00001
00002
00003
00004
00005
00006
00007
00008
00009
00010
00011
00012
00013
00014
00015
00016
00017
00018
00019
00020
00021
00022
00023
00024
00025
00026
00027
00028
00029
00030
00031
00032
00033
00034
00035
00036
00037
00038
00039
00040 #ifndef PCL_NDT_2D_IMPL_H_
00041 #define PCL_NDT_2D_IMPL_H_
00042 #include <cmath>
00043
00044 #include <pcl/registration/eigen.h>
00045 #include <pcl/registration/boost.h>
00046
00047 namespace pcl
00048 {
00049 namespace ndt2d
00050 {
00055 template<unsigned N=3, typename T=double>
00056 struct ValueAndDerivatives
00057 {
00058 ValueAndDerivatives () : hessian (), grad (), value () {}
00059
00060 Eigen::Matrix<T, N, N> hessian;
00061 Eigen::Matrix<T, N, 1> grad;
00062 T value;
00063
00064 static ValueAndDerivatives<N,T>
00065 Zero ()
00066 {
00067 ValueAndDerivatives<N,T> r;
00068 r.hessian = Eigen::Matrix<T, N, N>::Zero ();
00069 r.grad = Eigen::Matrix<T, N, 1>::Zero ();
00070 r.value = 0;
00071 return r;
00072 }
00073
00074 ValueAndDerivatives<N,T>&
00075 operator+= (ValueAndDerivatives<N,T> const& r)
00076 {
00077 hessian += r.hessian;
00078 grad += r.grad;
00079 value += r.value;
00080 return *this;
00081 }
00082 };
00083
00095 template <typename PointT>
00096 class NormalDist
00097 {
00098 typedef pcl::PointCloud<PointT> PointCloud;
00099
00100 public:
00101 NormalDist ()
00102 : min_n_ (3), n_ (0), pt_indices_ (), mean_ (), covar_inv_ ()
00103 {
00104 }
00105
00109 void
00110 addIdx (size_t i)
00111 {
00112 pt_indices_.push_back (i);
00113 }
00114
00119 void
00120 estimateParams (const PointCloud& cloud, double min_covar_eigvalue_mult = 0.001)
00121 {
00122 Eigen::Vector2d sx = Eigen::Vector2d::Zero ();
00123 Eigen::Matrix2d sxx = Eigen::Matrix2d::Zero ();
00124
00125 std::vector<size_t>::const_iterator i;
00126 for (i = pt_indices_.begin (); i != pt_indices_.end (); i++)
00127 {
00128 Eigen::Vector2d p (cloud[*i]. x, cloud[*i]. y);
00129 sx += p;
00130 sxx += p * p.transpose ();
00131 }
00132
00133 n_ = pt_indices_.size ();
00134
00135 if (n_ >= min_n_)
00136 {
00137 mean_ = sx / static_cast<double> (n_);
00138
00139 Eigen::Matrix2d covar = (sxx - 2 * (sx * mean_.transpose ())) / static_cast<double> (n_) + mean_ * mean_.transpose ();
00140
00141 Eigen::SelfAdjointEigenSolver<Eigen::Matrix2d> solver (covar);
00142 if (solver.eigenvalues ()[0] < min_covar_eigvalue_mult * solver.eigenvalues ()[1])
00143 {
00144 PCL_DEBUG ("[pcl::NormalDist::estimateParams] NDT normal fit: adjusting eigenvalue %f\n", solver.eigenvalues ()[0]);
00145 Eigen::Matrix2d l = solver.eigenvalues ().asDiagonal ();
00146 Eigen::Matrix2d q = solver.eigenvectors ();
00147
00148 l (0,0) = l (1,1) * min_covar_eigvalue_mult;
00149 covar = q * l * q.transpose ();
00150 }
00151 covar_inv_ = covar.inverse ();
00152 }
00153
00154 pt_indices_.clear ();
00155 }
00156
00164 ValueAndDerivatives<3,double>
00165 test (const PointT& transformed_pt, const double& cos_theta, const double& sin_theta) const
00166 {
00167 if (n_ < min_n_)
00168 return ValueAndDerivatives<3,double>::Zero ();
00169
00170 ValueAndDerivatives<3,double> r;
00171 const double x = transformed_pt.x;
