Classes | Public Types | Public Member Functions | Static Public Member Functions | Protected Member Functions | Private Member Functions | Friends
Eigen::MatrixBase< Derived > Class Template Reference

Base class for all dense matrices, vectors, and expressions. More...

#include <MatrixBase.h>

Inheritance diagram for Eigen::MatrixBase< Derived >:
Inheritance graph
[legend]

List of all members.

Classes

struct  ConstDiagonalIndexReturnType
struct  ConstSelfAdjointViewReturnType
struct  ConstTriangularViewReturnType
struct  cross_product_return_type
struct  DiagonalIndexReturnType
struct  SelfAdjointViewReturnType
struct  TriangularViewReturnType

Public Types

enum  { SizeMinusOne = SizeAtCompileTime==Dynamic ? Dynamic : SizeAtCompileTime-1 }
typedef internal::conditional
< NumTraits< Scalar >
::IsComplex, CwiseUnaryOp
< internal::scalar_conjugate_op
< Scalar >
, ConstTransposeReturnType >
, ConstTransposeReturnType >
::type 
AdjointReturnType
typedef DenseBase< Derived > Base
typedef Block< const
CwiseNullaryOp
< internal::scalar_identity_op
< Scalar >, SquareMatrixType >
, internal::traits< Derived >
::RowsAtCompileTime,
internal::traits< Derived >
::ColsAtCompileTime
BasisReturnType
typedef Base::CoeffReturnType CoeffReturnType
typedef Base::ColXpr ColXpr
typedef internal::conditional
< NumTraits< Scalar >
::IsComplex, const
CwiseUnaryOp
< internal::scalar_conjugate_op
< Scalar >, const Derived >
, const Derived & >::type 
ConjugateReturnType
typedef CwiseNullaryOp
< internal::scalar_constant_op
< Scalar >, Derived > 
ConstantReturnType
typedef internal::add_const
< Diagonal< const Derived >
>::type 
ConstDiagonalReturnType
typedef Block< const Derived,
internal::traits< Derived >
::ColsAtCompileTime==1?SizeMinusOne:1,
internal::traits< Derived >
::ColsAtCompileTime==1?1:SizeMinusOne
ConstStartMinusOne
typedef
Base::ConstTransposeReturnType 
ConstTransposeReturnType
typedef Diagonal< Derived > DiagonalReturnType
typedef Matrix< std::complex
< RealScalar >
, internal::traits< Derived >
::ColsAtCompileTime,
1, ColMajor
EigenvaluesReturnType
typedef CwiseUnaryOp
< internal::scalar_quotient1_op
< typename internal::traits
< Derived >::Scalar >, const
ConstStartMinusOne
HNormalizedReturnType
typedef CwiseNullaryOp
< internal::scalar_identity_op
< Scalar >, Derived > 
IdentityReturnType
typedef CwiseUnaryOp
< internal::scalar_imag_op
< Scalar >, const Derived > 
ImagReturnType
typedef internal::traits
< Derived >::Index 
Index
 The type of indices.
typedef CwiseUnaryView
< internal::scalar_imag_ref_op
< Scalar >, Derived > 
NonConstImagReturnType
typedef internal::conditional
< NumTraits< Scalar >
::IsComplex, CwiseUnaryView
< internal::scalar_real_ref_op
< Scalar >, Derived >, Derived & >
::type 
NonConstRealReturnType
typedef
internal::packet_traits
< Scalar >::type 
PacketScalar
typedef Matrix< typename
internal::traits< Derived >
::Scalar, internal::traits
< Derived >::RowsAtCompileTime,
internal::traits< Derived >
::ColsAtCompileTime, AutoAlign|(internal::traits
< Derived >::Flags
&RowMajorBit?RowMajor:ColMajor),
internal::traits< Derived >
::MaxRowsAtCompileTime,
internal::traits< Derived >
::MaxColsAtCompileTime
PlainObject
 The plain matrix type corresponding to this expression.
typedef internal::conditional
< NumTraits< Scalar >
::IsComplex, const
CwiseUnaryOp
< internal::scalar_real_op
< Scalar >, const Derived >
, const Derived & >::type 
RealReturnType
typedef NumTraits< Scalar >::Real RealScalar
typedef Base::RowXpr RowXpr
typedef internal::traits
< Derived >::Scalar 
Scalar
typedef CwiseUnaryOp
< internal::scalar_multiple_op
< Scalar >, const Derived > 
ScalarMultipleReturnType
typedef CwiseUnaryOp
< internal::scalar_quotient1_op
< Scalar >, const Derived > 
ScalarQuotient1ReturnType
typedef Matrix< Scalar,
EIGEN_SIZE_MAX(RowsAtCompileTime,
ColsAtCompileTime),
EIGEN_SIZE_MAX(RowsAtCompileTime,
ColsAtCompileTime)> 
SquareMatrixType
typedef
internal::stem_function
< Scalar >::type 
StemFunction
typedef MatrixBase StorageBaseType
typedef internal::traits
< Derived >::StorageKind 
StorageKind

