00001
00002 #ifndef PR2_PICK_AND_PLACE_SERVICE_SERVICE_DETECTOBJECTS_H
00003 #define PR2_PICK_AND_PLACE_SERVICE_SERVICE_DETECTOBJECTS_H
00004 #include <string>
00005 #include <vector>
00006 #include <ostream>
00007 #include "ros/serialization.h"
00008 #include "ros/builtin_message_traits.h"
00009 #include "ros/message_operations.h"
00010 #include "ros/message.h"
00011 #include "ros/time.h"
00012
00013 #include "ros/service_traits.h"
00014
00015
00016
00017 #include "pr2_pick_and_place_service/PickPlaceObject.h"
00018
00019 namespace pr2_pick_and_place_service
00020 {
00021 template <class ContainerAllocator>
00022 struct DetectObjectsRequest_ : public ros::Message
00023 {
00024 typedef DetectObjectsRequest_<ContainerAllocator> Type;
00025
00026 DetectObjectsRequest_()
00027 : command()
00028 {
00029 }
00030
00031 DetectObjectsRequest_(const ContainerAllocator& _alloc)
00032 : command(_alloc)
00033 {
00034 }
00035
00036 typedef std::basic_string<char, std::char_traits<char>, typename ContainerAllocator::template rebind<char>::other > _command_type;
00037 std::basic_string<char, std::char_traits<char>, typename ContainerAllocator::template rebind<char>::other > command;
00038
00039
00040 private:
00041 static const char* __s_getDataType_() { return "pr2_pick_and_place_service/DetectObjectsRequest"; }
00042 public:
00043 ROS_DEPRECATED static const std::string __s_getDataType() { return __s_getDataType_(); }
00044
00045 ROS_DEPRECATED const std::string __getDataType() const { return __s_getDataType_(); }
00046
00047 private:
00048 static const char* __s_getMD5Sum_() { return "cba5e21e920a3a2b7b375cb65b64cdea"; }
00049 public:
00050 ROS_DEPRECATED static const std::string __s_getMD5Sum() { return __s_getMD5Sum_(); }
00051
00052 ROS_DEPRECATED const std::string __getMD5Sum() const { return __s_getMD5Sum_(); }
00053
00054 private:
00055 static const char* __s_getServerMD5Sum_() { return "b3897163b7dda37e304d68b162036545"; }
00056 public:
00057 ROS_DEPRECATED static const std::string __s_getServerMD5Sum() { return __s_getServerMD5Sum_(); }
00058
00059 ROS_DEPRECATED const std::string __getServerMD5Sum() const { return __s_getServerMD5Sum_(); }
00060
00061 private:
00062 static const char* __s_getMessageDefinition_() { return "string command\n\
00063 \n\
00064 "; }
00065 public:
00066 ROS_DEPRECATED static const std::string __s_getMessageDefinition() { return __s_getMessageDefinition_(); }
00067
00068 ROS_DEPRECATED const std::string __getMessageDefinition() const { return __s_getMessageDefinition_(); }
00069
00070 ROS_DEPRECATED virtual uint8_t *serialize(uint8_t *write_ptr, uint32_t seq) const
00071 {
00072 ros::serialization::OStream stream(write_ptr, 1000000000);
00073 ros::serialization::serialize(stream, command);
00074 return stream.getData();
00075 }
00076
00077 ROS_DEPRECATED virtual uint8_t *deserialize(uint8_t *read_ptr)
00078 {
00079 ros::serialization::IStream stream(read_ptr, 1000000000);
00080 ros::serialization::deserialize(stream, command);
00081 return stream.getData();
00082 }
00083
00084 ROS_DEPRECATED virtual uint32_t serializationLength() const
00085 {
00086 uint32_t size = 0;
00087 size += ros::serialization::serializationLength(command);
00088 return size;
00089 }
00090
00091 typedef boost::shared_ptr< ::pr2_pick_and_place_service::DetectObjectsRequest_<ContainerAllocator> > Ptr;
00092 typedef boost::shared_ptr< ::pr2_pick_and_place_service::DetectObjectsRequest_<ContainerAllocator> const> ConstPtr;
00093 };
00094 typedef ::pr2_pick_and_place_service::DetectObjectsRequest_<std::allocator<void> > DetectObjectsRequest;
00095
00096 typedef boost::shared_ptr< ::pr2_pick_and_place_service::DetectObjectsRequest> DetectObjectsRequestPtr;
00097 typedef boost::shared_ptr< ::pr2_pick_and_place_service::DetectObjectsRequest const> DetectObjectsRequestConstPtr;
00098
00099
00100 template <class ContainerAllocator>
00101 struct DetectObjectsResponse_ : public ros::Message
00102 {
00103 typedef DetectObjectsResponse_<ContainerAllocator> Type;
00104
00105 DetectObjectsResponse_()
00106 : objects()
00107 {
00108 }
00109
00110 DetectObjectsResponse_(const ContainerAllocator& _alloc)
00111 : objects(_alloc)
00112 {
00113 }
00114
00115 typedef std::vector< ::pr2_pick_and_place_service::PickPlaceObject_<ContainerAllocator> , typename ContainerAllocator::template rebind< ::pr2_pick_and_place_service::PickPlaceObject_<ContainerAllocator> >::other > _objects_type;
00116 std::vector< ::pr2_pick_and_place_service::PickPlaceObject_<ContainerAllocator> , typename ContainerAllocator::template rebind< ::pr2_pick_and_place_service::PickPlaceObject_<ContainerAllocator> >::other > objects;
00117
00118
00119 ROS_DEPRECATED uint32_t get_objects_size() const { return (uint32_t)objects.size(); }
00120 ROS_DEPRECATED void set_objects_size(uint32_t size) { objects.resize((size_t)size); }
00121 ROS_DEPRECATED void get_objects_vec(std::vector< ::pr2_pick_and_place_service::PickPlaceObject_<ContainerAllocator> , typename ContainerAllocator::template rebind< ::pr2_pick_and_place_service::PickPlaceObject_<ContainerAllocator> >::other > & vec) const { vec = this->objects; }
00122 ROS_DEPRECATED void set_objects_vec(const std::vector< ::pr2_pick_and_place_service::PickPlaceObject_<ContainerAllocator> , typename ContainerAllocator::template rebind< ::pr2_pick_and_place_service::PickPlaceObject_<ContainerAllocator> >::other > & vec) { this->objects = vec; }
00123 private:
00124 static const char* __s_getDataType_() { return "pr2_pick_and_place_service/DetectObjectsResponse"; }
00125 public:
00126 ROS_DEPRECATED static const std::string __s_getDataType() { return __s_getDataType_(); }
00127
00128 ROS_DEPRECATED const std::string __getDataType() const { return __s_getDataType_(); }
00129
00130 private:
00131 static const char* __s_getMD5Sum_() { return "b4139d6c1f0ca110d24436e7ae88ea9c"; }
00132 public:
00133 ROS_DEPRECATED static const std::string __s_getMD5Sum() { return __s_getMD5Sum_(); }
00134
00135 ROS_DEPRECATED const std::string __getMD5Sum() const { return __s_getMD5Sum_(); }
00136
00137 private:
00138 static const char* __s_getServerMD5Sum_() { return "b3897163b7dda37e304d68b162036545"; }
00139 public:
00140 ROS_DEPRECATED static const std::string __s_getServerMD5Sum() { return __s_getServerMD5Sum_(); }
00141
00142 ROS_DEPRECATED const std::string __getServerMD5Sum() const { return __s_getServerMD5Sum_(); }
00143
00144 private:
00145 static const char* __s_getMessageDefinition_() { return "PickPlaceObject[] objects\n\
00146 \n\
00147 \n\