00172 const double y = transformed_pt.y;
00173 const Eigen::Vector2d p_xy (transformed_pt.x, transformed_pt.y);
00174 const Eigen::Vector2d q = p_xy - mean_;
00175 const Eigen::RowVector2d qt_cvi (q.transpose () * covar_inv_);
00176 const double exp_qt_cvi_q = std::exp (-0.5 * double (qt_cvi * q));
00177 r.value = -exp_qt_cvi_q;
00178
00179 Eigen::Matrix<double, 2, 3> jacobian;
00180 jacobian <<
00181 1, 0, -(x * sin_theta + y*cos_theta),
00182 0, 1, x * cos_theta - y*sin_theta;
00183
00184 for (size_t i = 0; i < 3; i++)
00185 r.grad[i] = double (qt_cvi * jacobian.col (i)) * exp_qt_cvi_q;
00186
00187
00188 const Eigen::Vector2d d2q_didj (
00189 y * sin_theta - x*cos_theta,
00190 -(x * sin_theta + y*cos_theta)
00191 );
00192
00193 for (size_t i = 0; i < 3; i++)
00194 for (size_t j = 0; j < 3; j++)
00195 r.hessian (i,j) = -exp_qt_cvi_q * (
00196 double (-qt_cvi*jacobian.col (i)) * double (-qt_cvi*jacobian.col (j)) +
00197 (-qt_cvi * ((i==2 && j==2)? d2q_didj : Eigen::Vector2d::Zero ())) +
00198 (-jacobian.col (j).transpose () * covar_inv_ * jacobian.col (i))
00199 );
00200
00201 return r;
00202 }
00203
00204 protected:
00205 const size_t min_n_;
00206
00207 size_t n_;
00208 std::vector<size_t> pt_indices_;
00209 Eigen::Vector2d mean_;
00210 Eigen::Matrix2d covar_inv_;
00211 };
00212
00217 template <typename PointT>
00218 class NDTSingleGrid: public boost::noncopyable
00219 {
00220 typedef typename pcl::PointCloud<PointT> PointCloud;
00221 typedef typename pcl::PointCloud<PointT>::ConstPtr PointCloudConstPtr;
00222 typedef typename pcl::ndt2d::NormalDist<PointT> NormalDist;
00223
00224 public:
00225 NDTSingleGrid (PointCloudConstPtr cloud,
00226 const Eigen::Vector2f& about,
00227 const Eigen::Vector2f& extent,
00228 const Eigen::Vector2f& step)
00229 : min_ (about - extent), max_ (min_ + 2*extent), step_ (step),
00230 cells_ ((max_[0]-min_[0]) / step_[0],
00231 (max_[1]-min_[1]) / step_[1]),
00232 normal_distributions_ (cells_[0], cells_[1])
00233 {
00234
00235 NormalDist* n;
00236 size_t used_points = 0;
00237 for (size_t i = 0; i < cloud->size (); i++)
00238 if ((n = normalDistForPoint (cloud->at (i))))
00239 {
00240 n->addIdx (i);
00241 used_points++;
00242 }
00243
00244 PCL_DEBUG ("[pcl::NDTSingleGrid] NDT single grid %dx%d using %d/%d points\n", cells_[0], cells_[1], used_points, cloud->size ());
00245
00246
00247
00248 for (int x = 0; x < cells_[0]; x++)
00249 for (int y = 0; y < cells_[1]; y++)
00250 normal_distributions_.coeffRef (x,y).estimateParams (*cloud);
00251 }
00252
00258 ValueAndDerivatives<3,double>
00259 test (const PointT& transformed_pt, const double& cos_theta, const double& sin_theta) const
00260 {
00261 const NormalDist* n = normalDistForPoint (transformed_pt);
00262
00263
00264 if (n)
00265 return n->test (transformed_pt, cos_theta, sin_theta);
00266 else
00267 return ValueAndDerivatives<3,double>::Zero ();
00268 }
00269
00270 protected:
00274 NormalDist*
00275 normalDistForPoint (PointT const& p) const
00276 {
00277
00278 Eigen::Vector2f idxf;
00279 for (size_t i = 0; i < 2; i++)
00280 idxf[i] = (p.getVector3fMap ()[i] - min_[i]) / step_[i];
00281 Eigen::Vector2i idxi = idxf.cast<int> ();