Public Member Functions

const AdjointReturnType adjoint () const
void adjointInPlace ()
template<typename EssentialPart >
void applyHouseholderOnTheLeft (const EssentialPart &essential, const Scalar &tau, Scalar *workspace)
template<typename EssentialPart >
void applyHouseholderOnTheRight (const EssentialPart &essential, const Scalar &tau, Scalar *workspace)
template<typename OtherDerived >
void applyOnTheLeft (const EigenBase< OtherDerived > &other)
template<typename OtherScalar >
void applyOnTheLeft (Index p, Index q, const JacobiRotation< OtherScalar > &j)
template<typename OtherDerived >
void applyOnTheRight (const EigenBase< OtherDerived > &other)
template<typename OtherScalar >
void applyOnTheRight (Index p, Index q, const JacobiRotation< OtherScalar > &j)
ArrayWrapper< Derived > array ()
const ArrayWrapper< const Derived > array () const
const DiagonalWrapper< const
Derived > 
asDiagonal () const
const PermutationWrapper
< const Derived > 
asPermutation () const
template<typename CustomBinaryOp , typename OtherDerived >
EIGEN_STRONG_INLINE const
CwiseBinaryOp< CustomBinaryOp,
const Derived, const
OtherDerived > 
binaryExpr (const EIGEN_CURRENT_STORAGE_BASE_CLASS< OtherDerived > &other, const CustomBinaryOp &func=CustomBinaryOp()) const
RealScalar blueNorm () const
template<typename NewType >
internal::cast_return_type
< Derived, const CwiseUnaryOp
< internal::scalar_cast_op
< typename internal::traits
< Derived >::Scalar, NewType >
, const Derived > >::type 
cast () const
const ColPivHouseholderQR
< PlainObject
colPivHouseholderQr () const
template<typename ResultType >
void computeInverseAndDetWithCheck (ResultType &inverse, typename ResultType::Scalar &determinant, bool &invertible, const RealScalar &absDeterminantThreshold=NumTraits< Scalar >::dummy_precision()) const
template<typename ResultType >
void computeInverseWithCheck (ResultType &inverse, bool &invertible, const RealScalar &absDeterminantThreshold=NumTraits< Scalar >::dummy_precision()) const
ConjugateReturnType conjugate () const
const
MatrixFunctionReturnValue
< Derived > 
cos () const
const
MatrixFunctionReturnValue
< Derived > 
cosh () const
template<typename OtherDerived >
cross_product_return_type
< OtherDerived >::type 
cross (const MatrixBase< OtherDerived > &other) const
template<typename OtherDerived >
PlainObject cross3 (const MatrixBase< OtherDerived > &other) const
EIGEN_STRONG_INLINE const
CwiseUnaryOp
< internal::scalar_abs_op
< Scalar >, const Derived > 
cwiseAbs () const
EIGEN_STRONG_INLINE const
CwiseUnaryOp
< internal::scalar_abs2_op
< Scalar >, const Derived > 
cwiseAbs2 () const
template<typename OtherDerived >
const CwiseBinaryOp
< std::equal_to< Scalar >
, const Derived, const
OtherDerived > 
cwiseEqual (const EIGEN_CURRENT_STORAGE_BASE_CLASS< OtherDerived > &other) const
const CwiseUnaryOp
< std::binder1st
< std::equal_to< Scalar >
>, const Derived > 
cwiseEqual (const Scalar &s) const
const CwiseUnaryOp
< internal::scalar_inverse_op
< Scalar >, const Derived > 
cwiseInverse () const
template<typename OtherDerived >
EIGEN_STRONG_INLINE const
CwiseBinaryOp
< internal::scalar_max_op
< Scalar >, const Derived,
const OtherDerived > 
cwiseMax (const EIGEN_CURRENT_STORAGE_BASE_CLASS< OtherDerived > &other) const
EIGEN_STRONG_INLINE const
CwiseBinaryOp
< internal::scalar_max_op
< Scalar >, const Derived,
const ConstantReturnType
cwiseMax (const Scalar &other) const
template<typename OtherDerived >
EIGEN_STRONG_INLINE const
CwiseBinaryOp
< internal::scalar_min_op
< Scalar >, const Derived,
const OtherDerived > 
cwiseMin (const EIGEN_CURRENT_STORAGE_BASE_CLASS< OtherDerived > &other) const
EIGEN_STRONG_INLINE const
CwiseBinaryOp
< internal::scalar_min_op
< Scalar >, const Derived,
const ConstantReturnType
cwiseMin (const Scalar &other) const
template<typename OtherDerived >
const CwiseBinaryOp
< std::not_equal_to< Scalar >
, const Derived, const
OtherDerived > 
cwiseNotEqual (const EIGEN_CURRENT_STORAGE_BASE_CLASS< OtherDerived > &other) const
template<typename OtherDerived >
EIGEN_STRONG_INLINE const
CwiseBinaryOp
< internal::scalar_quotient_op
< Scalar >, const Derived,
const OtherDerived > 
cwiseQuotient (const EIGEN_CURRENT_STORAGE_BASE_CLASS< OtherDerived > &other) const
const CwiseUnaryOp
< internal::scalar_sqrt_op
< Scalar >, const Derived > 
cwiseSqrt () const
Scalar determinant () const
DiagonalReturnType diagonal ()
ConstDiagonalReturnType diagonal () const
template<int Index>
DiagonalIndexReturnType< Index >
::Type 
diagonal ()
template<int Index>
ConstDiagonalIndexReturnType
< Index >::Type 
diagonal () const
DiagonalIndexReturnType
< DynamicIndex >::Type 
diagonal (Index index)
ConstDiagonalIndexReturnType
< DynamicIndex >::Type 
diagonal (Index index) const
Index diagonalSize () const
template<typename OtherDerived >
internal::scalar_product_traits
< typename internal::traits
< Derived >::Scalar, typename
internal::traits< OtherDerived >
::Scalar >::ReturnType 
dot (const MatrixBase< OtherDerived > &other) const
template<typename OtherDerived >
EIGEN_STRONG_INLINE const EIGEN_CWISE_PRODUCT_RETURN_TYPE (Derived, OtherDerived) cwiseProduct(const EIGEN_CURRENT_STORAGE_BASE_CLASS< OtherDerived > &other) const
EigenvaluesReturnType eigenvalues () const
 Computes the eigenvalues of a matrix.
Matrix< Scalar, 3, 1 > eulerAngles (Index a0, Index a1, Index a2) const
const
MatrixExponentialReturnValue
< Derived > 
exp () const
const ForceAlignedAccess< Derived > forceAlignedAccess () const
ForceAlignedAccess< Derived > forceAlignedAccess ()
template<bool Enable>
internal::add_const_on_value_type
< typename
internal::conditional< Enable,
ForceAlignedAccess< Derived >
, Derived & >::type >::type 
forceAlignedAccessIf () const
