00001
00002 #ifndef PR2_PICK_AND_PLACE_SERVICE_SERVICE_PICKPLACE_H
00003 #define PR2_PICK_AND_PLACE_SERVICE_SERVICE_PICKPLACE_H
00004 #include <string>
00005 #include <vector>
00006 #include <ostream>
00007 #include "ros/serialization.h"
00008 #include "ros/builtin_message_traits.h"
00009 #include "ros/message_operations.h"
00010 #include "ros/message.h"
00011 #include "ros/time.h"
00012
00013 #include "ros/service_traits.h"
00014
00015
00016
00017 #include "pr2_pick_and_place_service/PickPlaceObject.h"
00018
00019 namespace pr2_pick_and_place_service
00020 {
00021 template <class ContainerAllocator>
00022 struct PickPlaceRequest_ : public ros::Message
00023 {
00024 typedef PickPlaceRequest_<ContainerAllocator> Type;
00025
00026 PickPlaceRequest_()
00027 : command()
00028 , arg()
00029 {
00030 }
00031
00032 PickPlaceRequest_(const ContainerAllocator& _alloc)
00033 : command(_alloc)
00034 , arg(_alloc)
00035 {
00036 }
00037
00038 typedef std::basic_string<char, std::char_traits<char>, typename ContainerAllocator::template rebind<char>::other > _command_type;
00039 std::basic_string<char, std::char_traits<char>, typename ContainerAllocator::template rebind<char>::other > command;
00040
00041 typedef std::basic_string<char, std::char_traits<char>, typename ContainerAllocator::template rebind<char>::other > _arg_type;
00042 std::basic_string<char, std::char_traits<char>, typename ContainerAllocator::template rebind<char>::other > arg;
00043
00044
00045 private:
00046 static const char* __s_getDataType_() { return "pr2_pick_and_place_service/PickPlaceRequest"; }
00047 public:
00048 ROS_DEPRECATED static const std::string __s_getDataType() { return __s_getDataType_(); }
00049
00050 ROS_DEPRECATED const std::string __getDataType() const { return __s_getDataType_(); }
00051
00052 private:
00053 static const char* __s_getMD5Sum_() { return "a103fd90ae71bfd419fcdfa60a00c804"; }
00054 public:
00055 ROS_DEPRECATED static const std::string __s_getMD5Sum() { return __s_getMD5Sum_(); }
00056
00057 ROS_DEPRECATED const std::string __getMD5Sum() const { return __s_getMD5Sum_(); }
00058
00059 private:
00060 static const char* __s_getServerMD5Sum_() { return "c99736d54e6f5fc115cd32e445b9e26b"; }
00061 public:
00062 ROS_DEPRECATED static const std::string __s_getServerMD5Sum() { return __s_getServerMD5Sum_(); }
00063
00064 ROS_DEPRECATED const std::string __getServerMD5Sum() const { return __s_getServerMD5Sum_(); }
00065
00066 private:
00067 static const char* __s_getMessageDefinition_() { return "string command\n\
00068 string arg\n\
00069 \n\
00070 \n\
00071 "; }
00072 public:
00073 ROS_DEPRECATED static const std::string __s_getMessageDefinition() { return __s_getMessageDefinition_(); }
00074
00075 ROS_DEPRECATED const std::string __getMessageDefinition() const { return __s_getMessageDefinition_(); }
00076
00077 ROS_DEPRECATED virtual uint8_t *serialize(uint8_t *write_ptr, uint32_t seq) const
00078 {
00079 ros::serialization::OStream stream(write_ptr, 1000000000);
00080 ros::serialization::serialize(stream, command);
00081 ros::serialization::serialize(stream, arg);
00082 return stream.getData();
00083 }
00084
00085 ROS_DEPRECATED virtual uint8_t *deserialize(uint8_t *read_ptr)
00086 {
00087 ros::serialization::IStream stream(read_ptr, 1000000000);
00088 ros::serialization::deserialize(stream, command);
00089 ros::serialization::deserialize(stream, arg);
00090 return stream.getData();
00091 }
00092
00093 ROS_DEPRECATED virtual uint32_t serializationLength() const
00094 {
00095 uint32_t size = 0;
00096 size += ros::serialization::serializationLength(command);
00097 size += ros::serialization::serializationLength(arg);
00098 return size;
00099 }
00100
00101 typedef boost::shared_ptr< ::pr2_pick_and_place_service::PickPlaceRequest_<ContainerAllocator> > Ptr;
00102 typedef boost::shared_ptr< ::pr2_pick_and_place_service::PickPlaceRequest_<ContainerAllocator> const> ConstPtr;
00103 };
00104 typedef ::pr2_pick_and_place_service::PickPlaceRequest_<std::allocator<void> > PickPlaceRequest;
00105
00106 typedef boost::shared_ptr< ::pr2_pick_and_place_service::PickPlaceRequest> PickPlaceRequestPtr;
00107 typedef boost::shared_ptr< ::pr2_pick_and_place_service::PickPlaceRequest const> PickPlaceRequestConstPtr;
00108
00109
00110 template <class ContainerAllocator>
00111 struct PickPlaceResponse_ : public ros::Message
00112 {
00113 typedef PickPlaceResponse_<ContainerAllocator> Type;
00114
00115 PickPlaceResponse_()
00116 : response()
00117 , objects()
00118 {
00119 }
00120
00121 PickPlaceResponse_(const ContainerAllocator& _alloc)
00122 : response(_alloc)
00123 , objects(_alloc)
00124 {
00125 }
00126
00127 typedef std::basic_string<char, std::char_traits<char>, typename ContainerAllocator::template rebind<char>::other > _response_type;
00128 std::basic_string<char, std::char_traits<char>, typename ContainerAllocator::template rebind<char>::other > response;
00129
00130 typedef std::vector< ::pr2_pick_and_place_service::PickPlaceObject_<ContainerAllocator> , typename ContainerAllocator::template rebind< ::pr2_pick_and_place_service::PickPlaceObject_<ContainerAllocator> >::other > _objects_type;
00131 std::vector< ::pr2_pick_and_place_service::PickPlaceObject_<ContainerAllocator> , typename ContainerAllocator::template rebind< ::pr2_pick_and_place_service::PickPlaceObject_<ContainerAllocator> >::other > objects;
00132
00133
00134 ROS_DEPRECATED uint32_t get_objects_size() const { return (uint32_t)objects.size(); }
00135 ROS_DEPRECATED void set_objects_size(uint32_t size) { objects.resize((size_t)size); }
00136 ROS_DEPRECATED void get_objects_vec(std::vector< ::pr2_pick_and_place_service::PickPlaceObject_<ContainerAllocator> , typename ContainerAllocator::template rebind< ::pr2_pick_and_place_service::PickPlaceObject_<ContainerAllocator> >::other > & vec) const { vec = this->objects; }
00137 ROS_DEPRECATED void set_objects_vec(const std::vector< ::pr2_pick_and_place_service::PickPlaceObject_<ContainerAllocator> , typename ContainerAllocator::template rebind< ::pr2_pick_and_place_service::PickPlaceObject_<ContainerAllocator> >::other > & vec) { this->objects = vec; }
00138 private:
00139 static const char* __s_getDataType_() { return "pr2_pick_and_place_service/PickPlaceResponse"; }
00140 public:
00141 ROS_DEPRECATED static const std::string __s_getDataType() { return __s_getDataType_(); }
00142
00143 ROS_DEPRECATED const std::string __getDataType() const { return __s_getDataType_(); }
00144
00145 private:
00146 static const char* __s_getMD5Sum_() { return "2771c418cb4e9b33423cf3fc56171289"; }
00147 public:
00148 ROS_DEPRECATED static const std::string __s_getMD5Sum() { return __s_getMD5Sum_(); }
