26 using namespace gtsam;
44 State x_initial(0.0, 0.0);
52 Matrix Sigma = (
Matrix(2, 2) << 0.01, 0.0, 0.0, 0.01).finished();
81 State expected0(0.0, 0.0);
84 State expected1(1.0, 0.0);
88 State expected2(2.0, 0.0);
92 State expected3(3.0, 0.0);
100 State x_initial(0.0, 0.0);
139 Matrix B = (
Matrix(2, 3) << 1.0, 0.1, 0.2, 1.1, 1.2, 0.8).finished();
149 State x_initial(0.0, 0.0);
172 15.0, -6.2, 0.0, 0.0, 0.0, 0.0, 0.0, 63.8, -0.6,
173 -6.2, 21.9, -0.0, 0.0, 0.0, 0.0, -63.8, -0.0, -0.1,
174 0.0, -0.0, 100.0, 0.0, 0.0, 0.0, 0.0, 0.1, -0.0,
175 0.0, 0.0, 0.0, 23.4, 24.5, -0.6, 0.0, 0.0, 0.0,
176 0.0, 0.0, 0.0, 24.5, 87.9, 10.1, 0.0, 0.0, 0.0,
177 0.0, 0.0, 0.0, -0.6, 10.1, 61.1, 0.0, 0.0, 0.0,
178 0.0, -63.8, 0.0, 0.0, 0.0, 0.0, 625.0, 0.0, 0.0,
179 63.8, -0.0, 0.1, 0.0, 0.0, 0.0, 0.0, 625.0, 0.0,
180 -0.6, -0.1, -0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 625.0).finished();
183 KalmanFilter kfa(9, KalmanFilter::QR), kfb(9, KalmanFilter::CHOLESKY);
191 1000000.0, 0.0, 0.0, -19200.0, 600.0, -0.0, 0.0, 0.0, 0.0,
192 0.0, 1000000.0, 0.0, 600.0, 19200.0, 200.0, 0.0, 0.0, 0.0,
193 0.0, 0.0, 1000000.0, -0.0, -200.0, 19200.0, 0.0, 0.0, 0.0,
194 0.0, 0.0, 0.0, 1000000.0, 0.0, 0.0, 0.0, 0.0, 0.0,
195 0.0, 0.0, 0.0, 0.0, 1000000.0, 0.0, 0.0, 0.0, 0.0,
196 0.0, 0.0, 0.0, 0.0, 0.0, 1000000.0, 0.0, 0.0, 0.0,
197 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1000000.0, 0.0, 0.0,
198 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1000000.0, 0.0,
199 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1000000.0).finished();
203 33.7, 3.1, -0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
204 3.1, 126.4, -0.3, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
205 -0.0, -0.3, 88.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
206 0.0, 0.0, 0.0, 0.2, 0.0, 0.0, 0.0, 0.0, 0.0,
207 0.0, 0.0, 0.0, 0.0, 0.2, 0.0, 0.0, 0.0, 0.0,
208 0.0, 0.0, 0.0, 0.0, 0.0, 0.2, 0.0, 0.0, 0.0,
209 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 22.2, 0.0, 0.0,
210 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 22.2, 0.0,
211 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 22.2).finished();
222 Vector expectedMean = (
Vector(9) << 0.9814, 1.0200, 1.0190, 1., 1., 1., 1., 1., 1.).finished();
226 48.8, -3.1, -0.0, -0.4, -0.4, 0.0, 0.0, 63.8, -0.6,
227 -3.1, 148.4, -0.3, 0.5, 1.7, 0.2, -63.8, 0.0, -0.1,
228 -0.0, -0.3, 188.0, -0.0, 0.2, 1.2, 0.0, 0.1, 0.0,
229 -0.4, 0.5, -0.0, 23.6, 24.5, -0.6, 0.0, 0.0, 0.0,
230 -0.4, 1.7, 0.2, 24.5, 88.1, 10.1, 0.0, 0.0, 0.0,
231 0.0, 0.2, 1.2, -0.6, 10.1, 61.3, 0.0, 0.0, 0.0,
232 0.0, -63.8, 0.0, 0.0, 0.0, 0.0, 647.2, 0.0, 0.0,
233 63.8, 0.0, 0.1, 0.0, 0.0, 0.0, 0.0, 647.2, 0.0,
234 -0.6, -0.1, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 647.2).finished();
240 0.0, 9795.9, 83.6, 0.0, 0.0, 0.0, 1000.0, 0.0, 0.0,
241 -9795.9, 0.0, -5.2, 0.0, 0.0, 0.0, 0.0, 1000.0, 0.0,
242 -83.6, 5.2, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1000.).finished();
256 Vector expectedMean2 = (
Vector(9) << 0.9207, 0.9030, 1.0178, 1.0002, 0.9992, 0.9998, 0.9981, 1.0035, 0.9882).finished();
260 46.1, -2.6, -0.0, -0.4, -0.4, 0.0, 0.0, 63.9, -0.5,
261 -2.6, 132.8, -0.5, 0.4, 1.5, 0.2, -64.0, -0.0, -0.1,
262 -0.0, -0.5, 188.0, -0.0, 0.2, 1.2, -0.0, 0.1, 0.0,
263 -0.4, 0.4, -0.0, 23.6, 24.5, -0.6, -0.0, -0.0, -0.0,
