Warning

You're reading the documentation for a version of ROS 2 that has reached its EOL (end-of-life), and is no longer officially supported. If you want up-to-date information, please have a look at Jazzy.

RHEL (binary)

This page explains how to install ROS 2 on RHEL from a pre-built binary package.

Note

The pre-built binary does not include all ROS 2 packages. All packages in the ROS base variant are included, and only a subset of packages in the ROS desktop variant are included. The exact list of packages are described by the repositories listed in this ros2.repos file.

There are also RPM packages available.

System requirements

We currently support RHEL 9 64-bit.

System setup

Set locale

Make sure you have a locale which supports UTF-8. If you are in a minimal environment (such as a docker container), the locale may be something minimal like C. We test with the following settings. However, it should be fine if you’re using a different UTF-8 supported locale.

locale  # check for UTF-8

sudo dnf install langpacks-en glibc-langpack-en
export LANG=en_US.UTF-8

locale  # verify settings

Enable required repositories

The rosdep database contains packages from the EPEL and PowerTools repositories, which are not enabled by default. They can be enabled by running:

sudo dnf install 'dnf-command(config-manager)' epel-release -y
sudo dnf config-manager --set-enabled crb

Note

This step may be slightly different depending on the distribution you are using. Check the EPEL documentation: https://docs.fedoraproject.org/en-US/epel/#_quickstart

Install prerequisites

There are a few packages that must be installed in order to get and unpack the binary release.

sudo dnf install tar bzip2 wget -y

Install development tools (optional)

If you are going to build ROS packages or otherwise do development, you can also install the development tools:

sudo dnf install -y \
  cmake \
  gcc-c++ \
  git \
  make \
  patch \
  python3-colcon-common-extensions \
  python3-flake8-builtins \
  python3-flake8-comprehensions \
  python3-flake8-docstrings \
  python3-flake8-import-order \
  python3-flake8-quotes \
  python3-mypy \
  python3-pip \
  python3-pydocstyle \
  python3-pytest \
  python3-pytest-repeat \
  python3-pytest-rerunfailures \
  python3-rosdep \
  python3-setuptools \
  python3-vcstool \
  wget

# install some pip packages needed for testing and
# not available as RPMs
python3 -m pip install -U --user \
  flake8-blind-except==0.1.1 \
  flake8-class-newline \
  flake8-deprecated

Install ROS 2

  • Go to the releases page

  • Download the latest package for RHEL; let’s assume that it ends up at ~/Downloads/ros2-package-linux-x86_64.tar.bz2.

    • Note: there may be more than one binary download option which might cause the file name to differ.

  • Unpack it:

    mkdir -p ~/ros2_iron
    cd ~/ros2_iron
    tar xf ~/Downloads/ros2-package-linux-x86_64.tar.bz2
    

Install dependencies using rosdep

ROS 2 packages are built on frequently updated RHEL systems. It is always recommended that you ensure your system is up to date before installing new packages.

sudo dnf update
rosdep install --from-paths ~/ros2_iron/ros2-linux/share --ignore-src -y --skip-keys "cyclonedds fastcdr fastrtps ignition-cmake2 ignition-math6 rti-connext-dds-6.0.1 urdfdom_headers"

Install additional RMW implementations (optional)

The default middleware that ROS 2 uses is Fast DDS, but the middleware (RMW) can be replaced at runtime. See the guide on how to work with multiple RMWs.

Setup environment

Set up your environment by sourcing the following file.

# Replace ".bash" with your shell if you're not using bash
# Possible values are: setup.bash, setup.sh, setup.zsh
. ~/ros2_iron/ros2-linux/setup.bash

Try some examples

In one terminal, source the setup file and then run a C++ talker:

. ~/ros2_iron/ros2-linux/setup.bash
ros2 run demo_nodes_cpp talker

In another terminal source the setup file and then run a Python listener:

. ~/ros2_iron/ros2-linux/setup.bash
ros2 run demo_nodes_py listener

You should see the talker saying that it’s Publishing messages and the listener saying I heard those messages. This verifies both the C++ and Python APIs are working properly. Hooray!

Next steps

Continue with the tutorials and demos to configure your environment, create your own workspace and packages, and learn ROS 2 core concepts.

Troubleshoot

Troubleshooting techniques can be found here.

Uninstall

  1. If you installed your workspace with colcon as instructed above, “uninstalling” could be just a matter of opening a new terminal and not sourcing the workspace’s setup file. This way, your environment will behave as though there is no Iron install on your system.

  2. If you’re also trying to free up space, you can delete the entire workspace directory with:

    rm -rf ~/ros2_iron