00149
00150 ROS_DEPRECATED const std::string __getMD5Sum() const { return __s_getMD5Sum_(); }
00151
00152 private:
00153 static const char* __s_getServerMD5Sum_() { return "c99736d54e6f5fc115cd32e445b9e26b"; }
00154 public:
00155 ROS_DEPRECATED static const std::string __s_getServerMD5Sum() { return __s_getServerMD5Sum_(); }
00156
00157 ROS_DEPRECATED const std::string __getServerMD5Sum() const { return __s_getServerMD5Sum_(); }
00158
00159 private:
00160 static const char* __s_getMessageDefinition_() { return "string response\n\
00161 PickPlaceObject[] objects\n\
00162 \n\
00163 \n\
00164 ================================================================================\n\
00165 MSG: pr2_pick_and_place_service/PickPlaceObject\n\
00166 int32 objectid\n\
00167 object_manipulation_msgs/GraspableObject object\n\
00168 geometry_msgs/PoseStamped pose\n\
00169 float64[] boundingbox\n\
00170 \n\
00171 ================================================================================\n\
00172 MSG: object_manipulation_msgs/GraspableObject\n\
00173 # an object that the object_manipulator can work on\n\
00174 \n\
00175 # a graspable object can be represented in multiple ways. This message\n\
00176 # can contain all of them. Which one is actually used is up to the receiver\n\
00177 # of this message. When adding new representations, one must be careful that\n\
00178 # they have reasonable lightweight defaults indicating that that particular\n\
00179 # representation is not available.\n\
00180 \n\
00181 # the tf frame to be used as a reference frame when combining information from\n\
00182 # the different representations below\n\
00183 string reference_frame_id\n\
00184 \n\
00185 # potential recognition results from a database of models\n\
00186 # all poses are relative to the object reference pose\n\
00187 household_objects_database_msgs/DatabaseModelPose[] potential_models\n\
00188 \n\
00189 # the point cloud itself\n\
00190 sensor_msgs/PointCloud cluster\n\
00191 \n\
00192 # a region of a PointCloud2 of interest\n\
00193 object_manipulation_msgs/SceneRegion region\n\
00194 \n\
00195 \n\
00196 ================================================================================\n\
00197 MSG: household_objects_database_msgs/DatabaseModelPose\n\
00198 # Informs that a specific model from the Model Database has been \n\
00199 # identified at a certain location\n\
00200 \n\
00201 # the database id of the model\n\
00202 int32 model_id\n\
00203 \n\
00204 # the pose that it can be found in\n\
00205 geometry_msgs/PoseStamped pose\n\
00206 \n\
00207 # a measure of the confidence level in this detection result\n\
00208 float32 confidence\n\
00209 ================================================================================\n\
00210 MSG: geometry_msgs/PoseStamped\n\
00211 # A Pose with reference coordinate frame and timestamp\n\
00212 Header header\n\
00213 Pose pose\n\
00214 \n\
00215 ================================================================================\n\
00216 MSG: std_msgs/Header\n\
00217 # Standard metadata for higher-level stamped data types.\n\
00218 # This is generally used to communicate timestamped data \n\
00219 # in a particular coordinate frame.\n\
00220 # \n\
00221 # sequence ID: consecutively increasing ID \n\
00222 uint32 seq\n\
00223 #Two-integer timestamp that is expressed as:\n\
00224 # * stamp.secs: seconds (stamp_secs) since epoch\n\
00225 # * stamp.nsecs: nanoseconds since stamp_secs\n\
00226 # time-handling sugar is provided by the client library\n\
00227 time stamp\n\
00228 #Frame this data is associated with\n\
00229 # 0: no frame\n\
00230 # 1: global frame\n\
00231 string frame_id\n\
00232 \n\
00233 ================================================================================\n\
00234 MSG: geometry_msgs/Pose\n\
00235 # A representation of pose in free space, composed of postion and orientation. \n\
00236 Point position\n\
00237 Quaternion orientation\n\
00238 \n\
00239 ================================================================================\n\
00240 MSG: geometry_msgs/Point\n\
00241 # This contains the position of a point in free space\n\
00242 float64 x\n\
00243 float64 y\n\
00244 float64 z\n\
00245 \n\
00246 ================================================================================\n\
00247 MSG: geometry_msgs/Quaternion\n\
00248 # This represents an orientation in free space in quaternion form.\n\
00249 \n\
00250 float64 x\n\
00251 float64 y\n\
00252 float64 z\n\
00253 float64 w\n\
00254 \n\
00255 ================================================================================\n\
00256 MSG: sensor_msgs/PointCloud\n\
00257 # This message holds a collection of 3d points, plus optional additional\n\
00258 # information about each point.\n\
00259 \n\
00260 # Time of sensor data acquisition, coordinate frame ID.\n\
00261 Header header\n\
00262 \n\
00263 # Array of 3d points. Each Point32 should be interpreted as a 3d point\n\
00264 # in the frame given in the header.\n\
00265 geometry_msgs/Point32[] points\n\
00266 \n\
00267 # Each channel should have the same number of elements as points array,\n\
00268 # and the data in each channel should correspond 1:1 with each point.\n\
00269 # Channel names in common practice are listed in ChannelFloat32.msg.\n\
00270 ChannelFloat32[] channels\n\
00271 \n\
00272 ================================================================================\n\
00273 MSG: geometry_msgs/Point32\n\
00274 # This contains the position of a point in free space(with 32 bits of precision).\n\
00275 # It is recommeded to use Point wherever possible instead of Point32. \n\
00276 # \n\
00277 # This recommendation is to promote interoperability. \n\
00278 #\n\
00279 # This message is designed to take up less space when sending\n\
00280 # lots of points at once, as in the case of a PointCloud. \n\
00281 \n\
00282 float32 x\n\
00283 float32 y\n\
00284 float32 z\n\
00285 ================================================================================\n\
00286 MSG: sensor_msgs/ChannelFloat32\n\
00287 # This message is used by the PointCloud message to hold optional data\n\
00288 # associated with each point in the cloud. The length of the values\n\
00289 # array should be the same as the length of the points array in the\n\
00290 # PointCloud, and each value should be associated with the corresponding\n\
00291 # point.\n\
00292 \n\
00293 # Channel names in existing practice include:\n\
00294 # \"u\", \"v\" - row and column (respectively) in the left stereo image.\n\
00295 # This is opposite to usual conventions but remains for\n\
00296 # historical reasons. The newer PointCloud2 message has no\n\
