examples/getting_started/simple_ocp.cpp
Go to the documentation of this file.
1 /*
2  * This file is part of ACADO Toolkit.
3  *
4  * ACADO Toolkit -- A Toolkit for Automatic Control and Dynamic Optimization.
5  * Copyright (C) 2008-2014 by Boris Houska, Hans Joachim Ferreau,
6  * Milan Vukov, Rien Quirynen, KU Leuven.
7  * Developed within the Optimization in Engineering Center (OPTEC)
8  * under supervision of Moritz Diehl. All rights reserved.
9  *
10  * ACADO Toolkit is free software; you can redistribute it and/or
11  * modify it under the terms of the GNU Lesser General Public
12  * License as published by the Free Software Foundation; either
13  * version 3 of the License, or (at your option) any later version.
14  *
15  * ACADO Toolkit is distributed in the hope that it will be useful,
16  * but WITHOUT ANY WARRANTY; without even the implied warranty of
17  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
18  * Lesser General Public License for more details.
19  *
20  * You should have received a copy of the GNU Lesser General Public
21  * License along with ACADO Toolkit; if not, write to the Free Software
22  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
23  *
24  */
25 
26 
27 
35 #include <acado_toolkit.hpp>
36 #include <acado_gnuplot.hpp>
37 
38 
39 int main( ){
40 
42 
43 
44  DifferentialState s,v,m ; // the differential states
45  Control u ; // the control input u
46  Parameter T ; // the time horizon T
47  DifferentialEquation f( 0.0, T ); // the differential equation
48 
49 // -------------------------------------
50  OCP ocp( 0.0, T ); // time horizon of the OCP: [0,T]
51  ocp.minimizeMayerTerm( T ); // the time T should be optimized
52 
53  f << dot(s) == v; // an implementation
54  f << dot(v) == (u-0.2*v*v)/m; // of the model equations
55  f << dot(m) == -0.01*u*u; // for the rocket.
56 
57  ocp.subjectTo( f ); // minimize T s.t. the model,
58  ocp.subjectTo( AT_START, s == 0.0 ); // the initial values for s,
59  ocp.subjectTo( AT_START, v == 0.0 ); // v,
60  ocp.subjectTo( AT_START, m == 1.0 ); // and m,
61 
62  ocp.subjectTo( AT_END , s == 10.0 ); // the terminal constraints for s
63  ocp.subjectTo( AT_END , v == 0.0 ); // and v,
64 
65  ocp.subjectTo( -0.1 <= v <= 1.7 ); // as well as the bounds on v
66  ocp.subjectTo( -1.1 <= u <= 1.1 ); // the control input u,
67  ocp.subjectTo( 5.0 <= T <= 15.0 ); // and the time horizon T.
68 // -------------------------------------
69 
70  GnuplotWindow window;
71  window.addSubplot( s, "THE DISTANCE s" );
72  window.addSubplot( v, "THE VELOCITY v" );
73  window.addSubplot( m, "THE MASS m" );
74  window.addSubplot( u, "THE CONTROL INPUT u" );
75 
76  OptimizationAlgorithm algorithm(ocp); // the optimization algorithm
77  algorithm << window;
78  algorithm.solve(); // solves the problem.
79 
80 
81  return 0;
82 }
USING_NAMESPACE_ACADO typedef TaylorVariable< Interval > T
User-interface to formulate and solve optimal control problems and static NLPs.
#define USING_NAMESPACE_ACADO
returnValue subjectTo(const DifferentialEquation &differentialEquation_)
Definition: ocp.cpp:153
returnValue minimizeMayerTerm(const Expression &arg)
Definition: ocp.cpp:238
returnValue addSubplot(PlotWindowSubplot &_subplot)
Data class for defining optimal control problems.
Definition: ocp.hpp:89
#define v
Expression dot(const Expression &arg)
Provides an interface to Gnuplot for plotting algorithmic outputs.
virtual returnValue solve()
Allows to setup and evaluate differential equations (ODEs and DAEs) based on SymbolicExpressions.


acado
Author(s): Milan Vukov, Rien Quirynen
autogenerated on Mon Jun 10 2019 12:35:04