00148 ================================================================================\n\
00149 MSG: pr2_pick_and_place_service/PickPlaceObject\n\
00150 int32 objectid\n\
00151 object_manipulation_msgs/GraspableObject object\n\
00152 geometry_msgs/PoseStamped pose\n\
00153 float64[] boundingbox\n\
00154 \n\
00155 ================================================================================\n\
00156 MSG: object_manipulation_msgs/GraspableObject\n\
00157 # an object that the object_manipulator can work on\n\
00158 \n\
00159 # a graspable object can be represented in multiple ways. This message\n\
00160 # can contain all of them. Which one is actually used is up to the receiver\n\
00161 # of this message. When adding new representations, one must be careful that\n\
00162 # they have reasonable lightweight defaults indicating that that particular\n\
00163 # representation is not available.\n\
00164 \n\
00165 # the tf frame to be used as a reference frame when combining information from\n\
00166 # the different representations below\n\
00167 string reference_frame_id\n\
00168 \n\
00169 # potential recognition results from a database of models\n\
00170 # all poses are relative to the object reference pose\n\
00171 household_objects_database_msgs/DatabaseModelPose[] potential_models\n\
00172 \n\
00173 # the point cloud itself\n\
00174 sensor_msgs/PointCloud cluster\n\
00175 \n\
00176 # a region of a PointCloud2 of interest\n\
00177 object_manipulation_msgs/SceneRegion region\n\
00178 \n\
00179 \n\
00180 ================================================================================\n\
00181 MSG: household_objects_database_msgs/DatabaseModelPose\n\
00182 # Informs that a specific model from the Model Database has been \n\
00183 # identified at a certain location\n\
00184 \n\
00185 # the database id of the model\n\
00186 int32 model_id\n\
00187 \n\
00188 # the pose that it can be found in\n\
00189 geometry_msgs/PoseStamped pose\n\
00190 \n\
00191 # a measure of the confidence level in this detection result\n\
00192 float32 confidence\n\
00193 ================================================================================\n\
00194 MSG: geometry_msgs/PoseStamped\n\
00195 # A Pose with reference coordinate frame and timestamp\n\
00196 Header header\n\
00197 Pose pose\n\
00198 \n\
00199 ================================================================================\n\
00200 MSG: std_msgs/Header\n\
00201 # Standard metadata for higher-level stamped data types.\n\
00202 # This is generally used to communicate timestamped data \n\
00203 # in a particular coordinate frame.\n\
00204 # \n\
00205 # sequence ID: consecutively increasing ID \n\
00206 uint32 seq\n\
00207 #Two-integer timestamp that is expressed as:\n\
00208 # * stamp.secs: seconds (stamp_secs) since epoch\n\
00209 # * stamp.nsecs: nanoseconds since stamp_secs\n\
00210 # time-handling sugar is provided by the client library\n\
00211 time stamp\n\
00212 #Frame this data is associated with\n\
00213 # 0: no frame\n\
00214 # 1: global frame\n\
00215 string frame_id\n\
00216 \n\
00217 ================================================================================\n\
00218 MSG: geometry_msgs/Pose\n\
00219 # A representation of pose in free space, composed of postion and orientation. \n\
00220 Point position\n\
00221 Quaternion orientation\n\
00222 \n\
00223 ================================================================================\n\
00224 MSG: geometry_msgs/Point\n\
00225 # This contains the position of a point in free space\n\
00226 float64 x\n\
00227 float64 y\n\
00228 float64 z\n\
00229 \n\
00230 ================================================================================\n\
00231 MSG: geometry_msgs/Quaternion\n\
00232 # This represents an orientation in free space in quaternion form.\n\
00233 \n\
00234 float64 x\n\
00235 float64 y\n\
00236 float64 z\n\
00237 float64 w\n\
00238 \n\
00239 ================================================================================\n\
00240 MSG: sensor_msgs/PointCloud\n\
00241 # This message holds a collection of 3d points, plus optional additional\n\
00242 # information about each point.\n\
00243 \n\
00244 # Time of sensor data acquisition, coordinate frame ID.\n\
00245 Header header\n\
00246 \n\
00247 # Array of 3d points. Each Point32 should be interpreted as a 3d point\n\
00248 # in the frame given in the header.\n\
00249 geometry_msgs/Point32[] points\n\
00250 \n\
00251 # Each channel should have the same number of elements as points array,\n\
00252 # and the data in each channel should correspond 1:1 with each point.\n\
00253 # Channel names in common practice are listed in ChannelFloat32.msg.\n\
00254 ChannelFloat32[] channels\n\
00255 \n\
00256 ================================================================================\n\
00257 MSG: geometry_msgs/Point32\n\
00258 # This contains the position of a point in free space(with 32 bits of precision).\n\
00259 # It is recommeded to use Point wherever possible instead of Point32. \n\
00260 # \n\
00261 # This recommendation is to promote interoperability. \n\
00262 #\n\
00263 # This message is designed to take up less space when sending\n\
00264 # lots of points at once, as in the case of a PointCloud. \n\
00265 \n\
00266 float32 x\n\
00267 float32 y\n\
00268 float32 z\n\
00269 ================================================================================\n\
00270 MSG: sensor_msgs/ChannelFloat32\n\
00271 # This message is used by the PointCloud message to hold optional data\n\
00272 # associated with each point in the cloud. The length of the values\n\
00273 # array should be the same as the length of the points array in the\n\
00274 # PointCloud, and each value should be associated with the corresponding\n\
00275 # point.\n\
00276 \n\
00277 # Channel names in existing practice include:\n\
00278 # \"u\", \"v\" - row and column (respectively) in the left stereo image.\n\
00279 # This is opposite to usual conventions but remains for\n\
00280 # historical reasons. The newer PointCloud2 message has no\n\
00281 # such problem.\n\
00282 # \"rgb\" - For point clouds produced by color stereo cameras. uint8\n\
00283 # (R,G,B) values packed into the least significant 24 bits,\n\
00284 # in order.\n\
00285 # \"intensity\" - laser or pixel intensity.\n\
00286 # \"distance\"\n\
00287 \n\
00288 # The channel name should give semantics of the channel (e.g.\n\
00289 # \"intensity\" instead of \"value\").\n\
00290 string name\n\
00291 \n\
00292 # The values array should be 1-1 with the elements of the associated\n\