00297 # such problem.\n\
00298 # \"rgb\" - For point clouds produced by color stereo cameras. uint8\n\
00299 # (R,G,B) values packed into the least significant 24 bits,\n\
00300 # in order.\n\
00301 # \"intensity\" - laser or pixel intensity.\n\
00302 # \"distance\"\n\
00303 \n\
00304 # The channel name should give semantics of the channel (e.g.\n\
00305 # \"intensity\" instead of \"value\").\n\
00306 string name\n\
00307 \n\
00308 # The values array should be 1-1 with the elements of the associated\n\
00309 # PointCloud.\n\
00310 float32[] values\n\
00311 \n\
00312 ================================================================================\n\
00313 MSG: object_manipulation_msgs/SceneRegion\n\
00314 # Point cloud\n\
00315 sensor_msgs/PointCloud2 cloud\n\
00316 \n\
00317 # Indices for the region of interest\n\
00318 int32[] mask\n\
00319 \n\
00320 # One of the corresponding 2D images, if applicable\n\
00321 sensor_msgs/Image image\n\
00322 \n\
00323 # The disparity image, if applicable\n\
00324 sensor_msgs/Image disparity_image\n\
00325 \n\
00326 # Camera info for the camera that took the image\n\
00327 sensor_msgs/CameraInfo cam_info\n\
00328 \n\
00329 ================================================================================\n\
00330 MSG: sensor_msgs/PointCloud2\n\
00331 # This message holds a collection of N-dimensional points, which may\n\
00332 # contain additional information such as normals, intensity, etc. The\n\
00333 # point data is stored as a binary blob, its layout described by the\n\
00334 # contents of the \"fields\" array.\n\
00335 \n\
00336 # The point cloud data may be organized 2d (image-like) or 1d\n\
00337 # (unordered). Point clouds organized as 2d images may be produced by\n\
00338 # camera depth sensors such as stereo or time-of-flight.\n\
00339 \n\
00340 # Time of sensor data acquisition, and the coordinate frame ID (for 3d\n\
00341 # points).\n\
00342 Header header\n\
00343 \n\
00344 # 2D structure of the point cloud. If the cloud is unordered, height is\n\
00345 # 1 and width is the length of the point cloud.\n\
00346 uint32 height\n\
00347 uint32 width\n\
00348 \n\
00349 # Describes the channels and their layout in the binary data blob.\n\
00350 PointField[] fields\n\
00351 \n\
00352 bool is_bigendian # Is this data bigendian?\n\
00353 uint32 point_step # Length of a point in bytes\n\
00354 uint32 row_step # Length of a row in bytes\n\
00355 uint8[] data # Actual point data, size is (row_step*height)\n\
00356 \n\
00357 bool is_dense # True if there are no invalid points\n\
00358 \n\
00359 ================================================================================\n\
00360 MSG: sensor_msgs/PointField\n\
00361 # This message holds the description of one point entry in the\n\
00362 # PointCloud2 message format.\n\
00363 uint8 INT8 = 1\n\
00364 uint8 UINT8 = 2\n\
00365 uint8 INT16 = 3\n\
00366 uint8 UINT16 = 4\n\
00367 uint8 INT32 = 5\n\
00368 uint8 UINT32 = 6\n\
00369 uint8 FLOAT32 = 7\n\
00370 uint8 FLOAT64 = 8\n\
00371 \n\
00372 string name # Name of field\n\
00373 uint32 offset # Offset from start of point struct\n\
00374 uint8 datatype # Datatype enumeration, see above\n\
00375 uint32 count # How many elements in the field\n\
00376 \n\
00377 ================================================================================\n\
00378 MSG: sensor_msgs/Image\n\
00379 # This message contains an uncompressed image\n\
00380 # (0, 0) is at top-left corner of image\n\
00381 #\n\
00382 \n\
00383 Header header # Header timestamp should be acquisition time of image\n\
00384 # Header frame_id should be optical frame of camera\n\
00385 # origin of frame should be optical center of cameara\n\
00386 # +x should point to the right in the image\n\
00387 # +y should point down in the image\n\
00388 # +z should point into to plane of the image\n\
00389 # If the frame_id here and the frame_id of the CameraInfo\n\
00390 # message associated with the image conflict\n\
00391 # the behavior is undefined\n\
00392 \n\
00393 uint32 height # image height, that is, number of rows\n\
00394 uint32 width # image width, that is, number of columns\n\
00395 \n\
00396 # The legal values for encoding are in file src/image_encodings.cpp\n\
00397 # If you want to standardize a new string format, join\n\
00398 # ros-users@lists.sourceforge.net and send an email proposing a new encoding.\n\
00399 \n\
00400 string encoding # Encoding of pixels -- channel meaning, ordering, size\n\
00401 # taken from the list of strings in src/image_encodings.cpp\n\
00402 \n\
00403 uint8 is_bigendian # is this data bigendian?\n\
00404 uint32 step # Full row length in bytes\n\
00405 uint8[] data # actual matrix data, size is (step * rows)\n\
00406 \n\
00407 ================================================================================\n\
00408 MSG: sensor_msgs/CameraInfo\n\
00409 # This message defines meta information for a camera. It should be in a\n\
00410 # camera namespace on topic \"camera_info\" and accompanied by up to five\n\
00411 # image topics named:\n\
00412 #\n\
00413 # image_raw - raw data from the camera driver, possibly Bayer encoded\n\
00414 # image - monochrome, distorted\n\
00415 # image_color - color, distorted\n\
00416 # image_rect - monochrome, rectified\n\
00417 # image_rect_color - color, rectified\n\
00418 #\n\
00419 # The image_pipeline contains packages (image_proc, stereo_image_proc)\n\
00420 # for producing the four processed image topics from image_raw and\n\
00421 # camera_info. The meaning of the camera parameters are described in\n\
00422 # detail at http://www.ros.org/wiki/image_pipeline/CameraInfo.\n\
00423 #\n\
00424 # The image_geometry package provides a user-friendly interface to\n\
00425 # common operations using this meta information. If you want to, e.g.,\n\
00426 # project a 3d point into image coordinates, we strongly recommend\n\
00427 # using image_geometry.\n\
00428 #\n\
00429 # If the camera is uncalibrated, the matrices D, K, R, P should be left\n\
00430 # zeroed out. In particular, clients may assume that K[0] == 0.0\n\
00431 # indicates an uncalibrated camera.\n\
00432 \n\
00433 #######################################################################\n\
00434 # Image acquisition info #\n\
00435 #######################################################################\n\
00436 \n\
00437 # Time of image acquisition, camera coordinate frame ID\n\
00438 Header header # Header timestamp should be acquisition time of image\n\
00439 # Header frame_id should be optical frame of camera\n\
00440 # origin of frame should be optical center of camera\n\
00441 # +x should point to the right in the image\n\