template<bool Enable>
internal::conditional< Enable,
ForceAlignedAccess< Derived >
, Derived & >::type 
forceAlignedAccessIf ()
const FullPivHouseholderQR
< PlainObject
fullPivHouseholderQr () const
const FullPivLU< PlainObjectfullPivLu () const
const HNormalizedReturnType hnormalized () const
const HouseholderQR< PlainObjecthouseholderQr () const
RealScalar hypotNorm () const
const ImagReturnType imag () const
NonConstImagReturnType imag ()
const internal::inverse_impl
< Derived > 
inverse () const
bool isDiagonal (const RealScalar &prec=NumTraits< Scalar >::dummy_precision()) const
bool isIdentity (const RealScalar &prec=NumTraits< Scalar >::dummy_precision()) const
bool isLowerTriangular (const RealScalar &prec=NumTraits< Scalar >::dummy_precision()) const
template<typename OtherDerived >
bool isOrthogonal (const MatrixBase< OtherDerived > &other, const RealScalar &prec=NumTraits< Scalar >::dummy_precision()) const
bool isUnitary (const RealScalar &prec=NumTraits< Scalar >::dummy_precision()) const
bool isUpperTriangular (const RealScalar &prec=NumTraits< Scalar >::dummy_precision()) const
JacobiSVD< PlainObjectjacobiSvd (unsigned int computationOptions=0) const
template<typename ProductDerived , typename Lhs , typename Rhs >
Derived & lazyAssign (const ProductBase< ProductDerived, Lhs, Rhs > &other)
template<typename MatrixPower , typename Lhs , typename Rhs >
Derived & lazyAssign (const MatrixPowerProduct< MatrixPower, Lhs, Rhs > &other)
template<typename OtherDerived >
const LazyProductReturnType
< Derived, OtherDerived >
::Type 
lazyProduct (const MatrixBase< OtherDerived > &other) const
const LDLT< PlainObjectldlt () const
const LLT< PlainObjectllt () const
const
MatrixLogarithmReturnValue
< Derived > 
log () const
template<int p>
RealScalar lpNorm () const
template<typename EssentialPart >
void makeHouseholder (EssentialPart &essential, Scalar &tau, RealScalar &beta) const
void makeHouseholderInPlace (Scalar &tau, RealScalar &beta)
MatrixBase< Derived > & matrix ()
const MatrixBase< Derived > & matrix () const
const
MatrixFunctionReturnValue
< Derived > 
matrixFunction (StemFunction f) const
NoAlias< Derived,
Eigen::MatrixBase
noalias ()
RealScalar norm () const
void normalize ()
const PlainObject normalized () const
template<typename OtherDerived >
bool operator!= (const MatrixBase< OtherDerived > &other) const
const ScalarMultipleReturnType operator* (const Scalar &scalar) const
const CwiseUnaryOp
< internal::scalar_multiple2_op
< Scalar, std::complex< Scalar >
>, const Derived > 
operator* (const std::complex< Scalar > &scalar) const
template<typename Derived >
MatrixBase< Derived >
::ScalarMultipleReturnType 
operator* (const UniformScaling< Scalar > &s) const
template<typename OtherDerived >
const ProductReturnType
< Derived, OtherDerived >
::Type 
operator* (const MatrixBase< OtherDerived > &other) const
template<typename DiagonalDerived >
const DiagonalProduct< Derived,
DiagonalDerived, OnTheRight
operator* (const DiagonalBase< DiagonalDerived > &diagonal) const
template<typename OtherDerived >
Derived & operator*= (const EigenBase< OtherDerived > &other)
template<typename OtherDerived >
Derived & operator+= (const MatrixBase< OtherDerived > &other)
const CwiseUnaryOp
< internal::scalar_opposite_op
< typename internal::traits
< Derived >::Scalar >, const
Derived > 
operator- () const
template<typename OtherDerived >
Derived & operator-= (const MatrixBase< OtherDerived > &other)
const CwiseUnaryOp
< internal::scalar_quotient1_op
< typename internal::traits
< Derived >::Scalar >, const
Derived > 
operator/ (const Scalar &scalar) const
Derived & operator= (const MatrixBase &other)
template<typename OtherDerived >
Derived & operator= (const DenseBase< OtherDerived > &other)
template<typename OtherDerived >
Derived & operator= (const EigenBase< OtherDerived > &other)
 Copies the generic expression other into *this.
template<typename OtherDerived >
Derived & operator= (const ReturnByValue< OtherDerived > &other)
template<typename OtherDerived >
bool operator== (const MatrixBase< OtherDerived > &other) const
RealScalar operatorNorm () const
 Computes the L2 operator norm.
const PartialPivLU< PlainObjectpartialPivLu () const
const MatrixPowerReturnValue
< Derived > 
pow (const RealScalar &p) const
RealReturnType real () const
NonConstRealReturnType real ()
template<unsigned int UpLo>
SelfAdjointViewReturnType
< UpLo >::Type 
selfadjointView ()
template<unsigned int UpLo>
ConstSelfAdjointViewReturnType
< UpLo >::Type 
selfadjointView () const
Derived & setIdentity ()
Derived & setIdentity (Index rows, Index cols)
 Resizes to the given size, and writes the identity expression (not necessarily square) into *this.
const
MatrixFunctionReturnValue
< Derived > 
sin () const
const
MatrixFunctionReturnValue
< Derived > 
sinh () const
const SparseView< Derived > sparseView (const Scalar &m_reference=Scalar(0), const typename NumTraits< Scalar >::Real &m_epsilon=NumTraits< Scalar >::dummy_precision()) const
const
MatrixSquareRootReturnValue
< Derived > 
sqrt () const
RealScalar squaredNorm () const
RealScalar stableNorm () const
Scalar trace () const
template<unsigned int Mode>
TriangularViewReturnType< Mode >
::Type 
triangularView ()
template<unsigned int Mode>
ConstTriangularViewReturnType
< Mode >::Type 
triangularView () const
template<typename CustomUnaryOp >
const CwiseUnaryOp
< CustomUnaryOp, const Derived > 
unaryExpr (const CustomUnaryOp &func=CustomUnaryOp()) const
 Apply a unary operator coefficient-wise.
template<typename CustomViewOp >
const CwiseUnaryView
< CustomViewOp, const Derived > 
unaryViewExpr (const CustomViewOp &func=CustomViewOp()) const
PlainObject unitOrthogonal (void) const