00293 # PointCloud.\n\
00294 float32[] values\n\
00295 \n\
00296 ================================================================================\n\
00297 MSG: object_manipulation_msgs/SceneRegion\n\
00298 # Point cloud\n\
00299 sensor_msgs/PointCloud2 cloud\n\
00300 \n\
00301 # Indices for the region of interest\n\
00302 int32[] mask\n\
00303 \n\
00304 # One of the corresponding 2D images, if applicable\n\
00305 sensor_msgs/Image image\n\
00306 \n\
00307 # The disparity image, if applicable\n\
00308 sensor_msgs/Image disparity_image\n\
00309 \n\
00310 # Camera info for the camera that took the image\n\
00311 sensor_msgs/CameraInfo cam_info\n\
00312 \n\
00313 ================================================================================\n\
00314 MSG: sensor_msgs/PointCloud2\n\
00315 # This message holds a collection of N-dimensional points, which may\n\
00316 # contain additional information such as normals, intensity, etc. The\n\
00317 # point data is stored as a binary blob, its layout described by the\n\
00318 # contents of the \"fields\" array.\n\
00319 \n\
00320 # The point cloud data may be organized 2d (image-like) or 1d\n\
00321 # (unordered). Point clouds organized as 2d images may be produced by\n\
00322 # camera depth sensors such as stereo or time-of-flight.\n\
00323 \n\
00324 # Time of sensor data acquisition, and the coordinate frame ID (for 3d\n\
00325 # points).\n\
00326 Header header\n\
00327 \n\
00328 # 2D structure of the point cloud. If the cloud is unordered, height is\n\
00329 # 1 and width is the length of the point cloud.\n\
00330 uint32 height\n\
00331 uint32 width\n\
00332 \n\
00333 # Describes the channels and their layout in the binary data blob.\n\
00334 PointField[] fields\n\
00335 \n\
00336 bool is_bigendian # Is this data bigendian?\n\
00337 uint32 point_step # Length of a point in bytes\n\
00338 uint32 row_step # Length of a row in bytes\n\
00339 uint8[] data # Actual point data, size is (row_step*height)\n\
00340 \n\
00341 bool is_dense # True if there are no invalid points\n\
00342 \n\
00343 ================================================================================\n\
00344 MSG: sensor_msgs/PointField\n\
00345 # This message holds the description of one point entry in the\n\
00346 # PointCloud2 message format.\n\
00347 uint8 INT8 = 1\n\
00348 uint8 UINT8 = 2\n\
00349 uint8 INT16 = 3\n\
00350 uint8 UINT16 = 4\n\
00351 uint8 INT32 = 5\n\
00352 uint8 UINT32 = 6\n\
00353 uint8 FLOAT32 = 7\n\
00354 uint8 FLOAT64 = 8\n\
00355 \n\
00356 string name # Name of field\n\
00357 uint32 offset # Offset from start of point struct\n\
00358 uint8 datatype # Datatype enumeration, see above\n\
00359 uint32 count # How many elements in the field\n\
00360 \n\
00361 ================================================================================\n\
00362 MSG: sensor_msgs/Image\n\
00363 # This message contains an uncompressed image\n\
00364 # (0, 0) is at top-left corner of image\n\
00365 #\n\
00366 \n\
00367 Header header # Header timestamp should be acquisition time of image\n\
00368 # Header frame_id should be optical frame of camera\n\
00369 # origin of frame should be optical center of cameara\n\
00370 # +x should point to the right in the image\n\
00371 # +y should point down in the image\n\
00372 # +z should point into to plane of the image\n\
00373 # If the frame_id here and the frame_id of the CameraInfo\n\
00374 # message associated with the image conflict\n\
00375 # the behavior is undefined\n\
00376 \n\
00377 uint32 height # image height, that is, number of rows\n\
00378 uint32 width # image width, that is, number of columns\n\
00379 \n\
00380 # The legal values for encoding are in file src/image_encodings.cpp\n\
00381 # If you want to standardize a new string format, join\n\
00382 # ros-users@lists.sourceforge.net and send an email proposing a new encoding.\n\
00383 \n\
00384 string encoding # Encoding of pixels -- channel meaning, ordering, size\n\
00385 # taken from the list of strings in src/image_encodings.cpp\n\
00386 \n\
00387 uint8 is_bigendian # is this data bigendian?\n\
00388 uint32 step # Full row length in bytes\n\
00389 uint8[] data # actual matrix data, size is (step * rows)\n\
00390 \n\
00391 ================================================================================\n\
00392 MSG: sensor_msgs/CameraInfo\n\
00393 # This message defines meta information for a camera. It should be in a\n\
00394 # camera namespace on topic \"camera_info\" and accompanied by up to five\n\
00395 # image topics named:\n\
00396 #\n\
00397 # image_raw - raw data from the camera driver, possibly Bayer encoded\n\
00398 # image - monochrome, distorted\n\
00399 # image_color - color, distorted\n\
00400 # image_rect - monochrome, rectified\n\
00401 # image_rect_color - color, rectified\n\
00402 #\n\
00403 # The image_pipeline contains packages (image_proc, stereo_image_proc)\n\
00404 # for producing the four processed image topics from image_raw and\n\
00405 # camera_info. The meaning of the camera parameters are described in\n\
00406 # detail at http://www.ros.org/wiki/image_pipeline/CameraInfo.\n\
00407 #\n\
00408 # The image_geometry package provides a user-friendly interface to\n\
00409 # common operations using this meta information. If you want to, e.g.,\n\
00410 # project a 3d point into image coordinates, we strongly recommend\n\
00411 # using image_geometry.\n\
00412 #\n\
00413 # If the camera is uncalibrated, the matrices D, K, R, P should be left\n\
00414 # zeroed out. In particular, clients may assume that K[0] == 0.0\n\
00415 # indicates an uncalibrated camera.\n\
00416 \n\
00417 #######################################################################\n\
00418 # Image acquisition info #\n\
00419 #######################################################################\n\
00420 \n\
00421 # Time of image acquisition, camera coordinate frame ID\n\
00422 Header header # Header timestamp should be acquisition time of image\n\
00423 # Header frame_id should be optical frame of camera\n\
00424 # origin of frame should be optical center of camera\n\
00425 # +x should point to the right in the image\n\
00426 # +y should point down in the image\n\
00427 # +z should point into the plane of the image\n\
00428 \n\
00429 \n\
00430 #######################################################################\n\
00431 # Calibration Parameters #\n\
00432 #######################################################################\n\
00433 # These are fixed during camera calibration. Their values will be the #\n\
