Creating a package

Goal: Create a new package using either CMake or Python, and run its executable.

Tutorial level: Beginner

Time: 15 minutes


1 What is a ROS 2 package?

A package is an organizational unit for your ROS 2 code. If you want to be able to install your code or share it with others, then you’ll need it organized in a package. With packages, you can release your ROS 2 work and allow others to build and use it easily.

Package creation in ROS 2 uses ament as its build system and colcon as its build tool. You can create a package using either CMake or Python, which are officially supported, though other build types do exist.

2 What makes up a ROS 2 package?

ROS 2 Python and CMake packages each have their own minimum required contents:

  • CMakeLists.txt file that describes how to build the code within the package

  • include/<package_name> directory containing the public headers for the package

  • package.xml file containing meta information about the package

  • src directory containing the source code for the package

The simplest possible package may have a file structure that looks like:


3 Packages in a workspace

A single workspace can contain as many packages as you want, each in their own folder. You can also have packages of different build types in one workspace (CMake, Python, etc.). You cannot have nested packages.

Best practice is to have a src folder within your workspace, and to create your packages in there. This keeps the top level of the workspace “clean”.

A trivial workspace might look like:





You should have a ROS 2 workspace after following the instructions in the previous tutorial. You will create your package in this workspace.


1 Create a package

First, source your ROS 2 installation.

Let’s use the workspace you created in the previous tutorial, ros2_ws, for your new package.

Make sure you are in the src folder before running the package creation command.

cd ~/ros2_ws/src

The command syntax for creating a new package in ROS 2 is:

ros2 pkg create --build-type ament_cmake --license Apache-2.0 <package_name>

For this tutorial, you will use the optional arguments --node-name and --license. --node-name option creates a simple Hello World type executable in the package, and --license declares the license information for the package.

Enter the following command in your terminal:

ros2 pkg create --build-type ament_cmake --license Apache-2.0 --node-name my_node my_package

You will now have a new folder within your workspace’s src directory called my_package.

After running the command, your terminal will return the message:

going to create a new package
package name: my_package
destination directory: /home/user/ros2_ws/src
package format: 3
version: 0.0.0
description: TODO: Package description
maintainer: ['<name> <email>']
licenses: ['Apache-2.0']
build type: ament_cmake
dependencies: []
node_name: my_node
creating folder ./my_package
creating ./my_package/package.xml
creating source and include folder
creating folder ./my_package/src
creating folder ./my_package/include/my_package
creating ./my_package/CMakeLists.txt
creating ./my_package/src/my_node.cpp

You can see the automatically generated files for the new package.

2 Build a package

Putting packages in a workspace is especially valuable because you can build many packages at once by running colcon build in the workspace root. Otherwise, you would have to build each package individually.

Return to the root of your workspace:

cd ~/ros2_ws

Now you can build your packages:

colcon build

Recall from the last tutorial that you also have the ros_tutorials packages in your ros2_ws. You might have noticed that running colcon build also built the turtlesim package. That’s fine when you only have a few packages in your workspace, but when there are many packages, colcon build can take a long time.

To build only the my_package package next time, you can run:

colcon build --packages-select my_package

3 Source the setup file

To use your new package and executable, first open a new terminal and source your main ROS 2 installation.

Then, from inside the ros2_ws directory, run the following command to source your workspace:

source install/local_setup.bash

Now that your workspace has been added to your path, you will be able to use your new package’s executables.

4 Use the package

To run the executable you created using the --node-name argument during package creation, enter the command:

ros2 run my_package my_node

Which will return a message to your terminal:

hello world my_package package

5 Examine package contents

Inside ros2_ws/src/my_package, you will see the files and folders that ros2 pkg create automatically generated:

CMakeLists.txt  include  package.xml  src

my_node.cpp is inside the src directory. This is where all your custom C++ nodes will go in the future.

6 Customize package.xml

You may have noticed in the return message after creating your package that the fields description and license contain TODO notes. That’s because the package description and license declaration are not automatically set, but are required if you ever want to release your package. The maintainer field may also need to be filled in.

From ros2_ws/src/my_package, open package.xml using your preferred text editor:

<?xml version="1.0"?>
<package format="3">
 <description>TODO: Package description</description>
 <maintainer email="user@todo.todo">user</maintainer>
 <license>TODO: License declaration</license>




Input your name and email on the maintainer line if it hasn’t been automatically populated for you. Then, edit the description line to summarize the package:

<description>Beginner client libraries tutorials practice package</description>

Then, update the license line. You can read more about open source licenses here. Since this package is only for practice, it’s safe to use any license. We’ll use Apache-2.0:


Don’t forget to save once you’re done editing.

Below the license tag, you will see some tag names ending with _depend. This is where your package.xml would list its dependencies on other packages, for colcon to search for. my_package is simple and doesn’t have any dependencies, but you will see this space being utilized in upcoming tutorials.

You’re all done for now!


You’ve created a package to organize your code and make it easy to use for others.

Your package was automatically populated with the necessary files, and then you used colcon to build it so you can use its executables in your local environment.

Next steps

Next, let’s add something meaningful to a package. You’ll start with a simple publisher/subscriber system, which you can choose to write in either C++ or Python.