Static Public Member Functions

static const IdentityReturnType Identity ()
static const IdentityReturnType Identity (Index rows, Index cols)
static const BasisReturnType Unit (Index size, Index i)
static const BasisReturnType Unit (Index i)
static const BasisReturnType UnitW ()
static const BasisReturnType UnitX ()
static const BasisReturnType UnitY ()
static const BasisReturnType UnitZ ()

Protected Member Functions

 MatrixBase ()
template<typename OtherDerived >
Derived & operator+= (const ArrayBase< OtherDerived > &)
template<typename OtherDerived >
Derived & operator-= (const ArrayBase< OtherDerived > &)

Private Member Functions

 MatrixBase (int)
 MatrixBase (int, int)
template<typename OtherDerived >
 MatrixBase (const MatrixBase< OtherDerived > &)

Friends

const ScalarMultipleReturnType operator* (const Scalar &scalar, const StorageBaseType &matrix)
const CwiseUnaryOp
< internal::scalar_multiple2_op
< Scalar, std::complex< Scalar >
>, const Derived > 
operator* (const std::complex< Scalar > &scalar, const StorageBaseType &matrix)

Detailed Description

template<typename Derived>
class Eigen::MatrixBase< Derived >

Base class for all dense matrices, vectors, and expressions.

This class is the base that is inherited by all matrix, vector, and related expression types. Most of the Eigen API is contained in this class, and its base classes. Other important classes for the Eigen API are Matrix, and VectorwiseOp.

Note that some methods are defined in other modules such as the LU_Module LU module for all functions related to matrix inversions.

Template Parameters:
Derivedis the derived type, e.g. a matrix type, or an expression, etc.

When writing a function taking Eigen objects as argument, if you want your function to take as argument any matrix, vector, or expression, just let it take a MatrixBase argument. As an example, here is a function printFirstRow which, given a matrix, vector, or expression x, prints the first row of x.

    template<typename Derived>
    void printFirstRow(const Eigen::MatrixBase<Derived>& x)
    {
      cout << x.row(0) << endl;
    }

This class can be extended with the help of the plugin mechanism described on the page TopicCustomizingEigen by defining the preprocessor symbol EIGEN_MATRIXBASE_PLUGIN.

See also:
TopicClassHierarchy

Definition at line 48 of file MatrixBase.h.


Member Typedef Documentation

Definition at line 124 of file MatrixBase.h.

template<typename Derived>
typedef DenseBase<Derived> Eigen::MatrixBase< Derived >::Base

Reimplemented from Eigen::DenseBase< Derived >.

Reimplemented in Eigen::ScaledProduct< NestedProduct >, Eigen::MatrixWrapper< ExpressionType >, Eigen::CoeffBasedProduct< LhsNested, RhsNested, NestingFlags >, Eigen::Homogeneous< MatrixType, _Direction >, Eigen::ProductBase< Derived, Lhs, Rhs >, Eigen::ProductBase< GeneralProduct< Lhs, Rhs, GemmProduct >, Lhs, Rhs >, Eigen::ProductBase< SelfadjointProductMatrix< Lhs, LhsMode, false, Rhs, 0, true >, Lhs, Rhs >, Eigen::ProductBase< TriangularProduct< Mode, true, Lhs, false, Rhs, true >, Lhs, Rhs >, Eigen::ProductBase< ScaledProduct< NestedProduct >, NestedProduct::_LhsNested, NestedProduct::_RhsNested >, Eigen::ProductBase< TriangularProduct< Mode, LhsIsTriangular, Lhs, false, Rhs, false >, Lhs, Rhs >, Eigen::ProductBase< GeneralProduct< Lhs, Rhs, OuterProduct >, Lhs, Rhs >, Eigen::ProductBase< DenseTimeSparseSelfAdjointProduct< Lhs, Rhs, UpLo >, Lhs, Rhs >, Eigen::ProductBase< GeneralProduct< Lhs, Rhs, GemvProduct >, Lhs, Rhs >, Eigen::ProductBase< TriangularProduct< Mode, false, Lhs, true, Rhs, false >, Lhs, Rhs >, Eigen::ProductBase< SelfadjointProductMatrix< Lhs, 0, true, Rhs, RhsMode, false >, Lhs, Rhs >, Eigen::ProductBase< DenseTimeSparseProduct< Lhs, Rhs >, Lhs, Rhs >, Eigen::ProductBase< SparseSelfAdjointTimeDenseProduct< Lhs, Rhs, UpLo >, Lhs, Rhs >, Eigen::ProductBase< SparseTimeDenseProduct< Lhs, Rhs >, Lhs, Rhs >, Eigen::ProductBase< SelfadjointProductMatrix< Lhs, LhsMode, false, Rhs, RhsMode, false >, Lhs, Rhs >, Eigen::Minor< MatrixType >, Eigen::DiagonalProduct< MatrixType, DiagonalType, ProductOrder >, and Eigen::Flagged< ExpressionType, Added, Removed >.