00434 # same in all messages until the camera is recalibrated. Note that #\n\
00435 # self-calibrating systems may \"recalibrate\" frequently. #\n\
00436 # #\n\
00437 # The internal parameters can be used to warp a raw (distorted) image #\n\
00438 # to: #\n\
00439 # 1. An undistorted image (requires D and K) #\n\
00440 # 2. A rectified image (requires D, K, R) #\n\
00441 # The projection matrix P projects 3D points into the rectified image.#\n\
00442 #######################################################################\n\
00443 \n\
00444 # The image dimensions with which the camera was calibrated. Normally\n\
00445 # this will be the full camera resolution in pixels.\n\
00446 uint32 height\n\
00447 uint32 width\n\
00448 \n\
00449 # The distortion model used. Supported models are listed in\n\
00450 # sensor_msgs/distortion_models.h. For most cameras, \"plumb_bob\" - a\n\
00451 # simple model of radial and tangential distortion - is sufficent.\n\
00452 string distortion_model\n\
00453 \n\
00454 # The distortion parameters, size depending on the distortion model.\n\
00455 # For \"plumb_bob\", the 5 parameters are: (k1, k2, t1, t2, k3).\n\
00456 float64[] D\n\
00457 \n\
00458 # Intrinsic camera matrix for the raw (distorted) images.\n\
00459 # [fx 0 cx]\n\
00460 # K = [ 0 fy cy]\n\
00461 # [ 0 0 1]\n\
00462 # Projects 3D points in the camera coordinate frame to 2D pixel\n\
00463 # coordinates using the focal lengths (fx, fy) and principal point\n\
00464 # (cx, cy).\n\
00465 float64[9] K # 3x3 row-major matrix\n\
00466 \n\
00467 # Rectification matrix (stereo cameras only)\n\
00468 # A rotation matrix aligning the camera coordinate system to the ideal\n\
00469 # stereo image plane so that epipolar lines in both stereo images are\n\
00470 # parallel.\n\
00471 float64[9] R # 3x3 row-major matrix\n\
00472 \n\
00473 # Projection/camera matrix\n\
00474 # [fx' 0 cx' Tx]\n\
00475 # P = [ 0 fy' cy' Ty]\n\
00476 # [ 0 0 1 0]\n\
00477 # By convention, this matrix specifies the intrinsic (camera) matrix\n\
00478 # of the processed (rectified) image. That is, the left 3x3 portion\n\
00479 # is the normal camera intrinsic matrix for the rectified image.\n\
00480 # It projects 3D points in the camera coordinate frame to 2D pixel\n\
00481 # coordinates using the focal lengths (fx', fy') and principal point\n\
00482 # (cx', cy') - these may differ from the values in K.\n\
00483 # For monocular cameras, Tx = Ty = 0. Normally, monocular cameras will\n\
00484 # also have R = the identity and P[1:3,1:3] = K.\n\
00485 # For a stereo pair, the fourth column [Tx Ty 0]' is related to the\n\
00486 # position of the optical center of the second camera in the first\n\
00487 # camera's frame. We assume Tz = 0 so both cameras are in the same\n\
00488 # stereo image plane. The first camera always has Tx = Ty = 0. For\n\
00489 # the right (second) camera of a horizontal stereo pair, Ty = 0 and\n\
00490 # Tx = -fx' * B, where B is the baseline between the cameras.\n\
00491 # Given a 3D point [X Y Z]', the projection (x, y) of the point onto\n\
00492 # the rectified image is given by:\n\
00493 # [u v w]' = P * [X Y Z 1]'\n\
00494 # x = u / w\n\
00495 # y = v / w\n\
00496 # This holds for both images of a stereo pair.\n\
00497 float64[12] P # 3x4 row-major matrix\n\
00498 \n\
00499 \n\
00500 #######################################################################\n\
00501 # Operational Parameters #\n\
00502 #######################################################################\n\
00503 # These define the image region actually captured by the camera #\n\
00504 # driver. Although they affect the geometry of the output image, they #\n\
00505 # may be changed freely without recalibrating the camera. #\n\
00506 #######################################################################\n\
00507 \n\
00508 # Binning refers here to any camera setting which combines rectangular\n\
00509 # neighborhoods of pixels into larger \"super-pixels.\" It reduces the\n\
00510 # resolution of the output image to\n\
00511 # (width / binning_x) x (height / binning_y).\n\
00512 # The default values binning_x = binning_y = 0 is considered the same\n\
00513 # as binning_x = binning_y = 1 (no subsampling).\n\
00514 uint32 binning_x\n\
00515 uint32 binning_y\n\
00516 \n\
00517 # Region of interest (subwindow of full camera resolution), given in\n\
00518 # full resolution (unbinned) image coordinates. A particular ROI\n\
00519 # always denotes the same window of pixels on the camera sensor,\n\
00520 # regardless of binning settings.\n\
00521 # The default setting of roi (all values 0) is considered the same as\n\
00522 # full resolution (roi.width = width, roi.height = height).\n\
00523 RegionOfInterest roi\n\
00524 \n\
00525 ================================================================================\n\
00526 MSG: sensor_msgs/RegionOfInterest\n\
00527 # This message is used to specify a region of interest within an image.\n\
00528 #\n\
00529 # When used to specify the ROI setting of the camera when the image was\n\
00530 # taken, the height and width fields should either match the height and\n\
00531 # width fields for the associated image; or height = width = 0\n\
00532 # indicates that the full resolution image was captured.\n\
00533 \n\
00534 uint32 x_offset # Leftmost pixel of the ROI\n\
00535 # (0 if the ROI includes the left edge of the image)\n\
00536 uint32 y_offset # Topmost pixel of the ROI\n\
00537 # (0 if the ROI includes the top edge of the image)\n\
00538 uint32 height # Height of ROI\n\
00539 uint32 width # Width of ROI\n\
00540 \n\
00541 # True if a distinct rectified ROI should be calculated from the \"raw\"\n\
00542 # ROI in this message. Typically this should be False if the full image\n\
00543 # is captured (ROI not used), and True if a subwindow is captured (ROI\n\
00544 # used).\n\
00545 bool do_rectify\n\
00546 \n\
00547 "; }
00548 public:
00549 ROS_DEPRECATED static const std::string __s_getMessageDefinition() { return __s_getMessageDefinition_(); }
00550
00551 ROS_DEPRECATED const std::string __getMessageDefinition() const { return __s_getMessageDefinition_(); }
00552
00553 ROS_DEPRECATED virtual uint8_t *serialize(uint8_t *write_ptr, uint32_t seq) const
00554 {
00555 ros::serialization::OStream stream(write_ptr, 1000000000);
00556 ros::serialization::serialize(stream, objects);
00557 return stream.getData();
00558 }
00559
00560 ROS_DEPRECATED virtual uint8_t *deserialize(uint8_t *read_ptr)
00561 {
00562 ros::serialization::IStream stream(read_ptr, 1000000000);
