gravity.cpp
Go to the documentation of this file.
00001 //=================================================================================================
00002 // Copyright (c) 2011, Johannes Meyer, TU Darmstadt
00003 // All rights reserved.
00004 
00005 // Redistribution and use in source and binary forms, with or without
00006 // modification, are permitted provided that the following conditions are met:
00007 //     * Redistributions of source code must retain the above copyright
00008 //       notice, this list of conditions and the following disclaimer.
00009 //     * Redistributions in binary form must reproduce the above copyright
00010 //       notice, this list of conditions and the following disclaimer in the
00011 //       documentation and/or other materials provided with the distribution.
00012 //     * Neither the name of the Flight Systems and Automatic Control group,
00013 //       TU Darmstadt, nor the names of its contributors may be used to
00014 //       endorse or promote products derived from this software without
00015 //       specific prior written permission.
00016 
00017 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
00018 // ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
00019 // WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
00020 // DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER BE LIABLE FOR ANY
00021 // DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
00022 // (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
00023 // LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
00024 // ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
00025 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
00026 // SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
00027 //=================================================================================================
00028 
00029 #include <hector_pose_estimation/measurements/gravity.h>
00030 #include <hector_pose_estimation/pose_estimation.h>
00031 #include <hector_pose_estimation/filter/set_filter.h>
00032 
00033 namespace hector_pose_estimation {
00034 
00035 template class Measurement_<GravityModel>;
00036 
00037 GravityModel::GravityModel()
00038   : gravity_(MeasurementVector::Zero())
00039 {
00040   parameters().add("stddev", stddev_, 1.0);
00041   parameters().add("use_bias", use_bias_, std::string("accelerometer_bias"));
00042 }
00043 
00044 GravityModel::~GravityModel() {}
00045 
00046 bool GravityModel::init(PoseEstimation &estimator, Measurement &measurement, State &state) {
00047   if (!use_bias_.empty()) {
00048     bias_ = state.getSubState<3,3>(use_bias_);
00049     if (!bias_) {
00050       ROS_ERROR("Could not find bias substate '%s' during initialization of gravity measurement '%s'.", use_bias_.c_str(), measurement.getName().c_str());
00051       return false;
00052     }
00053   } else {
00054     bias_.reset();
00055   }
00056 
00057   setGravity(estimator.parameters().getAs<double>("gravity_magnitude"));
00058   return true;
00059 }
00060 
00061 
00062 void GravityModel::getMeasurementNoise(NoiseVariance& R, const State&, bool init)
00063 {
00064   if (init) {
00065     R(0,0) = R(1,1) = R(2,2) = pow(stddev_, 2);
00066   }
00067 }
00068 
00069 void GravityModel::getExpectedValue(MeasurementVector& y_pred, const State& state)
00070 {
00071   const State::RotationMatrix &R = state.R();
00072   y_pred = -R.row(2).transpose() * gravity_.z();
00073   if (bias_) {
00074     y_pred += bias_->getVector();
00075   }
00076 }
00077 
00078 void GravityModel::getStateJacobian(MeasurementMatrix& C, const State& state, bool)
00079 {
00080   const State::RotationMatrix &R = state.R();
00081   if (state.orientation()) {
00082 //    C(0,state.getOrientationCovarianceIndex() + W) =  gravity_.z()*2*q.y();
00083 //    C(0,state.getOrientationCovarianceIndex() + X) = -gravity_.z()*2*q.z();
00084 //    C(0,state.getOrientationCovarianceIndex() + Y) =  gravity_.z()*2*q.w();
00085 //    C(0,state.getOrientationCovarianceIndex() + Z) = -gravity_.z()*2*q.x();
00086 //    C(1,state.getOrientationCovarianceIndex() + W) = -gravity_.z()*2*q.x();
00087 //    C(1,state.getOrientationCovarianceIndex() + X) = -gravity_.z()*2*q.w();
00088 //    C(1,state.getOrientationCovarianceIndex() + Y) = -gravity_.z()*2*q.z();
00089 //    C(1,state.getOrientationCovarianceIndex() + Z) = -gravity_.z()*2*q.y();
00090 //    C(2,state.getOrientationCovarianceIndex() + W) = -gravity_.z()*2*q.w();
00091 //    C(2,state.getOrientationCovarianceIndex() + X) =  gravity_.z()*2*q.x();
00092 //    C(2,state.getOrientationCovarianceIndex() + Y) =  gravity_.z()*2*q.y();
00093 //    C(2,state.getOrientationCovarianceIndex() + Z) = -gravity_.z()*2*q.z();
00094 
00095      state.orientation()->cols(C)(X,X) = -gravity_.z() * R(1,0);
00096      state.orientation()->cols(C)(X,Y) =  gravity_.z() * R(0,0);
00097      state.orientation()->cols(C)(Y,X) = -gravity_.z() * R(1,1);
00098      state.orientation()->cols(C)(Y,Y) =  gravity_.z() * R(0,1);
00099      state.orientation()->cols(C)(Z,X) = -gravity_.z() * R(1,2);
00100      state.orientation()->cols(C)(Z,Y) =  gravity_.z() * R(0,2);
00101   }
00102 
00103 //  Only the bias component in direction of the gravity is observable, under the assumption that we do not accelerate vertically.
00104   if (bias_) {
00105     bias_->cols(C) = R.row(2).transpose() * R.row(2);
00106   }
00107 }
00108 
00109 } // namespace hector_pose_estimation


hector_pose_estimation_core
Author(s): Johannes Meyer
autogenerated on Fri Aug 28 2015 10:59:54