264 -0.4, 1.5, 0.2, 24.5, 88.1, 10.1, -0.0, -0.0, -0.0,
265 0.0, 0.2, 1.2, -0.6, 10.1, 61.3, -0.0, 0.0, 0.0,
266 0.0, -64.0, -0.0, -0.0, -0.0, -0.0, 647.2, -0.0, 0.0,
267 63.9, -0.0, 0.1, -0.0, -0.0, 0.0, -0.0, 647.2, 0.1,
268 -0.5, -0.1, 0.0, -0.0, -0.0, 0.0, 0.0, 0.1, 635.8).finished();
273 Matrix modelQ = ((
Matrix) sigmas.array().square()).asDiagonal();
def step(data, isam, result, truth, currPoseIndex)
State updateQ(const State &p, const Matrix &H, const Vector &z, const Matrix &Q) const
State predict(const State &p, const Matrix &F, const Matrix &B, const Vector &u, const SharedDiagonal &modelQ) const
Matrix< RealScalar, Dynamic, Dynamic > M
TEST(KalmanFilter, constructor)
Concept check for values that can be used in unit tests.
static int runAllTests(TestResult &result)
State predict2(const State &p, const Matrix &A0, const Matrix &A1, const Vector &b, const SharedDiagonal &model) const
State update(const State &p, const Matrix &H, const Vector &z, const SharedDiagonal &model) const
GaussianDensity::shared_ptr State
Rot2 R(Rot2::fromAngle(0.1))
State(double x, double y)
set noclip points set clip one set noclip two set bar set border lt lw set xdata set ydata set zdata set x2data set y2data set boxwidth set dummy y set format x g set format y g set format x2 g set format y2 g set format z g set angles radians set nogrid set key title set key left top Right noreverse box linetype linewidth samplen spacing width set nolabel set noarrow set nologscale set logscale x set set pointsize set encoding default set nopolar set noparametric set set set set surface set nocontour set clabel set mapping cartesian set nohidden3d set cntrparam order set cntrparam linear set cntrparam levels auto set cntrparam points set size set set xzeroaxis lt lw set x2zeroaxis lt lw set yzeroaxis lt lw set y2zeroaxis lt lw set tics in set ticslevel set tics set mxtics default set mytics default set mx2tics default set my2tics default set xtics border mirror norotate autofreq set ytics border mirror norotate autofreq set ztics border nomirror norotate autofreq set nox2tics set noy2tics set timestamp bottom norotate set rrange[*:*] noreverse nowriteback set trange[*:*] noreverse nowriteback set urange[*:*] noreverse nowriteback set vrange[*:*] noreverse nowriteback set xlabel matrix size set x2label set timefmt d m y n H
Matrix< SCALARB, Dynamic, Dynamic > B
Point3 mean(const CONTAINER &points)
mean
State predictQ(const State &p, const Matrix &F, const Matrix &B, const Vector &u, const Matrix &Q) const
EIGEN_DEVICE_FUNC Quaternion< Scalar > inverse() const
#define EXPECT(condition)
Array< double, 1, 3 > e(1./3., 0.5, 2.)
State init(const Vector &x0, const SharedDiagonal &P0) const
#define LONGS_EQUAL(expected, actual)
noiseModel::Diagonal::shared_ptr SharedDiagonal
bool assert_equal(const Matrix &expected, const Matrix &actual, double tol)
Simple linear Kalman filter. Implemented using factor graphs, i.e., does Cholesky-based SRIF...
The quaternion class used to represent 3D orientations and rotations.
Eigen::Matrix< double, Eigen::Dynamic, Eigen::Dynamic, Eigen::RowMajor > Matrix
set noclip points set clip one set noclip two set bar set border lt lw set xdata set ydata set zdata set x2data set y2data set boxwidth set dummy x
Eigen::Matrix< double, Eigen::Dynamic, 1 > Vector