00563 ros::serialization::deserialize(stream, objects);
00564 return stream.getData();
00565 }
00566
00567 ROS_DEPRECATED virtual uint32_t serializationLength() const
00568 {
00569 uint32_t size = 0;
00570 size += ros::serialization::serializationLength(objects);
00571 return size;
00572 }
00573
00574 typedef boost::shared_ptr< ::pr2_pick_and_place_service::DetectObjectsResponse_<ContainerAllocator> > Ptr;
00575 typedef boost::shared_ptr< ::pr2_pick_and_place_service::DetectObjectsResponse_<ContainerAllocator> const> ConstPtr;
00576 };
00577 typedef ::pr2_pick_and_place_service::DetectObjectsResponse_<std::allocator<void> > DetectObjectsResponse;
00578
00579 typedef boost::shared_ptr< ::pr2_pick_and_place_service::DetectObjectsResponse> DetectObjectsResponsePtr;
00580 typedef boost::shared_ptr< ::pr2_pick_and_place_service::DetectObjectsResponse const> DetectObjectsResponseConstPtr;
00581
00582 struct DetectObjects
00583 {
00584
00585 typedef DetectObjectsRequest Request;
00586 typedef DetectObjectsResponse Response;
00587 Request request;
00588 Response response;
00589
00590 typedef Request RequestType;
00591 typedef Response ResponseType;
00592 };
00593 }
00594
00595 namespace ros
00596 {
00597 namespace message_traits
00598 {
00599 template<class ContainerAllocator>
00600 struct MD5Sum< ::pr2_pick_and_place_service::DetectObjectsRequest_<ContainerAllocator> > {
00601 static const char* value()
00602 {
00603 return "cba5e21e920a3a2b7b375cb65b64cdea";
00604 }
00605
00606 static const char* value(const ::pr2_pick_and_place_service::DetectObjectsRequest_<ContainerAllocator> &) { return value(); }
00607 static const uint64_t static_value1 = 0xcba5e21e920a3a2bULL;
00608 static const uint64_t static_value2 = 0x7b375cb65b64cdeaULL;
00609 };
00610
00611 template<class ContainerAllocator>
00612 struct DataType< ::pr2_pick_and_place_service::DetectObjectsRequest_<ContainerAllocator> > {
00613 static const char* value()
00614 {
00615 return "pr2_pick_and_place_service/DetectObjectsRequest";
00616 }
00617
00618 static const char* value(const ::pr2_pick_and_place_service::DetectObjectsRequest_<ContainerAllocator> &) { return value(); }
00619 };
00620
00621 template<class ContainerAllocator>
00622 struct Definition< ::pr2_pick_and_place_service::DetectObjectsRequest_<ContainerAllocator> > {
00623 static const char* value()
00624 {
00625 return "string command\n\
00626 \n\
00627 ";
00628 }
00629
00630 static const char* value(const ::pr2_pick_and_place_service::DetectObjectsRequest_<ContainerAllocator> &) { return value(); }
00631 };
00632
00633 }
00634 }
00635
00636
00637 namespace ros
00638 {
00639 namespace message_traits
00640 {
00641 template<class ContainerAllocator>
00642 struct MD5Sum< ::pr2_pick_and_place_service::DetectObjectsResponse_<ContainerAllocator> > {
00643 static const char* value()
00644 {
00645 return "b4139d6c1f0ca110d24436e7ae88ea9c";
00646 }
00647
00648 static const char* value(const ::pr2_pick_and_place_service::DetectObjectsResponse_<ContainerAllocator> &) { return value(); }
00649 static const uint64_t static_value1 = 0xb4139d6c1f0ca110ULL;
00650 static const uint64_t static_value2 = 0xd24436e7ae88ea9cULL;
00651 };
00652
00653 template<class ContainerAllocator>
00654 struct DataType< ::pr2_pick_and_place_service::DetectObjectsResponse_<ContainerAllocator> > {
00655 static const char* value()
00656 {
00657 return "pr2_pick_and_place_service/DetectObjectsResponse";
00658 }
00659
00660 static const char* value(const ::pr2_pick_and_place_service::DetectObjectsResponse_<ContainerAllocator> &) { return value(); }
00661 };
00662
00663 template<class ContainerAllocator>
00664 struct Definition< ::pr2_pick_and_place_service::DetectObjectsResponse_<ContainerAllocator> > {
00665 static const char* value()
00666 {
00667 return "PickPlaceObject[] objects\n\
00668 \n\
00669 \n\
00670 ================================================================================\n\
00671 MSG: pr2_pick_and_place_service/PickPlaceObject\n\
00672 int32 objectid\n\
00673 object_manipulation_msgs/GraspableObject object\n\
00674 geometry_msgs/PoseStamped pose\n\
00675 float64[] boundingbox\n\
00676 \n\
00677 ================================================================================\n\
00678 MSG: object_manipulation_msgs/GraspableObject\n\
00679 # an object that the object_manipulator can work on\n\
00680 \n\
00681 # a graspable object can be represented in multiple ways. This message\n\
00682 # can contain all of them. Which one is actually used is up to the receiver\n\
00683 # of this message. When adding new representations, one must be careful that\n\
00684 # they have reasonable lightweight defaults indicating that that particular\n\
00685 # representation is not available.\n\
00686 \n\
00687 # the tf frame to be used as a reference frame when combining information from\n\
00688 # the different representations below\n\
00689 string reference_frame_id\n\
00690 \n\
00691 # potential recognition results from a database of models\n\
00692 # all poses are relative to the object reference pose\n\
00693 household_objects_database_msgs/DatabaseModelPose[] potential_models\n\
00694 \n\
00695 # the point cloud itself\n\
00696 sensor_msgs/PointCloud cluster\n\
00697 \n\
00698 # a region of a PointCloud2 of interest\n\
00699 object_manipulation_msgs/SceneRegion region\n\
00700 \n\
00701 \n\
00702 ================================================================================\n\
00703 MSG: household_objects_database_msgs/DatabaseModelPose\n\
00704 # Informs that a specific model from the Model Database has been \n\
00705 # identified at a certain location\n\
00706 \n\
00707 # the database id of the model\n\
00708 int32 model_id\n\
00709 \n\
00710 # the pose that it can be found in\n\
00711 geometry_msgs/PoseStamped pose\n\
00712 \n\
00713 # a measure of the confidence level in this detection result\n\
00714 float32 confidence\n\
00715 ================================================================================\n\
00716 MSG: geometry_msgs/PoseStamped\n\
00717 # A Pose with reference coordinate frame and timestamp\n\
00718 Header header\n\
00719 Pose pose\n\
00720 \n\
00721 ================================================================================\n\
00722 MSG: std_msgs/Header\n\
00723 # Standard metadata for higher-level stamped data types.\n\
00724 # This is generally used to communicate timestamped data \n\
00725 # in a particular coordinate frame.\n\
00726 # \n\
00727 # sequence ID: consecutively increasing ID \n\
00728 uint32 seq\n\
00729 #Two-integer timestamp that is expressed as:\n\