00442 # +y should point down in the image\n\
00443 # +z should point into the plane of the image\n\
00444 \n\
00445 \n\
00446 #######################################################################\n\
00447 # Calibration Parameters #\n\
00448 #######################################################################\n\
00449 # These are fixed during camera calibration. Their values will be the #\n\
00450 # same in all messages until the camera is recalibrated. Note that #\n\
00451 # self-calibrating systems may \"recalibrate\" frequently. #\n\
00452 # #\n\
00453 # The internal parameters can be used to warp a raw (distorted) image #\n\
00454 # to: #\n\
00455 # 1. An undistorted image (requires D and K) #\n\
00456 # 2. A rectified image (requires D, K, R) #\n\
00457 # The projection matrix P projects 3D points into the rectified image.#\n\
00458 #######################################################################\n\
00459 \n\
00460 # The image dimensions with which the camera was calibrated. Normally\n\
00461 # this will be the full camera resolution in pixels.\n\
00462 uint32 height\n\
00463 uint32 width\n\
00464 \n\
00465 # The distortion model used. Supported models are listed in\n\
00466 # sensor_msgs/distortion_models.h. For most cameras, \"plumb_bob\" - a\n\
00467 # simple model of radial and tangential distortion - is sufficent.\n\
00468 string distortion_model\n\
00469 \n\
00470 # The distortion parameters, size depending on the distortion model.\n\
00471 # For \"plumb_bob\", the 5 parameters are: (k1, k2, t1, t2, k3).\n\
00472 float64[] D\n\
00473 \n\
00474 # Intrinsic camera matrix for the raw (distorted) images.\n\
00475 # [fx 0 cx]\n\
00476 # K = [ 0 fy cy]\n\
00477 # [ 0 0 1]\n\
00478 # Projects 3D points in the camera coordinate frame to 2D pixel\n\
00479 # coordinates using the focal lengths (fx, fy) and principal point\n\
00480 # (cx, cy).\n\
00481 float64[9] K # 3x3 row-major matrix\n\
00482 \n\
00483 # Rectification matrix (stereo cameras only)\n\
00484 # A rotation matrix aligning the camera coordinate system to the ideal\n\
00485 # stereo image plane so that epipolar lines in both stereo images are\n\
00486 # parallel.\n\
00487 float64[9] R # 3x3 row-major matrix\n\
00488 \n\
00489 # Projection/camera matrix\n\
00490 # [fx' 0 cx' Tx]\n\
00491 # P = [ 0 fy' cy' Ty]\n\
00492 # [ 0 0 1 0]\n\
00493 # By convention, this matrix specifies the intrinsic (camera) matrix\n\
00494 # of the processed (rectified) image. That is, the left 3x3 portion\n\
00495 # is the normal camera intrinsic matrix for the rectified image.\n\
00496 # It projects 3D points in the camera coordinate frame to 2D pixel\n\
00497 # coordinates using the focal lengths (fx', fy') and principal point\n\
00498 # (cx', cy') - these may differ from the values in K.\n\
00499 # For monocular cameras, Tx = Ty = 0. Normally, monocular cameras will\n\
00500 # also have R = the identity and P[1:3,1:3] = K.\n\
00501 # For a stereo pair, the fourth column [Tx Ty 0]' is related to the\n\
00502 # position of the optical center of the second camera in the first\n\
00503 # camera's frame. We assume Tz = 0 so both cameras are in the same\n\
00504 # stereo image plane. The first camera always has Tx = Ty = 0. For\n\
00505 # the right (second) camera of a horizontal stereo pair, Ty = 0 and\n\
00506 # Tx = -fx' * B, where B is the baseline between the cameras.\n\
00507 # Given a 3D point [X Y Z]', the projection (x, y) of the point onto\n\
00508 # the rectified image is given by:\n\
00509 # [u v w]' = P * [X Y Z 1]'\n\
00510 # x = u / w\n\
00511 # y = v / w\n\
00512 # This holds for both images of a stereo pair.\n\
00513 float64[12] P # 3x4 row-major matrix\n\
00514 \n\
00515 \n\
00516 #######################################################################\n\
00517 # Operational Parameters #\n\
00518 #######################################################################\n\
00519 # These define the image region actually captured by the camera #\n\
00520 # driver. Although they affect the geometry of the output image, they #\n\
00521 # may be changed freely without recalibrating the camera. #\n\
00522 #######################################################################\n\
00523 \n\
00524 # Binning refers here to any camera setting which combines rectangular\n\
00525 # neighborhoods of pixels into larger \"super-pixels.\" It reduces the\n\
00526 # resolution of the output image to\n\
00527 # (width / binning_x) x (height / binning_y).\n\
00528 # The default values binning_x = binning_y = 0 is considered the same\n\
00529 # as binning_x = binning_y = 1 (no subsampling).\n\
00530 uint32 binning_x\n\
00531 uint32 binning_y\n\
00532 \n\
00533 # Region of interest (subwindow of full camera resolution), given in\n\
00534 # full resolution (unbinned) image coordinates. A particular ROI\n\
00535 # always denotes the same window of pixels on the camera sensor,\n\
00536 # regardless of binning settings.\n\
00537 # The default setting of roi (all values 0) is considered the same as\n\
00538 # full resolution (roi.width = width, roi.height = height).\n\
00539 RegionOfInterest roi\n\
00540 \n\
00541 ================================================================================\n\
00542 MSG: sensor_msgs/RegionOfInterest\n\
00543 # This message is used to specify a region of interest within an image.\n\
00544 #\n\
00545 # When used to specify the ROI setting of the camera when the image was\n\
00546 # taken, the height and width fields should either match the height and\n\
00547 # width fields for the associated image; or height = width = 0\n\
00548 # indicates that the full resolution image was captured.\n\
00549 \n\
00550 uint32 x_offset # Leftmost pixel of the ROI\n\
00551 # (0 if the ROI includes the left edge of the image)\n\
00552 uint32 y_offset # Topmost pixel of the ROI\n\
00553 # (0 if the ROI includes the top edge of the image)\n\
00554 uint32 height # Height of ROI\n\
00555 uint32 width # Width of ROI\n\
00556 \n\
00557 # True if a distinct rectified ROI should be calculated from the \"raw\"\n\
00558 # ROI in this message. Typically this should be False if the full image\n\
00559 # is captured (ROI not used), and True if a subwindow is captured (ROI\n\
00560 # used).\n\
00561 bool do_rectify\n\
00562 \n\
00563 "; }
00564 public:
00565 ROS_DEPRECATED static const std::string __s_getMessageDefinition() { return __s_getMessageDefinition_(); }
00566
00567 ROS_DEPRECATED const std::string __getMessageDefinition() const { return __s_getMessageDefinition_(); }
00568
00569 ROS_DEPRECATED virtual uint8_t *serialize(uint8_t *write_ptr, uint32_t seq) const
00570 {