Definition at line 60 of file MatrixBase.h.

template<typename Derived>
typedef Block<const CwiseNullaryOp<internal::scalar_identity_op<Scalar>, SquareMatrixType>, internal::traits<Derived>::RowsAtCompileTime, internal::traits<Derived>::ColsAtCompileTime> Eigen::MatrixBase< Derived >::BasisReturnType

Definition at line 132 of file MatrixBase.h.

template<typename Derived>
typedef Base::CoeffReturnType Eigen::MatrixBase< Derived >::CoeffReturnType

Reimplemented from Eigen::DenseBase< Derived >.

Definition at line 85 of file MatrixBase.h.

template<typename Derived>
typedef Base::ColXpr Eigen::MatrixBase< Derived >::ColXpr

Reimplemented from Eigen::DenseBase< Derived >.

Definition at line 88 of file MatrixBase.h.

template<typename Derived>
typedef internal::conditional<NumTraits<Scalar>::IsComplex, const CwiseUnaryOp<internal::scalar_conjugate_op<Scalar>, const Derived>, const Derived& >::type Eigen::MatrixBase< Derived >::ConjugateReturnType

Definition at line 24 of file MatrixBase.h.

template<typename Derived>
typedef CwiseNullaryOp<internal::scalar_constant_op<Scalar>,Derived> Eigen::MatrixBase< Derived >::ConstantReturnType

Reimplemented from Eigen::DenseBase< Derived >.

Definition at line 119 of file MatrixBase.h.

template<typename Derived>
typedef internal::add_const<Diagonal<const Derived> >::type Eigen::MatrixBase< Derived >::ConstDiagonalReturnType

Definition at line 218 of file MatrixBase.h.

template<typename Derived>
typedef Block<const Derived, internal::traits<Derived>::ColsAtCompileTime==1 ? SizeMinusOne : 1, internal::traits<Derived>::ColsAtCompileTime==1 ? 1 : SizeMinusOne> Eigen::MatrixBase< Derived >::ConstStartMinusOne

Definition at line 421 of file MatrixBase.h.

template<typename Derived>
typedef Base::ConstTransposeReturnType Eigen::MatrixBase< Derived >::ConstTransposeReturnType

Reimplemented from Eigen::DenseBase< Derived >.

Definition at line 86 of file MatrixBase.h.

template<typename Derived>
typedef Diagonal<Derived> Eigen::MatrixBase< Derived >::DiagonalReturnType

Definition at line 216 of file MatrixBase.h.

template<typename Derived>
typedef Matrix<std::complex<RealScalar>, internal::traits<Derived>::ColsAtCompileTime, 1, ColMajor> Eigen::MatrixBase< Derived >::EigenvaluesReturnType

Reimplemented from Eigen::DenseBase< Derived >.

Definition at line 126 of file MatrixBase.h.

template<typename Derived>
typedef CwiseUnaryOp<internal::scalar_quotient1_op<typename internal::traits<Derived>::Scalar>, const ConstStartMinusOne > Eigen::MatrixBase< Derived >::HNormalizedReturnType

Definition at line 423 of file MatrixBase.h.

template<typename Derived>
typedef CwiseNullaryOp<internal::scalar_identity_op<Scalar>,Derived> Eigen::MatrixBase< Derived >::IdentityReturnType

Definition at line 128 of file MatrixBase.h.

template<typename Derived>
typedef CwiseUnaryOp<internal::scalar_imag_op<Scalar>, const Derived> Eigen::MatrixBase< Derived >::ImagReturnType

Definition at line 36 of file MatrixBase.h.

template<typename Derived>
typedef internal::traits<Derived>::Index Eigen::MatrixBase< Derived >::Index

The type of indices.

To change this, #define the preprocessor symbol EIGEN_DEFAULT_DENSE_INDEX_TYPE.

See also:
TopicPreprocessorDirectives.

Reimplemented from Eigen::DenseBase< Derived >.

Definition at line 55 of file MatrixBase.h.

template<typename Derived>
typedef CwiseUnaryView<internal::scalar_imag_ref_op<Scalar>, Derived> Eigen::MatrixBase< Derived >::NonConstImagReturnType

Definition at line 38 of file MatrixBase.h.

template<typename Derived>
typedef internal::conditional<NumTraits<Scalar>::IsComplex, CwiseUnaryView<internal::scalar_real_ref_op<Scalar>, Derived>, Derived& >::type Eigen::MatrixBase< Derived >::NonConstRealReturnType

Definition at line 34 of file MatrixBase.h.

template<typename Derived>
typedef internal::packet_traits<Scalar>::type Eigen::MatrixBase< Derived >::PacketScalar

Reimplemented from Eigen::DenseBase< Derived >.