00730 # * stamp.secs: seconds (stamp_secs) since epoch\n\
00731 # * stamp.nsecs: nanoseconds since stamp_secs\n\
00732 # time-handling sugar is provided by the client library\n\
00733 time stamp\n\
00734 #Frame this data is associated with\n\
00735 # 0: no frame\n\
00736 # 1: global frame\n\
00737 string frame_id\n\
00738 \n\
00739 ================================================================================\n\
00740 MSG: geometry_msgs/Pose\n\
00741 # A representation of pose in free space, composed of postion and orientation. \n\
00742 Point position\n\
00743 Quaternion orientation\n\
00744 \n\
00745 ================================================================================\n\
00746 MSG: geometry_msgs/Point\n\
00747 # This contains the position of a point in free space\n\
00748 float64 x\n\
00749 float64 y\n\
00750 float64 z\n\
00751 \n\
00752 ================================================================================\n\
00753 MSG: geometry_msgs/Quaternion\n\
00754 # This represents an orientation in free space in quaternion form.\n\
00755 \n\
00756 float64 x\n\
00757 float64 y\n\
00758 float64 z\n\
00759 float64 w\n\
00760 \n\
00761 ================================================================================\n\
00762 MSG: sensor_msgs/PointCloud\n\
00763 # This message holds a collection of 3d points, plus optional additional\n\
00764 # information about each point.\n\
00765 \n\
00766 # Time of sensor data acquisition, coordinate frame ID.\n\
00767 Header header\n\
00768 \n\
00769 # Array of 3d points. Each Point32 should be interpreted as a 3d point\n\
00770 # in the frame given in the header.\n\
00771 geometry_msgs/Point32[] points\n\
00772 \n\
00773 # Each channel should have the same number of elements as points array,\n\
00774 # and the data in each channel should correspond 1:1 with each point.\n\
00775 # Channel names in common practice are listed in ChannelFloat32.msg.\n\
00776 ChannelFloat32[] channels\n\
00777 \n\
00778 ================================================================================\n\
00779 MSG: geometry_msgs/Point32\n\
00780 # This contains the position of a point in free space(with 32 bits of precision).\n\
00781 # It is recommeded to use Point wherever possible instead of Point32. \n\
00782 # \n\
00783 # This recommendation is to promote interoperability. \n\
00784 #\n\
00785 # This message is designed to take up less space when sending\n\
00786 # lots of points at once, as in the case of a PointCloud. \n\
00787 \n\
00788 float32 x\n\
00789 float32 y\n\
00790 float32 z\n\
00791 ================================================================================\n\
00792 MSG: sensor_msgs/ChannelFloat32\n\
00793 # This message is used by the PointCloud message to hold optional data\n\
00794 # associated with each point in the cloud. The length of the values\n\
00795 # array should be the same as the length of the points array in the\n\
00796 # PointCloud, and each value should be associated with the corresponding\n\
00797 # point.\n\
00798 \n\
00799 # Channel names in existing practice include:\n\
00800 # \"u\", \"v\" - row and column (respectively) in the left stereo image.\n\
00801 # This is opposite to usual conventions but remains for\n\
00802 # historical reasons. The newer PointCloud2 message has no\n\
00803 # such problem.\n\
00804 # \"rgb\" - For point clouds produced by color stereo cameras. uint8\n\
00805 # (R,G,B) values packed into the least significant 24 bits,\n\
00806 # in order.\n\
00807 # \"intensity\" - laser or pixel intensity.\n\
00808 # \"distance\"\n\
00809 \n\
00810 # The channel name should give semantics of the channel (e.g.\n\
00811 # \"intensity\" instead of \"value\").\n\
00812 string name\n\
00813 \n\
00814 # The values array should be 1-1 with the elements of the associated\n\
00815 # PointCloud.\n\
00816 float32[] values\n\
00817 \n\
00818 ================================================================================\n\
00819 MSG: object_manipulation_msgs/SceneRegion\n\
00820 # Point cloud\n\
00821 sensor_msgs/PointCloud2 cloud\n\
00822 \n\
00823 # Indices for the region of interest\n\
00824 int32[] mask\n\
00825 \n\
00826 # One of the corresponding 2D images, if applicable\n\
00827 sensor_msgs/Image image\n\
00828 \n\
00829 # The disparity image, if applicable\n\
00830 sensor_msgs/Image disparity_image\n\
00831 \n\
00832 # Camera info for the camera that took the image\n\
00833 sensor_msgs/CameraInfo cam_info\n\
00834 \n\
00835 ================================================================================\n\
00836 MSG: sensor_msgs/PointCloud2\n\
00837 # This message holds a collection of N-dimensional points, which may\n\
00838 # contain additional information such as normals, intensity, etc. The\n\
00839 # point data is stored as a binary blob, its layout described by the\n\
00840 # contents of the \"fields\" array.\n\
00841 \n\
00842 # The point cloud data may be organized 2d (image-like) or 1d\n\
00843 # (unordered). Point clouds organized as 2d images may be produced by\n\
00844 # camera depth sensors such as stereo or time-of-flight.\n\
00845 \n\
00846 # Time of sensor data acquisition, and the coordinate frame ID (for 3d\n\
00847 # points).\n\
00848 Header header\n\
00849 \n\
00850 # 2D structure of the point cloud. If the cloud is unordered, height is\n\
00851 # 1 and width is the length of the point cloud.\n\
00852 uint32 height\n\
00853 uint32 width\n\
00854 \n\
00855 # Describes the channels and their layout in the binary data blob.\n\
00856 PointField[] fields\n\
00857 \n\
00858 bool is_bigendian # Is this data bigendian?\n\
00859 uint32 point_step # Length of a point in bytes\n\
00860 uint32 row_step # Length of a row in bytes\n\
00861 uint8[] data # Actual point data, size is (row_step*height)\n\
00862 \n\
00863 bool is_dense # True if there are no invalid points\n\
00864 \n\
00865 ================================================================================\n\
00866 MSG: sensor_msgs/PointField\n\
00867 # This message holds the description of one point entry in the\n\
00868 # PointCloud2 message format.\n\
00869 uint8 INT8 = 1\n\
00870 uint8 UINT8 = 2\n\
00871 uint8 INT16 = 3\n\
00872 uint8 UINT16 = 4\n\
00873 uint8 INT32 = 5\n\
00874 uint8 UINT32 = 6\n\
00875 uint8 FLOAT32 = 7\n\
00876 uint8 FLOAT64 = 8\n\
00877 \n\
00878 string name # Name of field\n\
00879 uint32 offset # Offset from start of point struct\n\
00880 uint8 datatype # Datatype enumeration, see above\n\
00881 uint32 count # How many elements in the field\n\
