optimization_algorithm_levenberg.h
Go to the documentation of this file.
1 // g2o - General Graph Optimization
2 // Copyright (C) 2011 R. Kuemmerle, G. Grisetti, W. Burgard
3 // All rights reserved.
4 //
5 // Redistribution and use in source and binary forms, with or without
6 // modification, are permitted provided that the following conditions are
7 // met:
8 //
9 // * Redistributions of source code must retain the above copyright notice,
10 // this list of conditions and the following disclaimer.
11 // * Redistributions in binary form must reproduce the above copyright
12 // notice, this list of conditions and the following disclaimer in the
13 // documentation and/or other materials provided with the distribution.
14 //
15 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
16 // IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
17 // TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
18 // PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
19 // HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
20 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
21 // TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
22 // PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
23 // LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
24 // NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
25 // SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
26 
27 #ifndef G2O_SOLVER_LEVENBERG_H
28 #define G2O_SOLVER_LEVENBERG_H
29 
31 
32 namespace g2o {
33 
38  {
39  public:
46 
47  virtual SolverResult solve(int iteration, bool online = false);
48 
49  virtual void printVerbose(std::ostream& os) const;
50 
52  double currentLambda() const { return _currentLambda;}
53 
55  void setMaxTrialsAfterFailure(int max_trials);
56 
59 
61  double userLambdaInit() {return _userLambdaInit->value();}
63  void setUserLambdaInit(double lambda);
64 
67 
68  protected:
69  // Levenberg parameters
73  double _tau;
76  double _ni;
78  //RAUL
79  int _nBad;
80 
85  double computeLambdaInit() const;
86  double computeScale() const;
87 
88  };
89 
90 } // end namespace
91 
92 #endif
double userLambdaInit()
return the lambda set by the user, if < 0 the SparseOptimizer will compute the initial lambda ...
double _goodStepLowerScale
lower bound for lambda decrease if a good LM step
double _goodStepUpperScale
upper bound for lambda decrease if a good LM step
int _levenbergIterations
the numer of levenberg iterations performed to accept the last step
virtual void printVerbose(std::ostream &os) const
Implementation of the Levenberg Algorithm.
int maxTrialsAfterFailure() const
get the number of inner iterations for Levenberg-Marquardt
Base for solvers operating on the approximated Hessian, e.g., Gauss-Newton, Levenberg.
Solver * solver()
return the underlying solver used to solve the linear system
Generic interface for a sparse solver operating on a graph which solves one iteration of the lineariz...
Definition: solver.h:43
double currentLambda() const
return the currently used damping factor
void setUserLambdaInit(double lambda)
specify the initial lambda used for the first iteraion, if not given the SparseOptimizer tries to com...
const T & value() const
Definition: property.h:56
int levenbergIteration()
return the number of levenberg iterations performed in the last round
void setMaxTrialsAfterFailure(int max_trials)
the number of internal iteration if an update step increases chi^2 within Levenberg-Marquardt ...
virtual SolverResult solve(int iteration, bool online=false)


orb_slam2_ros
Author(s):
autogenerated on Wed Apr 21 2021 02:53:05