Definition at line 57 of file MatrixBase.h.

template<typename Derived>
typedef Matrix<typename internal::traits<Derived>::Scalar, internal::traits<Derived>::RowsAtCompileTime, internal::traits<Derived>::ColsAtCompileTime, AutoAlign | (internal::traits<Derived>::Flags&RowMajorBit ? RowMajor : ColMajor), internal::traits<Derived>::MaxRowsAtCompileTime, internal::traits<Derived>::MaxColsAtCompileTime > Eigen::MatrixBase< Derived >::PlainObject

The plain matrix type corresponding to this expression.

This is not necessarily exactly the return type of eval(). In the case of plain matrices, the return type of eval() is a const reference to a matrix, not a matrix! It is however guaranteed that the return type of eval() is either PlainObject or const PlainObject&.

Reimplemented in Eigen::ScaledProduct< NestedProduct >, Eigen::CoeffBasedProduct< LhsNested, RhsNested, NestingFlags >, Eigen::ProductBase< Derived, Lhs, Rhs >, Eigen::ProductBase< GeneralProduct< Lhs, Rhs, GemmProduct >, Lhs, Rhs >, Eigen::ProductBase< SelfadjointProductMatrix< Lhs, LhsMode, false, Rhs, 0, true >, Lhs, Rhs >, Eigen::ProductBase< TriangularProduct< Mode, true, Lhs, false, Rhs, true >, Lhs, Rhs >, Eigen::ProductBase< ScaledProduct< NestedProduct >, NestedProduct::_LhsNested, NestedProduct::_RhsNested >, Eigen::ProductBase< TriangularProduct< Mode, LhsIsTriangular, Lhs, false, Rhs, false >, Lhs, Rhs >, Eigen::ProductBase< GeneralProduct< Lhs, Rhs, OuterProduct >, Lhs, Rhs >, Eigen::ProductBase< DenseTimeSparseSelfAdjointProduct< Lhs, Rhs, UpLo >, Lhs, Rhs >, Eigen::ProductBase< GeneralProduct< Lhs, Rhs, GemvProduct >, Lhs, Rhs >, Eigen::ProductBase< TriangularProduct< Mode, false, Lhs, true, Rhs, false >, Lhs, Rhs >, Eigen::ProductBase< SelfadjointProductMatrix< Lhs, 0, true, Rhs, RhsMode, false >, Lhs, Rhs >, Eigen::ProductBase< DenseTimeSparseProduct< Lhs, Rhs >, Lhs, Rhs >, Eigen::ProductBase< SparseSelfAdjointTimeDenseProduct< Lhs, Rhs, UpLo >, Lhs, Rhs >, Eigen::ProductBase< SparseTimeDenseProduct< Lhs, Rhs >, Lhs, Rhs >, and Eigen::ProductBase< SelfadjointProductMatrix< Lhs, LhsMode, false, Rhs, RhsMode, false >, Lhs, Rhs >.

Definition at line 115 of file MatrixBase.h.

template<typename Derived>
typedef internal::conditional<NumTraits<Scalar>::IsComplex, const CwiseUnaryOp<internal::scalar_real_op<Scalar>, const Derived>, const Derived& >::type Eigen::MatrixBase< Derived >::RealReturnType

Definition at line 29 of file MatrixBase.h.

template<typename Derived>
typedef NumTraits<Scalar>::Real Eigen::MatrixBase< Derived >::RealScalar

Reimplemented from Eigen::DenseBase< Derived >.

Definition at line 58 of file MatrixBase.h.

template<typename Derived>
typedef Base::RowXpr Eigen::MatrixBase< Derived >::RowXpr

Reimplemented from Eigen::DenseBase< Derived >.

Definition at line 87 of file MatrixBase.h.

template<typename Derived>
typedef internal::traits<Derived>::Scalar Eigen::MatrixBase< Derived >::Scalar

Reimplemented from Eigen::DenseBase< Derived >.

Reimplemented in Eigen::ScaledProduct< NestedProduct >.

Definition at line 56 of file MatrixBase.h.

template<typename Derived>
typedef CwiseUnaryOp<internal::scalar_multiple_op<Scalar>, const Derived> Eigen::MatrixBase< Derived >::ScalarMultipleReturnType

Definition at line 17 of file MatrixBase.h.

template<typename Derived>
typedef CwiseUnaryOp<internal::scalar_quotient1_op<Scalar>, const Derived> Eigen::MatrixBase< Derived >::ScalarQuotient1ReturnType

Definition at line 19 of file MatrixBase.h.

type of the equivalent square matrix

Definition at line 96 of file MatrixBase.h.

template<typename Derived>
typedef internal::stem_function<Scalar>::type Eigen::MatrixBase< Derived >::StemFunction

Definition at line 451 of file MatrixBase.h.

template<typename Derived>
typedef MatrixBase Eigen::MatrixBase< Derived >::StorageBaseType

Definition at line 53 of file MatrixBase.h.

template<typename Derived>
typedef internal::traits<Derived>::StorageKind Eigen::MatrixBase< Derived >::StorageKind

Reimplemented from Eigen::DenseBase< Derived >.

Definition at line 54 of file MatrixBase.h.


Member Enumeration Documentation

template<typename Derived>
anonymous enum
Enumerator:
SizeMinusOne 

Definition at line 416 of file MatrixBase.h.