00571 ros::serialization::OStream stream(write_ptr, 1000000000);
00572 ros::serialization::serialize(stream, response);
00573 ros::serialization::serialize(stream, objects);
00574 return stream.getData();
00575 }
00576
00577 ROS_DEPRECATED virtual uint8_t *deserialize(uint8_t *read_ptr)
00578 {
00579 ros::serialization::IStream stream(read_ptr, 1000000000);
00580 ros::serialization::deserialize(stream, response);
00581 ros::serialization::deserialize(stream, objects);
00582 return stream.getData();
00583 }
00584
00585 ROS_DEPRECATED virtual uint32_t serializationLength() const
00586 {
00587 uint32_t size = 0;
00588 size += ros::serialization::serializationLength(response);
00589 size += ros::serialization::serializationLength(objects);
00590 return size;
00591 }
00592
00593 typedef boost::shared_ptr< ::pr2_pick_and_place_service::PickPlaceResponse_<ContainerAllocator> > Ptr;
00594 typedef boost::shared_ptr< ::pr2_pick_and_place_service::PickPlaceResponse_<ContainerAllocator> const> ConstPtr;
00595 };
00596 typedef ::pr2_pick_and_place_service::PickPlaceResponse_<std::allocator<void> > PickPlaceResponse;
00597
00598 typedef boost::shared_ptr< ::pr2_pick_and_place_service::PickPlaceResponse> PickPlaceResponsePtr;
00599 typedef boost::shared_ptr< ::pr2_pick_and_place_service::PickPlaceResponse const> PickPlaceResponseConstPtr;
00600
00601 struct PickPlace
00602 {
00603
00604 typedef PickPlaceRequest Request;
00605 typedef PickPlaceResponse Response;
00606 Request request;
00607 Response response;
00608
00609 typedef Request RequestType;
00610 typedef Response ResponseType;
00611 };
00612 }
00613
00614 namespace ros
00615 {
00616 namespace message_traits
00617 {
00618 template<class ContainerAllocator>
00619 struct MD5Sum< ::pr2_pick_and_place_service::PickPlaceRequest_<ContainerAllocator> > {
00620 static const char* value()
00621 {
00622 return "a103fd90ae71bfd419fcdfa60a00c804";
00623 }
00624
00625 static const char* value(const ::pr2_pick_and_place_service::PickPlaceRequest_<ContainerAllocator> &) { return value(); }
00626 static const uint64_t static_value1 = 0xa103fd90ae71bfd4ULL;
00627 static const uint64_t static_value2 = 0x19fcdfa60a00c804ULL;
00628 };
00629
00630 template<class ContainerAllocator>
00631 struct DataType< ::pr2_pick_and_place_service::PickPlaceRequest_<ContainerAllocator> > {
00632 static const char* value()
00633 {
00634 return "pr2_pick_and_place_service/PickPlaceRequest";
00635 }
00636
00637 static const char* value(const ::pr2_pick_and_place_service::PickPlaceRequest_<ContainerAllocator> &) { return value(); }
00638 };
00639
00640 template<class ContainerAllocator>
00641 struct Definition< ::pr2_pick_and_place_service::PickPlaceRequest_<ContainerAllocator> > {
00642 static const char* value()
00643 {
00644 return "string command\n\
00645 string arg\n\
00646 \n\
00647 \n\
00648 ";
00649 }
00650
00651 static const char* value(const ::pr2_pick_and_place_service::PickPlaceRequest_<ContainerAllocator> &) { return value(); }
00652 };
00653
00654 }
00655 }
00656
00657
00658 namespace ros
00659 {
00660 namespace message_traits
00661 {
00662 template<class ContainerAllocator>
00663 struct MD5Sum< ::pr2_pick_and_place_service::PickPlaceResponse_<ContainerAllocator> > {
00664 static const char* value()
00665 {
00666 return "2771c418cb4e9b33423cf3fc56171289";
00667 }
00668
00669 static const char* value(const ::pr2_pick_and_place_service::PickPlaceResponse_<ContainerAllocator> &) { return value(); }
00670 static const uint64_t static_value1 = 0x2771c418cb4e9b33ULL;
00671 static const uint64_t static_value2 = 0x423cf3fc56171289ULL;
00672 };
00673
00674 template<class ContainerAllocator>
00675 struct DataType< ::pr2_pick_and_place_service::PickPlaceResponse_<ContainerAllocator> > {
00676 static const char* value()
00677 {
00678 return "pr2_pick_and_place_service/PickPlaceResponse";
00679 }
00680
00681 static const char* value(const ::pr2_pick_and_place_service::PickPlaceResponse_<ContainerAllocator> &) { return value(); }
00682 };
00683
00684 template<class ContainerAllocator>
00685 struct Definition< ::pr2_pick_and_place_service::PickPlaceResponse_<ContainerAllocator> > {
00686 static const char* value()
00687 {
00688 return "string response\n\
00689 PickPlaceObject[] objects\n\
00690 \n\
00691 \n\
00692 ================================================================================\n\
00693 MSG: pr2_pick_and_place_service/PickPlaceObject\n\
00694 int32 objectid\n\
00695 object_manipulation_msgs/GraspableObject object\n\
00696 geometry_msgs/PoseStamped pose\n\
00697 float64[] boundingbox\n\
00698 \n\
00699 ================================================================================\n\
00700 MSG: object_manipulation_msgs/GraspableObject\n\
00701 # an object that the object_manipulator can work on\n\
00702 \n\
00703 # a graspable object can be represented in multiple ways. This message\n\
00704 # can contain all of them. Which one is actually used is up to the receiver\n\
00705 # of this message. When adding new representations, one must be careful that\n\
00706 # they have reasonable lightweight defaults indicating that that particular\n\
00707 # representation is not available.\n\
00708 \n\
00709 # the tf frame to be used as a reference frame when combining information from\n\
00710 # the different representations below\n\
00711 string reference_frame_id\n\
00712 \n\
00713 # potential recognition results from a database of models\n\
00714 # all poses are relative to the object reference pose\n\
00715 household_objects_database_msgs/DatabaseModelPose[] potential_models\n\
00716 \n\
00717 # the point cloud itself\n\
00718 sensor_msgs/PointCloud cluster\n\
00719 \n\
00720 # a region of a PointCloud2 of interest\n\
00721 object_manipulation_msgs/SceneRegion region\n\
00722 \n\
00723 \n\
00724 ================================================================================\n\
00725 MSG: household_objects_database_msgs/DatabaseModelPose\n\
00726 # Informs that a specific model from the Model Database has been \n\
00727 # identified at a certain location\n\
00728 \n\
00729 # the database id of the model\n\
00730 int32 model_id\n\
00731 \n\
00732 # the pose that it can be found in\n\
00733 geometry_msgs/PoseStamped pose\n\
00734 \n\
00735 # a measure of the confidence level in this detection result\n\
00736 float32 confidence\n\
00737 ================================================================================\n\
00738 MSG: geometry_msgs/PoseStamped\n\
00739 # A Pose with reference coordinate frame and timestamp\n\
00740 Header header\n\
00741 Pose pose\n\
00742 \n\
00743 ================================================================================\n\