00282 for (size_t i = 0; i < 2; i++)
00283 if (idxi[i] >= cells_[i] || idxi[i] < 0)
00284 return NULL;
00285
00286
00287 return const_cast<NormalDist*> (&normal_distributions_.coeffRef (idxi[0], idxi[1]));
00288 }
00289
00290 Eigen::Vector2f min_;
00291 Eigen::Vector2f max_;
00292 Eigen::Vector2f step_;
00293 Eigen::Vector2i cells_;
00294
00295 Eigen::Matrix<NormalDist, Eigen::Dynamic, Eigen::Dynamic> normal_distributions_;
00296 };
00297
00304 template <typename PointT>
00305 class NDT2D: public boost::noncopyable
00306 {
00307 typedef typename pcl::PointCloud<PointT> PointCloud;
00308 typedef typename pcl::PointCloud<PointT>::ConstPtr PointCloudConstPtr;
00309 typedef NDTSingleGrid<PointT> SingleGrid;
00310
00311 public:
00318 NDT2D (PointCloudConstPtr cloud,
00319 const Eigen::Vector2f& about,
00320 const Eigen::Vector2f& extent,
00321 const Eigen::Vector2f& step)
00322 {
00323 Eigen::Vector2f dx (step[0]/2, 0);
00324 Eigen::Vector2f dy (0, step[1]/2);
00325 single_grids_[0] = boost::make_shared<SingleGrid> (cloud, about, extent, step);
00326 single_grids_[1] = boost::make_shared<SingleGrid> (cloud, about +dx, extent, step);
00327 single_grids_[2] = boost::make_shared<SingleGrid> (cloud, about +dy, extent, step);
00328 single_grids_[3] = boost::make_shared<SingleGrid> (cloud, about +dx+dy, extent, step);
00329 }
00330
00336 ValueAndDerivatives<3,double>
00337 test (const PointT& transformed_pt, const double& cos_theta, const double& sin_theta) const
00338 {
00339 ValueAndDerivatives<3,double> r = ValueAndDerivatives<3,double>::Zero ();
00340 for (size_t i = 0; i < 4; i++)
00341 r += single_grids_[i]->test (transformed_pt, cos_theta, sin_theta);
00342 return r;
00343 }
00344
00345 protected:
00346 boost::shared_ptr<SingleGrid> single_grids_[4];
00347 };
00348
00349 }
00350 }
00351
00352
00353 namespace Eigen
00354 {
00355
00356
00357
00358 template<typename PointT> struct NumTraits<pcl::ndt2d::NormalDist<PointT> >
00359 {
00360 typedef double Real;
00361 static Real dummy_precision () { return 1.0; }
00362 enum {
00363 IsComplex = 0,
00364 IsInteger = 0,
00365 IsSigned = 0,
00366 RequireInitialization = 1,
00367 ReadCost = 1,
00368 AddCost = 1,
00369 MulCost = 1
00370 };
00371 };
00372 }
00373
00375 template <typename PointSource, typename PointTarget> void
00376 pcl::NormalDistributionsTransform2D<PointSource, PointTarget>::computeTransformation (PointCloudSource &output, const Eigen::Matrix4f &guess)
00377 {
00378 PointCloudSource intm_cloud = output;
00379
00380 if (guess != Eigen::Matrix4f::Identity ())
00381 {
00382 transformation_ = guess;
00383 transformPointCloud (output, intm_cloud, transformation_);
00384 }
00385
00386
00387 ndt2d::NDT2D<PointTarget> target_ndt (target_, grid_centre_, grid_extent_, grid_step_);
00388
00389
00390
00391 Eigen::Matrix4f& transformation = transformation_;
00392
00393
00394
00395
00396 const Eigen::Matrix3f initial_rot (transformation.block<3,3> (0,0));
00397 const Eigen::Vector3f rot_x (initial_rot*Eigen::Vector3f::UnitX ());
00398 const double z_rotation = std::atan2 (rot_x[1], rot_x[0]);
00399
00400 Eigen::Vector3d xytheta_transformation (