Constructor & Destructor Documentation

template<typename Derived>
Eigen::MatrixBase< Derived >::MatrixBase ( ) [inline, protected]

Definition at line 498 of file MatrixBase.h.

template<typename Derived>
Eigen::MatrixBase< Derived >::MatrixBase ( int  ) [explicit, private]
template<typename Derived>
Eigen::MatrixBase< Derived >::MatrixBase ( int  ,
int   
) [private]
template<typename Derived>
template<typename OtherDerived >
Eigen::MatrixBase< Derived >::MatrixBase ( const MatrixBase< OtherDerived > &  ) [explicit, private]

Member Function Documentation

template<typename Derived >
const MatrixBase< Derived >::AdjointReturnType Eigen::MatrixBase< Derived >::adjoint ( ) const [inline]
Returns:
an expression of the adjoint (i.e. conjugate transpose) of *this.

Example:

Output:

Warning:
If you want to replace a matrix by its own adjoint, do NOT do this:
 m = m.adjoint(); // bug!!! caused by aliasing effect
Instead, use the adjointInPlace() method:
 m.adjointInPlace();
which gives Eigen good opportunities for optimization, or alternatively you can also do:
 m = m.adjoint().eval();
See also:
adjointInPlace(), transpose(), conjugate(), class Transpose, class internal::scalar_conjugate_op

Definition at line 237 of file Transpose.h.

template<typename Derived >
void Eigen::MatrixBase< Derived >::adjointInPlace ( ) [inline]

This is the "in place" version of adjoint(): it replaces *this by its own transpose. Thus, doing

 m.adjointInPlace();

has the same effect on m as doing

 m = m.adjoint().eval();

and is faster and also safer because in the latter line of code, forgetting the eval() results in a bug caused by aliasing.

Notice however that this method is only useful if you want to replace a matrix by its own adjoint. If you just need the adjoint of a matrix, use adjoint().

Note:
if the matrix is not square, then *this must be a resizable matrix.
See also:
transpose(), adjoint(), transposeInPlace()

Definition at line 321 of file Transpose.h.

template<typename Derived >
template<typename EssentialPart >
void Eigen::MatrixBase< Derived >::applyHouseholderOnTheLeft ( const EssentialPart &  essential,
const Scalar tau,
Scalar workspace 
)

Apply the elementary reflector H given by $ H = I - tau v v^*$ with $ v^T = [1 essential^T] $ from the left to a vector or matrix.

On input:

Parameters:
essentialthe essential part of the vector v
tauthe scaling factor of the Householder transformation
workspacea pointer to working space with at least this->cols() * essential.size() entries
See also:
MatrixBase::makeHouseholder(), MatrixBase::makeHouseholderInPlace(), MatrixBase::applyHouseholderOnTheRight()

Definition at line 112 of file Householder.h.

template<typename Derived >
template<typename EssentialPart >
void Eigen::MatrixBase< Derived >::applyHouseholderOnTheRight ( const EssentialPart &  essential,
const Scalar tau,
Scalar workspace 
)

Apply the elementary reflector H given by $ H = I - tau v v^*$ with $ v^T = [1 essential^T] $ from the right to a vector or matrix.

On input:

Parameters:
essentialthe essential part of the vector v
tauthe scaling factor of the Householder transformation
workspacea pointer to working space with at least this->cols() * essential.size() entries
See also:
MatrixBase::makeHouseholder(), MatrixBase::makeHouseholderInPlace(), MatrixBase::applyHouseholderOnTheLeft()

Definition at line 149 of file Householder.h.

template<typename Derived >
template<typename OtherDerived >
void Eigen::MatrixBase< Derived >::applyOnTheLeft ( const EigenBase< OtherDerived > &  other) [inline]

replaces *this by *this * other.

Definition at line 154 of file EigenBase.h.

template<typename Derived >
template<typename OtherScalar >
void Eigen::MatrixBase< Derived >::applyOnTheLeft ( Index  p,
Index  q,
const JacobiRotation< OtherScalar > &  j 
) [inline]

Applies the rotation in the plane j to the rows p and q of *this, i.e., it computes B = J * B, with $ B = \left ( \begin{array}{cc} \text{*this.row}(p) \\ \text{*this.row}(q) \end{array} \right ) $.

See also:
class JacobiRotation, MatrixBase::applyOnTheRight(), internal::apply_rotation_in_the_plane()

Definition at line 277 of file Jacobi.h.

template<typename Derived >
template<typename OtherDerived >
void Eigen::MatrixBase< Derived >::applyOnTheRight ( const EigenBase< OtherDerived > &  other) [inline]

replaces *this by *this * other. It is equivalent to MatrixBase::operator*=().

Definition at line 146 of file EigenBase.h.

template<typename Derived >
template<typename OtherScalar >
void Eigen::MatrixBase< Derived >::applyOnTheRight ( Index  p,
Index  q,
const JacobiRotation< OtherScalar > &  j 
) [inline]

Applies the rotation in the plane j to the columns p and q of *this, i.e., it computes B = B * J with $ B = \left ( \begin{array}{cc} \text{*this.col}(p) & \text{*this.col}(q) \end{array} \right ) $.