00744 MSG: std_msgs/Header\n\
00745 # Standard metadata for higher-level stamped data types.\n\
00746 # This is generally used to communicate timestamped data \n\
00747 # in a particular coordinate frame.\n\
00748 # \n\
00749 # sequence ID: consecutively increasing ID \n\
00750 uint32 seq\n\
00751 #Two-integer timestamp that is expressed as:\n\
00752 # * stamp.secs: seconds (stamp_secs) since epoch\n\
00753 # * stamp.nsecs: nanoseconds since stamp_secs\n\
00754 # time-handling sugar is provided by the client library\n\
00755 time stamp\n\
00756 #Frame this data is associated with\n\
00757 # 0: no frame\n\
00758 # 1: global frame\n\
00759 string frame_id\n\
00760 \n\
00761 ================================================================================\n\
00762 MSG: geometry_msgs/Pose\n\
00763 # A representation of pose in free space, composed of postion and orientation. \n\
00764 Point position\n\
00765 Quaternion orientation\n\
00766 \n\
00767 ================================================================================\n\
00768 MSG: geometry_msgs/Point\n\
00769 # This contains the position of a point in free space\n\
00770 float64 x\n\
00771 float64 y\n\
00772 float64 z\n\
00773 \n\
00774 ================================================================================\n\
00775 MSG: geometry_msgs/Quaternion\n\
00776 # This represents an orientation in free space in quaternion form.\n\
00777 \n\
00778 float64 x\n\
00779 float64 y\n\
00780 float64 z\n\
00781 float64 w\n\
00782 \n\
00783 ================================================================================\n\
00784 MSG: sensor_msgs/PointCloud\n\
00785 # This message holds a collection of 3d points, plus optional additional\n\
00786 # information about each point.\n\
00787 \n\
00788 # Time of sensor data acquisition, coordinate frame ID.\n\
00789 Header header\n\
00790 \n\
00791 # Array of 3d points. Each Point32 should be interpreted as a 3d point\n\
00792 # in the frame given in the header.\n\
00793 geometry_msgs/Point32[] points\n\
00794 \n\
00795 # Each channel should have the same number of elements as points array,\n\
00796 # and the data in each channel should correspond 1:1 with each point.\n\
00797 # Channel names in common practice are listed in ChannelFloat32.msg.\n\
00798 ChannelFloat32[] channels\n\
00799 \n\
00800 ================================================================================\n\
00801 MSG: geometry_msgs/Point32\n\
00802 # This contains the position of a point in free space(with 32 bits of precision).\n\
00803 # It is recommeded to use Point wherever possible instead of Point32. \n\
00804 # \n\
00805 # This recommendation is to promote interoperability. \n\
00806 #\n\
00807 # This message is designed to take up less space when sending\n\
00808 # lots of points at once, as in the case of a PointCloud. \n\
00809 \n\
00810 float32 x\n\
00811 float32 y\n\
00812 float32 z\n\
00813 ================================================================================\n\
00814 MSG: sensor_msgs/ChannelFloat32\n\
00815 # This message is used by the PointCloud message to hold optional data\n\
00816 # associated with each point in the cloud. The length of the values\n\
00817 # array should be the same as the length of the points array in the\n\
00818 # PointCloud, and each value should be associated with the corresponding\n\
00819 # point.\n\
00820 \n\
00821 # Channel names in existing practice include:\n\
00822 # \"u\", \"v\" - row and column (respectively) in the left stereo image.\n\
00823 # This is opposite to usual conventions but remains for\n\
00824 # historical reasons. The newer PointCloud2 message has no\n\
00825 # such problem.\n\
00826 # \"rgb\" - For point clouds produced by color stereo cameras. uint8\n\
00827 # (R,G,B) values packed into the least significant 24 bits,\n\
00828 # in order.\n\
00829 # \"intensity\" - laser or pixel intensity.\n\
00830 # \"distance\"\n\
00831 \n\
00832 # The channel name should give semantics of the channel (e.g.\n\
00833 # \"intensity\" instead of \"value\").\n\
00834 string name\n\
00835 \n\
00836 # The values array should be 1-1 with the elements of the associated\n\
00837 # PointCloud.\n\
00838 float32[] values\n\
00839 \n\
00840 ================================================================================\n\
00841 MSG: object_manipulation_msgs/SceneRegion\n\
00842 # Point cloud\n\
00843 sensor_msgs/PointCloud2 cloud\n\
00844 \n\
00845 # Indices for the region of interest\n\
00846 int32[] mask\n\
00847 \n\
00848 # One of the corresponding 2D images, if applicable\n\
00849 sensor_msgs/Image image\n\
00850 \n\
00851 # The disparity image, if applicable\n\
00852 sensor_msgs/Image disparity_image\n\
00853 \n\
00854 # Camera info for the camera that took the image\n\
00855 sensor_msgs/CameraInfo cam_info\n\
00856 \n\
00857 ================================================================================\n\
00858 MSG: sensor_msgs/PointCloud2\n\
00859 # This message holds a collection of N-dimensional points, which may\n\
00860 # contain additional information such as normals, intensity, etc. The\n\
00861 # point data is stored as a binary blob, its layout described by the\n\
00862 # contents of the \"fields\" array.\n\
00863 \n\
00864 # The point cloud data may be organized 2d (image-like) or 1d\n\
00865 # (unordered). Point clouds organized as 2d images may be produced by\n\
00866 # camera depth sensors such as stereo or time-of-flight.\n\
00867 \n\
00868 # Time of sensor data acquisition, and the coordinate frame ID (for 3d\n\
00869 # points).\n\
00870 Header header\n\
00871 \n\
00872 # 2D structure of the point cloud. If the cloud is unordered, height is\n\
00873 # 1 and width is the length of the point cloud.\n\
00874 uint32 height\n\
00875 uint32 width\n\
00876 \n\
00877 # Describes the channels and their layout in the binary data blob.\n\
00878 PointField[] fields\n\
00879 \n\
00880 bool is_bigendian # Is this data bigendian?\n\
00881 uint32 point_step # Length of a point in bytes\n\
00882 uint32 row_step # Length of a row in bytes\n\
00883 uint8[] data # Actual point data, size is (row_step*height)\n\
00884 \n\
00885 bool is_dense # True if there are no invalid points\n\
00886 \n\
00887 ================================================================================\n\
00888 MSG: sensor_msgs/PointField\n\
00889 # This message holds the description of one point entry in the\n\
00890 # PointCloud2 message format.\n\
00891 uint8 INT8 = 1\n\
00892 uint8 UINT8 = 2\n\
00893 uint8 INT16 = 3\n\
00894 uint8 UINT16 = 4\n\
00895 uint8 INT32 = 5\n\
00896 uint8 UINT32 = 6\n\
00897 uint8 FLOAT32 = 7\n\