00882 \n\
00883 ================================================================================\n\
00884 MSG: sensor_msgs/Image\n\
00885 # This message contains an uncompressed image\n\
00886 # (0, 0) is at top-left corner of image\n\
00887 #\n\
00888 \n\
00889 Header header # Header timestamp should be acquisition time of image\n\
00890 # Header frame_id should be optical frame of camera\n\
00891 # origin of frame should be optical center of cameara\n\
00892 # +x should point to the right in the image\n\
00893 # +y should point down in the image\n\
00894 # +z should point into to plane of the image\n\
00895 # If the frame_id here and the frame_id of the CameraInfo\n\
00896 # message associated with the image conflict\n\
00897 # the behavior is undefined\n\
00898 \n\
00899 uint32 height # image height, that is, number of rows\n\
00900 uint32 width # image width, that is, number of columns\n\
00901 \n\
00902 # The legal values for encoding are in file src/image_encodings.cpp\n\
00903 # If you want to standardize a new string format, join\n\
00904 # ros-users@lists.sourceforge.net and send an email proposing a new encoding.\n\
00905 \n\
00906 string encoding # Encoding of pixels -- channel meaning, ordering, size\n\
00907 # taken from the list of strings in src/image_encodings.cpp\n\
00908 \n\
00909 uint8 is_bigendian # is this data bigendian?\n\
00910 uint32 step # Full row length in bytes\n\
00911 uint8[] data # actual matrix data, size is (step * rows)\n\
00912 \n\
00913 ================================================================================\n\
00914 MSG: sensor_msgs/CameraInfo\n\
00915 # This message defines meta information for a camera. It should be in a\n\
00916 # camera namespace on topic \"camera_info\" and accompanied by up to five\n\
00917 # image topics named:\n\
00918 #\n\
00919 # image_raw - raw data from the camera driver, possibly Bayer encoded\n\
00920 # image - monochrome, distorted\n\
00921 # image_color - color, distorted\n\
00922 # image_rect - monochrome, rectified\n\
00923 # image_rect_color - color, rectified\n\
00924 #\n\
00925 # The image_pipeline contains packages (image_proc, stereo_image_proc)\n\
00926 # for producing the four processed image topics from image_raw and\n\
00927 # camera_info. The meaning of the camera parameters are described in\n\
00928 # detail at http://www.ros.org/wiki/image_pipeline/CameraInfo.\n\
00929 #\n\
00930 # The image_geometry package provides a user-friendly interface to\n\
00931 # common operations using this meta information. If you want to, e.g.,\n\
00932 # project a 3d point into image coordinates, we strongly recommend\n\
00933 # using image_geometry.\n\
00934 #\n\
00935 # If the camera is uncalibrated, the matrices D, K, R, P should be left\n\
00936 # zeroed out. In particular, clients may assume that K[0] == 0.0\n\
00937 # indicates an uncalibrated camera.\n\
00938 \n\
00939 #######################################################################\n\
00940 # Image acquisition info #\n\
00941 #######################################################################\n\
00942 \n\
00943 # Time of image acquisition, camera coordinate frame ID\n\
00944 Header header # Header timestamp should be acquisition time of image\n\
00945 # Header frame_id should be optical frame of camera\n\
00946 # origin of frame should be optical center of camera\n\
00947 # +x should point to the right in the image\n\
00948 # +y should point down in the image\n\
00949 # +z should point into the plane of the image\n\
00950 \n\
00951 \n\
00952 #######################################################################\n\
00953 # Calibration Parameters #\n\
00954 #######################################################################\n\
00955 # These are fixed during camera calibration. Their values will be the #\n\
00956 # same in all messages until the camera is recalibrated. Note that #\n\
00957 # self-calibrating systems may \"recalibrate\" frequently. #\n\
00958 # #\n\
00959 # The internal parameters can be used to warp a raw (distorted) image #\n\
00960 # to: #\n\
00961 # 1. An undistorted image (requires D and K) #\n\
00962 # 2. A rectified image (requires D, K, R) #\n\
00963 # The projection matrix P projects 3D points into the rectified image.#\n\
00964 #######################################################################\n\
00965 \n\
00966 # The image dimensions with which the camera was calibrated. Normally\n\
00967 # this will be the full camera resolution in pixels.\n\
00968 uint32 height\n\
00969 uint32 width\n\
00970 \n\
00971 # The distortion model used. Supported models are listed in\n\
00972 # sensor_msgs/distortion_models.h. For most cameras, \"plumb_bob\" - a\n\
00973 # simple model of radial and tangential distortion - is sufficent.\n\
00974 string distortion_model\n\
00975 \n\
00976 # The distortion parameters, size depending on the distortion model.\n\
00977 # For \"plumb_bob\", the 5 parameters are: (k1, k2, t1, t2, k3).\n\
00978 float64[] D\n\
00979 \n\
00980 # Intrinsic camera matrix for the raw (distorted) images.\n\
00981 # [fx 0 cx]\n\
00982 # K = [ 0 fy cy]\n\
00983 # [ 0 0 1]\n\
00984 # Projects 3D points in the camera coordinate frame to 2D pixel\n\
00985 # coordinates using the focal lengths (fx, fy) and principal point\n\
00986 # (cx, cy).\n\
00987 float64[9] K # 3x3 row-major matrix\n\
00988 \n\
00989 # Rectification matrix (stereo cameras only)\n\
00990 # A rotation matrix aligning the camera coordinate system to the ideal\n\
00991 # stereo image plane so that epipolar lines in both stereo images are\n\
00992 # parallel.\n\
00993 float64[9] R # 3x3 row-major matrix\n\
00994 \n\
00995 # Projection/camera matrix\n\
00996 # [fx' 0 cx' Tx]\n\
00997 # P = [ 0 fy' cy' Ty]\n\
00998 # [ 0 0 1 0]\n\
00999 # By convention, this matrix specifies the intrinsic (camera) matrix\n\
01000 # of the processed (rectified) image. That is, the left 3x3 portion\n\
01001 # is the normal camera intrinsic matrix for the rectified image.\n\
01002 # It projects 3D points in the camera coordinate frame to 2D pixel\n\
01003 # coordinates using the focal lengths (fx', fy') and principal point\n\
01004 # (cx', cy') - these may differ from the values in K.\n\
01005 # For monocular cameras, Tx = Ty = 0. Normally, monocular cameras will\n\
01006 # also have R = the identity and P[1:3,1:3] = K.\n\
01007 # For a stereo pair, the fourth column [Tx Ty 0]' is related to the\n\
01008 # position of the optical center of the second camera in the first\n\
