE_FUNC const TanReturnType tan() const
static Vector PreIntegrateIMUObservations_delta_pos(const double msr_dt, const Vector &delta_pos_in_t0, const Vector &delta_vel_in_t0)
std::optional< POSE > body_P_sensor_
virtual void print(const std::string &s="EquivInertialNavFactor_GlobalVel_NoBias", const KeyFormatter &keyFormatter=DefaultKeyFormatter) const
VELOCITY predictVelocity(const POSE &Pose1, const VELOCITY &Vel1) const
Jet< T, N > sqrt(const Jet< T, N > &f)
static shared_ptr SqrtInformation(const Matrix &R, bool smart=true)
POSE evaluatePoseError(const POSE &Pose1, const VELOCITY &Vel1, const POSE &Pose2, const VELOCITY &Vel2) const
std::shared_ptr< Gaussian > shared_ptr
Jet< T, N > pow(const Jet< T, N > &f, double g)
static void Calc_g_rho_omega_earth_ENU(const Vector &Pos_ENU, const Vector &Vel_ENU, const Vector &LatLonHeight_IC, const Vector &Pos_ENU_Initial, Vector &g_ENU, Vector &rho_ENU, Vector &omega_earth_ENU)
static POSE PredictPoseFromPreIntegration(const POSE &Pose1, const VELOCITY &Vel1, const Vector &delta_pos_in_t0, const Vector3 &delta_angles, double dt12, const Vector world_g, const Vector world_rho, const Vector &world_omega_earth, const Matrix &Jacobian_wrt_t0_Overall)
Vector concatVectors(const std::list< Vector > &vs)
EquivInertialNavFactor_GlobalVel_NoBias(const Key &Pose1, const Key &Vel1, const Key &Pose2, const Key &Vel2, const Vector &delta_pos_in_t0, const Vector &delta_vel_in_t0, const Vector3 &delta_angles, double dt12, const Vector world_g, const Vector world_rho, const Vector &world_omega_earth, const noiseModel::Gaussian::shared_ptr &model_equivalent, const Matrix &Jacobian_wrt_t0_Overall, std::optional< POSE > body_P_sensor={})
std::uint64_t Key
Integer nonlinear key type.
std::shared_ptr< EquivInertialNavFactor_GlobalVel_NoBias > shared_ptr
3D rotation represented as a rotation matrix or quaternion
bool equals(const This &other, double tol=1e-9) const
check equality