00401 transformation (0,3),
00402 transformation (1,3),
00403 z_rotation
00404 );
00405
00406 while (!converged_)
00407 {
00408 const double cos_theta = std::cos (xytheta_transformation[2]);
00409 const double sin_theta = std::sin (xytheta_transformation[2]);
00410 previous_transformation_ = transformation;
00411
00412 ndt2d::ValueAndDerivatives<3, double> score = ndt2d::ValueAndDerivatives<3, double>::Zero ();
00413 for (size_t i = 0; i < intm_cloud.size (); i++)
00414 score += target_ndt.test (intm_cloud[i], cos_theta, sin_theta);
00415
00416 PCL_DEBUG ("[pcl::NormalDistributionsTransform2D::computeTransformation] NDT score %f (x=%f,y=%f,r=%f)\n",
00417 float (score.value), xytheta_transformation[0], xytheta_transformation[1], xytheta_transformation[2]
00418 );
00419
00420 if (score.value != 0)
00421 {
00422
00423 Eigen::EigenSolver<Eigen::Matrix3d> solver;
00424 solver.compute (score.hessian, false);
00425 double min_eigenvalue = 0;
00426 for (int i = 0; i <3; i++)
00427 if (solver.eigenvalues ()[i].real () < min_eigenvalue)
00428 min_eigenvalue = solver.eigenvalues ()[i].real ();
00429
00430
00431
00432 if (min_eigenvalue < 0)
00433 {
00434 double lambda = 1.1 * min_eigenvalue - 1;
00435 score.hessian += Eigen::Vector3d (-lambda, -lambda, -lambda).asDiagonal ();
00436 solver.compute (score.hessian, false);
00437 PCL_DEBUG ("[pcl::NormalDistributionsTransform2D::computeTransformation] adjust hessian: %f: new eigenvalues:%f %f %f\n",
00438 float (lambda),
00439 solver.eigenvalues ()[0].real (),
00440 solver.eigenvalues ()[1].real (),
00441 solver.eigenvalues ()[2].real ()
00442 );
00443 }
00444 assert (solver.eigenvalues ()[0].real () >= 0 &&
00445 solver.eigenvalues ()[1].real () >= 0 &&
00446 solver.eigenvalues ()[2].real () >= 0);
00447
00448 Eigen::Vector3d delta_transformation (-score.hessian.inverse () * score.grad);
00449 Eigen::Vector3d new_transformation = xytheta_transformation + newton_lambda_.cwiseProduct (delta_transformation);
00450
00451 xytheta_transformation = new_transformation;
00452
00453
00454 transformation.block<3,3> (0,0).matrix () = Eigen::Matrix3f (Eigen::AngleAxisf (static_cast<float> (xytheta_transformation[2]), Eigen::Vector3f::UnitZ ()));
00455 transformation.block<3,1> (0,3).matrix () = Eigen::Vector3f (static_cast<float> (xytheta_transformation[0]), static_cast<float> (xytheta_transformation[1]), 0.0f);
00456
00457
00458 }
00459 else
00460 {
00461 PCL_ERROR ("[pcl::NormalDistributionsTransform2D::computeTransformation] no overlap: try increasing the size or reducing the step of the grid\n");
00462 break;
00463 }
00464
00465 transformPointCloud (output, intm_cloud, transformation);
00466
00467 nr_iterations_++;
00468
00469 if (update_visualizer_ != 0)
00470 update_visualizer_ (output, *indices_, *target_, *indices_);
00471
00472
00473
00474 if (nr_iterations_ > max_iterations_ ||
00475 (transformation - previous_transformation_).array ().abs ().sum () < transformation_epsilon_)
00476 converged_ = true;
00477 }
00478 final_transformation_ = transformation;
00479 output = intm_cloud;
00480 }
00481
00482 #endif // PCL_NDT_2D_IMPL_H_
00483