$search
00001 // Copyright (C) 2007 Ruben Smits <ruben dot smits at mech dot kuleuven dot be> 00002 00003 // Version: 1.0 00004 // Author: Ruben Smits <ruben dot smits at mech dot kuleuven dot be> 00005 // Maintainer: Ruben Smits <ruben dot smits at mech dot kuleuven dot be> 00006 // URL: http://www.orocos.org/kdl 00007 00008 // This library is free software; you can redistribute it and/or 00009 // modify it under the terms of the GNU Lesser General Public 00010 // License as published by the Free Software Foundation; either 00011 // version 2.1 of the License, or (at your option) any later version. 00012 00013 // This library is distributed in the hope that it will be useful, 00014 // but WITHOUT ANY WARRANTY; without even the implied warranty of 00015 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 00016 // Lesser General Public License for more details. 00017 00018 // You should have received a copy of the GNU Lesser General Public 00019 // License along with this library; if not, write to the Free Software 00020 // Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA 00021 00022 #include "articulatedbodyinertia.hpp" 00023 00024 #include <Eigen/Core> 00025 00026 using namespace Eigen; 00027 00028 namespace KDL{ 00029 00030 ArticulatedBodyInertia::ArticulatedBodyInertia(const RigidBodyInertia& rbi): 00031 M(Matrix3d::Zero()),I(Matrix3d::Zero()),H(Matrix3d::Zero()) 00032 { 00033 this->M=Matrix3d::Identity()*rbi.m; 00034 this->I=Map<const Matrix3d>(rbi.I.data); 00035 this->H << 0,-rbi.h[2],rbi.h[1], 00036 rbi.h[2],0,-rbi.h[0], 00037 -rbi.h[1],rbi.h[0],0; 00038 } 00039 00040 ArticulatedBodyInertia::ArticulatedBodyInertia(double m, const Vector& c, const RotationalInertia& Ic) 00041 { 00042 *this = RigidBodyInertia(m,c,Ic); 00043 } 00044 00045 ArticulatedBodyInertia::ArticulatedBodyInertia(const Matrix3d& M, const Matrix3d& H, const Matrix3d& I): 00046 M(Matrix3d::Zero()),I(Matrix3d::Zero()),H(Matrix3d::Zero()) 00047 { 00048 this->M=M; 00049 this->I=I; 00050 this->H=H; 00051 } 00052 00053 ArticulatedBodyInertia operator*(double a,const ArticulatedBodyInertia& I){ 00054 return ArticulatedBodyInertia(a*I.M,a*I.H,a*I.I); 00055 } 00056 00057 ArticulatedBodyInertia operator+(const ArticulatedBodyInertia& Ia, const ArticulatedBodyInertia& Ib){ 00058 return ArticulatedBodyInertia(Ia.M+Ib.M,Ia.H+Ib.H,Ia.I+Ib.I); 00059 } 00060 00061 ArticulatedBodyInertia operator+(const RigidBodyInertia& Ia, const ArticulatedBodyInertia& Ib){ 00062 return ArticulatedBodyInertia(Ia)+Ib; 00063 } 00064 ArticulatedBodyInertia operator-(const ArticulatedBodyInertia& Ia, const ArticulatedBodyInertia& Ib){ 00065 return ArticulatedBodyInertia(Ia.M-Ib.M,Ia.H-Ib.H,Ia.I-Ib.I); 00066 } 00067 00068 ArticulatedBodyInertia operator-(const RigidBodyInertia& Ia, const ArticulatedBodyInertia& Ib){ 00069 return ArticulatedBodyInertia(Ia)-Ib; 00070 } 00071 00072 Wrench operator*(const ArticulatedBodyInertia& I,const Twist& t){ 00073 Wrench result; 00074 Vector3d::Map(result.force.data)=I.M*Vector3d::Map(t.vel.data)+I.H.transpose()*Vector3d::Map(t.rot.data); 00075 Vector3d::Map(result.torque.data)=I.I*Vector3d::Map(t.rot.data)+I.H*Vector3d::Map(t.vel.data); 00076 return result; 00077 } 00078 00079 ArticulatedBodyInertia operator*(const Frame& T,const ArticulatedBodyInertia& I){ 00080 Frame X=T.Inverse(); 00081 //mb=ma 00082 //hb=R*(h-m*r) 00083 //Ib = R(Ia+r x h x + (h-m*r) x r x)R' 00084 Map<Matrix3d> E(X.M.data); 00085 Matrix3d rcross; 00086 rcross << 0,-X.p[2],X.p[1], 00087 X.p[2],0,-X.p[0], 00088 -X.p[1],X.p[0],0; 00089 00090 Matrix3d HrM=I.H-rcross*I.M; 00091 return ArticulatedBodyInertia(E*I.M*E.transpose(),E*HrM*E.transpose(),E*(I.I-rcross*I.H.transpose()+HrM*rcross)*E.transpose()); 00092 } 00093 00094 ArticulatedBodyInertia operator*(const Rotation& M,const ArticulatedBodyInertia& I){ 00095 Map<const Matrix3d> E(M.data); 00096 return ArticulatedBodyInertia(E.transpose()*I.M*E,E.transpose()*I.H*E,E.transpose()*I.I*E); 00097 } 00098 00099 ArticulatedBodyInertia ArticulatedBodyInertia::RefPoint(const Vector& p){ 00100 //mb=ma 00101 //hb=R*(h-m*r) 00102 //Ib = R(Ia+r x h x + (h-m*r) x r x)R' 00103 Matrix3d rcross; 00104 rcross << 0,-p[2],p[1], 00105 p[2],0,-p[0], 00106 -p[1],p[0],0; 00107 00108 Matrix3d HrM=this->H-rcross*this->M; 00109 return ArticulatedBodyInertia(this->M,HrM,this->I-rcross*this->H.transpose()+HrM*rcross); 00110 } 00111 }//namespace