00898 uint8 FLOAT64 = 8\n\
00899 \n\
00900 string name # Name of field\n\
00901 uint32 offset # Offset from start of point struct\n\
00902 uint8 datatype # Datatype enumeration, see above\n\
00903 uint32 count # How many elements in the field\n\
00904 \n\
00905 ================================================================================\n\
00906 MSG: sensor_msgs/Image\n\
00907 # This message contains an uncompressed image\n\
00908 # (0, 0) is at top-left corner of image\n\
00909 #\n\
00910 \n\
00911 Header header # Header timestamp should be acquisition time of image\n\
00912 # Header frame_id should be optical frame of camera\n\
00913 # origin of frame should be optical center of cameara\n\
00914 # +x should point to the right in the image\n\
00915 # +y should point down in the image\n\
00916 # +z should point into to plane of the image\n\
00917 # If the frame_id here and the frame_id of the CameraInfo\n\
00918 # message associated with the image conflict\n\
00919 # the behavior is undefined\n\
00920 \n\
00921 uint32 height # image height, that is, number of rows\n\
00922 uint32 width # image width, that is, number of columns\n\
00923 \n\
00924 # The legal values for encoding are in file src/image_encodings.cpp\n\
00925 # If you want to standardize a new string format, join\n\
00926 # ros-users@lists.sourceforge.net and send an email proposing a new encoding.\n\
00927 \n\
00928 string encoding # Encoding of pixels -- channel meaning, ordering, size\n\
00929 # taken from the list of strings in src/image_encodings.cpp\n\
00930 \n\
00931 uint8 is_bigendian # is this data bigendian?\n\
00932 uint32 step # Full row length in bytes\n\
00933 uint8[] data # actual matrix data, size is (step * rows)\n\
00934 \n\
00935 ================================================================================\n\
00936 MSG: sensor_msgs/CameraInfo\n\
00937 # This message defines meta information for a camera. It should be in a\n\
00938 # camera namespace on topic \"camera_info\" and accompanied by up to five\n\
00939 # image topics named:\n\
00940 #\n\
00941 # image_raw - raw data from the camera driver, possibly Bayer encoded\n\
00942 # image - monochrome, distorted\n\
00943 # image_color - color, distorted\n\
00944 # image_rect - monochrome, rectified\n\
00945 # image_rect_color - color, rectified\n\
00946 #\n\
00947 # The image_pipeline contains packages (image_proc, stereo_image_proc)\n\
00948 # for producing the four processed image topics from image_raw and\n\
00949 # camera_info. The meaning of the camera parameters are described in\n\
00950 # detail at http://www.ros.org/wiki/image_pipeline/CameraInfo.\n\
00951 #\n\
00952 # The image_geometry package provides a user-friendly interface to\n\
00953 # common operations using this meta information. If you want to, e.g.,\n\
00954 # project a 3d point into image coordinates, we strongly recommend\n\
00955 # using image_geometry.\n\
00956 #\n\
00957 # If the camera is uncalibrated, the matrices D, K, R, P should be left\n\
00958 # zeroed out. In particular, clients may assume that K[0] == 0.0\n\
00959 # indicates an uncalibrated camera.\n\
00960 \n\
00961 #######################################################################\n\
00962 # Image acquisition info #\n\
00963 #######################################################################\n\
00964 \n\
00965 # Time of image acquisition, camera coordinate frame ID\n\
00966 Header header # Header timestamp should be acquisition time of image\n\
00967 # Header frame_id should be optical frame of camera\n\
00968 # origin of frame should be optical center of camera\n\
00969 # +x should point to the right in the image\n\
00970 # +y should point down in the image\n\
00971 # +z should point into the plane of the image\n\
00972 \n\
00973 \n\
00974 #######################################################################\n\
00975 # Calibration Parameters #\n\
00976 #######################################################################\n\
00977 # These are fixed during camera calibration. Their values will be the #\n\
00978 # same in all messages until the camera is recalibrated. Note that #\n\
00979 # self-calibrating systems may \"recalibrate\" frequently. #\n\
00980 # #\n\
00981 # The internal parameters can be used to warp a raw (distorted) image #\n\
00982 # to: #\n\
00983 # 1. An undistorted image (requires D and K) #\n\
00984 # 2. A rectified image (requires D, K, R) #\n\
00985 # The projection matrix P projects 3D points into the rectified image.#\n\
00986 #######################################################################\n\
00987 \n\
00988 # The image dimensions with which the camera was calibrated. Normally\n\
00989 # this will be the full camera resolution in pixels.\n\
00990 uint32 height\n\
00991 uint32 width\n\
00992 \n\
00993 # The distortion model used. Supported models are listed in\n\
00994 # sensor_msgs/distortion_models.h. For most cameras, \"plumb_bob\" - a\n\
00995 # simple model of radial and tangential distortion - is sufficent.\n\
00996 string distortion_model\n\
00997 \n\
00998 # The distortion parameters, size depending on the distortion model.\n\
00999 # For \"plumb_bob\", the 5 parameters are: (k1, k2, t1, t2, k3).\n\
01000 float64[] D\n\
01001 \n\
01002 # Intrinsic camera matrix for the raw (distorted) images.\n\
01003 # [fx 0 cx]\n\
01004 # K = [ 0 fy cy]\n\
01005 # [ 0 0 1]\n\
01006 # Projects 3D points in the camera coordinate frame to 2D pixel\n\
01007 # coordinates using the focal lengths (fx, fy) and principal point\n\
01008 # (cx, cy).\n\
01009 float64[9] K # 3x3 row-major matrix\n\
01010 \n\
01011 # Rectification matrix (stereo cameras only)\n\
01012 # A rotation matrix aligning the camera coordinate system to the ideal\n\
01013 # stereo image plane so that epipolar lines in both stereo images are\n\
01014 # parallel.\n\
01015 float64[9] R # 3x3 row-major matrix\n\
01016 \n\
01017 # Projection/camera matrix\n\
01018 # [fx' 0 cx' Tx]\n\
01019 # P = [ 0 fy' cy' Ty]\n\
01020 # [ 0 0 1 0]\n\
01021 # By convention, this matrix specifies the intrinsic (camera) matrix\n\
01022 # of the processed (rectified) image. That is, the left 3x3 portion\n\
01023 # is the normal camera intrinsic matrix for the rectified image.\n\
01024 # It projects 3D points in the camera coordinate frame to 2D pixel\n\
01025 # coordinates using the focal lengths (fx', fy') and principal point\n\
01026 # (cx', cy') - these may differ from the values in K.\n\
01027 # For monocular cameras, Tx = Ty = 0. Normally, monocular cameras will\n\
01028 # also have R = the identity and P[1:3,1:3] = K.\n\
01029 # For a stereo pair, the fourth column [Tx Ty 0]' is related to the\n\