01009 # camera's frame. We assume Tz = 0 so both cameras are in the same\n\
01010 # stereo image plane. The first camera always has Tx = Ty = 0. For\n\
01011 # the right (second) camera of a horizontal stereo pair, Ty = 0 and\n\
01012 # Tx = -fx' * B, where B is the baseline between the cameras.\n\
01013 # Given a 3D point [X Y Z]', the projection (x, y) of the point onto\n\
01014 # the rectified image is given by:\n\
01015 # [u v w]' = P * [X Y Z 1]'\n\
01016 # x = u / w\n\
01017 # y = v / w\n\
01018 # This holds for both images of a stereo pair.\n\
01019 float64[12] P # 3x4 row-major matrix\n\
01020 \n\
01021 \n\
01022 #######################################################################\n\
01023 # Operational Parameters #\n\
01024 #######################################################################\n\
01025 # These define the image region actually captured by the camera #\n\
01026 # driver. Although they affect the geometry of the output image, they #\n\
01027 # may be changed freely without recalibrating the camera. #\n\
01028 #######################################################################\n\
01029 \n\
01030 # Binning refers here to any camera setting which combines rectangular\n\
01031 # neighborhoods of pixels into larger \"super-pixels.\" It reduces the\n\
01032 # resolution of the output image to\n\
01033 # (width / binning_x) x (height / binning_y).\n\
01034 # The default values binning_x = binning_y = 0 is considered the same\n\
01035 # as binning_x = binning_y = 1 (no subsampling).\n\
01036 uint32 binning_x\n\
01037 uint32 binning_y\n\
01038 \n\
01039 # Region of interest (subwindow of full camera resolution), given in\n\
01040 # full resolution (unbinned) image coordinates. A particular ROI\n\
01041 # always denotes the same window of pixels on the camera sensor,\n\
01042 # regardless of binning settings.\n\
01043 # The default setting of roi (all values 0) is considered the same as\n\
01044 # full resolution (roi.width = width, roi.height = height).\n\
01045 RegionOfInterest roi\n\
01046 \n\
01047 ================================================================================\n\
01048 MSG: sensor_msgs/RegionOfInterest\n\
01049 # This message is used to specify a region of interest within an image.\n\
01050 #\n\
01051 # When used to specify the ROI setting of the camera when the image was\n\
01052 # taken, the height and width fields should either match the height and\n\
01053 # width fields for the associated image; or height = width = 0\n\
01054 # indicates that the full resolution image was captured.\n\
01055 \n\
01056 uint32 x_offset # Leftmost pixel of the ROI\n\
01057 # (0 if the ROI includes the left edge of the image)\n\
01058 uint32 y_offset # Topmost pixel of the ROI\n\
01059 # (0 if the ROI includes the top edge of the image)\n\
01060 uint32 height # Height of ROI\n\
01061 uint32 width # Width of ROI\n\
01062 \n\
01063 # True if a distinct rectified ROI should be calculated from the \"raw\"\n\
01064 # ROI in this message. Typically this should be False if the full image\n\
01065 # is captured (ROI not used), and True if a subwindow is captured (ROI\n\
01066 # used).\n\
01067 bool do_rectify\n\
01068 \n\
01069 ";
01070 }
01071
01072 static const char* value(const ::pr2_pick_and_place_service::DetectObjectsResponse_<ContainerAllocator> &) { return value(); }
01073 };
01074
01075 }
01076 }
01077
01078 namespace ros
01079 {
01080 namespace serialization
01081 {
01082
01083 template<class ContainerAllocator> struct Serializer< ::pr2_pick_and_place_service::DetectObjectsRequest_<ContainerAllocator> >
01084 {
01085 template<typename Stream, typename T> inline static void allInOne(Stream& stream, T m)
01086 {
01087 stream.next(m.command);
01088 }
01089
01090 ROS_DECLARE_ALLINONE_SERIALIZER;
01091 };
01092 }
01093 }
01094
01095
01096 namespace ros
01097 {
01098 namespace serialization
01099 {
01100
01101 template<class ContainerAllocator> struct Serializer< ::pr2_pick_and_place_service::DetectObjectsResponse_<ContainerAllocator> >
01102 {
01103 template<typename Stream, typename T> inline static void allInOne(Stream& stream, T m)
01104 {
01105 stream.next(m.objects);
01106 }
01107
01108 ROS_DECLARE_ALLINONE_SERIALIZER;
01109 };
01110 }
01111 }
01112
01113 namespace ros
01114 {
01115 namespace service_traits
01116 {
01117 template<>
01118 struct MD5Sum<pr2_pick_and_place_service::DetectObjects> {
01119 static const char* value()
01120 {
01121 return "b3897163b7dda37e304d68b162036545";
01122 }
01123
01124 static const char* value(const pr2_pick_and_place_service::DetectObjects&) { return value(); }
01125 };
01126
01127 template<>
01128 struct DataType<pr2_pick_and_place_service::DetectObjects> {
01129 static const char* value()
01130 {
01131 return "pr2_pick_and_place_service/DetectObjects";
01132 }
01133
01134 static const char* value(const pr2_pick_and_place_service::DetectObjects&) { return value(); }
01135 };
01136
01137 template<class ContainerAllocator>
01138 struct MD5Sum<pr2_pick_and_place_service::DetectObjectsRequest_<ContainerAllocator> > {
01139 static const char* value()
01140 {
01141 return "b3897163b7dda37e304d68b162036545";
01142 }
01143
01144 static const char* value(const pr2_pick_and_place_service::DetectObjectsRequest_<ContainerAllocator> &) { return value(); }
01145 };
01146
01147 template<class ContainerAllocator>
01148 struct DataType<pr2_pick_and_place_service::DetectObjectsRequest_<ContainerAllocator> > {
01149 static const char* value()
01150 {
01151 return "pr2_pick_and_place_service/DetectObjects";
01152 }
01153
01154 static const char* value(const pr2_pick_and_place_service::DetectObjectsRequest_<ContainerAllocator> &) { return value(); }
01155 };
01156
01157 template<class ContainerAllocator>
01158 struct MD5Sum<pr2_pick_and_place_service::DetectObjectsResponse_<ContainerAllocator> > {
01159 static const char* value()
01160 {
01161 return "b3897163b7dda37e304d68b162036545";
01162 }
01163
01164 static const char* value(const pr2_pick_and_place_service::DetectObjectsResponse_<ContainerAllocator> &) { return value(); }
01165 };
01166
01167 template<class ContainerAllocator>
01168 struct DataType<pr2_pick_and_place_service::DetectObjectsResponse_<ContainerAllocator> > {
01169 static const char* value()
01170 {
01171 return "pr2_pick_and_place_service/DetectObjects";
01172 }
01173
01174 static const char* value(const pr2_pick_and_place_service::DetectObjectsResponse_<ContainerAllocator> &) { return value(); }
01175 };
01176
01177 }
01178 }
01179
01180 #endif // PR2_PICK_AND_PLACE_SERVICE_SERVICE_DETECTOBJECTS_H
01181