01030 # position of the optical center of the second camera in the first\n\
01031 # camera's frame. We assume Tz = 0 so both cameras are in the same\n\
01032 # stereo image plane. The first camera always has Tx = Ty = 0. For\n\
01033 # the right (second) camera of a horizontal stereo pair, Ty = 0 and\n\
01034 # Tx = -fx' * B, where B is the baseline between the cameras.\n\
01035 # Given a 3D point [X Y Z]', the projection (x, y) of the point onto\n\
01036 # the rectified image is given by:\n\
01037 # [u v w]' = P * [X Y Z 1]'\n\
01038 # x = u / w\n\
01039 # y = v / w\n\
01040 # This holds for both images of a stereo pair.\n\
01041 float64[12] P # 3x4 row-major matrix\n\
01042 \n\
01043 \n\
01044 #######################################################################\n\
01045 # Operational Parameters #\n\
01046 #######################################################################\n\
01047 # These define the image region actually captured by the camera #\n\
01048 # driver. Although they affect the geometry of the output image, they #\n\
01049 # may be changed freely without recalibrating the camera. #\n\
01050 #######################################################################\n\
01051 \n\
01052 # Binning refers here to any camera setting which combines rectangular\n\
01053 # neighborhoods of pixels into larger \"super-pixels.\" It reduces the\n\
01054 # resolution of the output image to\n\
01055 # (width / binning_x) x (height / binning_y).\n\
01056 # The default values binning_x = binning_y = 0 is considered the same\n\
01057 # as binning_x = binning_y = 1 (no subsampling).\n\
01058 uint32 binning_x\n\
01059 uint32 binning_y\n\
01060 \n\
01061 # Region of interest (subwindow of full camera resolution), given in\n\
01062 # full resolution (unbinned) image coordinates. A particular ROI\n\
01063 # always denotes the same window of pixels on the camera sensor,\n\
01064 # regardless of binning settings.\n\
01065 # The default setting of roi (all values 0) is considered the same as\n\
01066 # full resolution (roi.width = width, roi.height = height).\n\
01067 RegionOfInterest roi\n\
01068 \n\
01069 ================================================================================\n\
01070 MSG: sensor_msgs/RegionOfInterest\n\
01071 # This message is used to specify a region of interest within an image.\n\
01072 #\n\
01073 # When used to specify the ROI setting of the camera when the image was\n\
01074 # taken, the height and width fields should either match the height and\n\
01075 # width fields for the associated image; or height = width = 0\n\
01076 # indicates that the full resolution image was captured.\n\
01077 \n\
01078 uint32 x_offset # Leftmost pixel of the ROI\n\
01079 # (0 if the ROI includes the left edge of the image)\n\
01080 uint32 y_offset # Topmost pixel of the ROI\n\
01081 # (0 if the ROI includes the top edge of the image)\n\
01082 uint32 height # Height of ROI\n\
01083 uint32 width # Width of ROI\n\
01084 \n\
01085 # True if a distinct rectified ROI should be calculated from the \"raw\"\n\
01086 # ROI in this message. Typically this should be False if the full image\n\
01087 # is captured (ROI not used), and True if a subwindow is captured (ROI\n\
01088 # used).\n\
01089 bool do_rectify\n\
01090 \n\
01091 ";
01092 }
01093
01094 static const char* value(const ::pr2_pick_and_place_service::PickPlaceResponse_<ContainerAllocator> &) { return value(); }
01095 };
01096
01097 }
01098 }
01099
01100 namespace ros
01101 {
01102 namespace serialization
01103 {
01104
01105 template<class ContainerAllocator> struct Serializer< ::pr2_pick_and_place_service::PickPlaceRequest_<ContainerAllocator> >
01106 {
01107 template<typename Stream, typename T> inline static void allInOne(Stream& stream, T m)
01108 {
01109 stream.next(m.command);
01110 stream.next(m.arg);
01111 }
01112
01113 ROS_DECLARE_ALLINONE_SERIALIZER;
01114 };
01115 }
01116 }
01117
01118
01119 namespace ros
01120 {
01121 namespace serialization
01122 {
01123
01124 template<class ContainerAllocator> struct Serializer< ::pr2_pick_and_place_service::PickPlaceResponse_<ContainerAllocator> >
01125 {
01126 template<typename Stream, typename T> inline static void allInOne(Stream& stream, T m)
01127 {
01128 stream.next(m.response);
01129 stream.next(m.objects);
01130 }
01131
01132 ROS_DECLARE_ALLINONE_SERIALIZER;
01133 };
01134 }
01135 }
01136
01137 namespace ros
01138 {
01139 namespace service_traits
01140 {
01141 template<>
01142 struct MD5Sum<pr2_pick_and_place_service::PickPlace> {
01143 static const char* value()
01144 {
01145 return "c99736d54e6f5fc115cd32e445b9e26b";
01146 }
01147
01148 static const char* value(const pr2_pick_and_place_service::PickPlace&) { return value(); }
01149 };
01150
01151 template<>
01152 struct DataType<pr2_pick_and_place_service::PickPlace> {
01153 static const char* value()
01154 {
01155 return "pr2_pick_and_place_service/PickPlace";
01156 }
01157
01158 static const char* value(const pr2_pick_and_place_service::PickPlace&) { return value(); }
01159 };
01160
01161 template<class ContainerAllocator>
01162 struct MD5Sum<pr2_pick_and_place_service::PickPlaceRequest_<ContainerAllocator> > {
01163 static const char* value()
01164 {
01165 return "c99736d54e6f5fc115cd32e445b9e26b";
01166 }
01167
01168 static const char* value(const pr2_pick_and_place_service::PickPlaceRequest_<ContainerAllocator> &) { return value(); }
01169 };
01170
01171 template<class ContainerAllocator>
01172 struct DataType<pr2_pick_and_place_service::PickPlaceRequest_<ContainerAllocator> > {
01173 static const char* value()
01174 {
01175 return "pr2_pick_and_place_service/PickPlace";
01176 }
01177
01178 static const char* value(const pr2_pick_and_place_service::PickPlaceRequest_<ContainerAllocator> &) { return value(); }
01179 };
01180
01181 template<class ContainerAllocator>
01182 struct MD5Sum<pr2_pick_and_place_service::PickPlaceResponse_<ContainerAllocator> > {
01183 static const char* value()
01184 {
01185 return "c99736d54e6f5fc115cd32e445b9e26b";
01186 }
01187
01188 static const char* value(const pr2_pick_and_place_service::PickPlaceResponse_<ContainerAllocator> &) { return value(); }
01189 };
01190
01191 template<class ContainerAllocator>
01192 struct DataType<pr2_pick_and_place_service::PickPlaceResponse_<ContainerAllocator> > {
01193 static const char* value()
01194 {
01195 return "pr2_pick_and_place_service/PickPlace";
01196 }
01197
01198 static const char* value(const pr2_pick_and_place_service::PickPlaceResponse_<ContainerAllocator> &) { return value(); }
01199 };
01200
01201 }
01202 }
01203
01204 #endif // PR2_PICK_AND_PLACE_SERVICE_SERVICE_PICKPLACE_H
01205