See also:
class JacobiRotation, MatrixBase::applyOnTheLeft(), internal::apply_rotation_in_the_plane()

Definition at line 292 of file Jacobi.h.

template<typename Derived>
ArrayWrapper<Derived> Eigen::MatrixBase< Derived >::array ( ) [inline]
Returns:
an Array expression of this matrix
See also:
ArrayBase::matrix()

Definition at line 322 of file MatrixBase.h.

template<typename Derived>
const ArrayWrapper<const Derived> Eigen::MatrixBase< Derived >::array ( ) const [inline]

Definition at line 323 of file MatrixBase.h.

template<typename Derived >
const DiagonalWrapper< const Derived > Eigen::MatrixBase< Derived >::asDiagonal ( ) const [inline]
Returns:
a pseudo-expression of a diagonal matrix with *this as vector of diagonal coefficients

Example:

Output:

See also:
class DiagonalWrapper, class DiagonalMatrix, diagonal(), isDiagonal()

Definition at line 278 of file DiagonalMatrix.h.

template<typename Derived >
const PermutationWrapper< const Derived > Eigen::MatrixBase< Derived >::asPermutation ( ) const

Definition at line 681 of file PermutationMatrix.h.

template<typename Derived>
template<typename CustomBinaryOp , typename OtherDerived >
EIGEN_STRONG_INLINE const CwiseBinaryOp<CustomBinaryOp, const Derived, const OtherDerived> Eigen::MatrixBase< Derived >::binaryExpr ( const EIGEN_CURRENT_STORAGE_BASE_CLASS< OtherDerived > &  other,
const CustomBinaryOp &  func = CustomBinaryOp() 
) const [inline]
Returns:
an expression of the difference of *this and other
Note:
If you want to substract a given scalar from all coefficients, see Cwise::operator-().
See also:
class CwiseBinaryOp, operator-=()
Returns:
an expression of the sum of *this and other
Note:
If you want to add a given scalar to all coefficients, see Cwise::operator+().
See also:
class CwiseBinaryOp, operator+=()
Returns:
an expression of a custom coefficient-wise operator func of *this and other

The template parameter CustomBinaryOp is the type of the functor of the custom operator (see class CwiseBinaryOp for an example)

Here is an example illustrating the use of custom functors:

Output:

See also:
class CwiseBinaryOp, operator+(), operator-(), cwiseProduct()

Definition at line 43 of file MatrixBase.h.

template<typename Derived >
NumTraits< typename internal::traits< Derived >::Scalar >::Real Eigen::MatrixBase< Derived >::blueNorm ( ) const [inline]
Returns:
the l2 norm of *this using the Blue's algorithm. A Portable Fortran Program to Find the Euclidean Norm of a Vector, ACM TOMS, Vol 4, Issue 1, 1978.

For architecture/scalar types without vectorization, this version is much faster than stableNorm(). Otherwise the stableNorm() is faster.

See also:
norm(), stableNorm(), hypotNorm()

Definition at line 171 of file StableNorm.h.

template<typename Derived>
template<typename NewType >
internal::cast_return_type<Derived,const CwiseUnaryOp<internal::scalar_cast_op<typename internal::traits<Derived>::Scalar, NewType>, const Derived> >::type Eigen::MatrixBase< Derived >::cast ( ) const [inline]
Returns:
an expression of *this with the Scalar type casted to NewScalar.

The template parameter NewScalar is the type we are casting the scalars to.

See also:
class CwiseUnaryOp

Definition at line 93 of file MatrixBase.h.

template<typename Derived >
const ColPivHouseholderQR< typename MatrixBase< Derived >::PlainObject > Eigen::MatrixBase< Derived >::colPivHouseholderQr ( ) const
Returns:
the column-pivoting Householder QR decomposition of *this.
See also:
class ColPivHouseholderQR

Definition at line 572 of file ColPivHouseholderQR.h.

template<typename Derived >
template<typename ResultType >
void Eigen::MatrixBase< Derived >::computeInverseAndDetWithCheck ( ResultType &  inverse,
typename ResultType::Scalar &  determinant,
bool &  invertible,
const RealScalar absDeterminantThreshold = NumTraits<Scalar>::dummy_precision() 
) const [inline]

Computation of matrix inverse and determinant, with invertibility check.

This is only for fixed-size square matrices of size up to 4x4.

Parameters:
inverseReference to the matrix in which to store the inverse.
determinantReference to the variable in which to store the determinant.
invertibleReference to the bool variable in which to store whether the matrix is invertible.
absDeterminantThresholdOptional parameter controlling the invertibility check. The matrix will be declared invertible if the absolute value of its determinant is greater than this threshold.

Example:

Output:

See also:
inverse(), computeInverseWithCheck()

Definition at line 347 of file Inverse.h.

template<typename Derived >
template<typename ResultType >
void Eigen::MatrixBase< Derived >::computeInverseWithCheck ( ResultType &  inverse,
bool &  invertible,
const RealScalar absDeterminantThreshold = NumTraits<Scalar>::dummy_precision() 
) const [inline]

Computation of matrix inverse, with invertibility check.

This is only for fixed-size square matrices of size up to 4x4.

Parameters:
inverseReference to the matrix in which to store the inverse.
invertibleReference to the bool variable in which to store whether the matrix is invertible.
absDeterminantThresholdOptional parameter controlling the invertibility check. The matrix will be declared invertible if the absolute value of its determinant is greater than this threshold.

Example:

Output:

See also:
inverse(), computeInverseAndDetWithCheck()

Definition at line 386 of file Inverse.h.

template<typename Derived>
ConjugateReturnType Eigen::MatrixBase< Derived >::conjugate ( ) const [inline]
Returns:
an expression of the complex conjugate of *this.
See also:
adjoint()

Definition at line 102 of file MatrixBase.h.

template<typename Derived >
const MatrixFunctionReturnValue< Derived > Eigen::MatrixBase< Derived >::cos ( ) const

Definition at line 566 of file MatrixFunction.h.

template<typename Derived >
const MatrixFunctionReturnValue< Derived > Eigen::MatrixBase< Derived >::cosh ( ) const

Definition at line 582 of file MatrixFunction.h.

template<typename Derived >
template<typename OtherDerived >
MatrixBase< Derived >::template cross_product_return_type< OtherDerived >::type Eigen::MatrixBase< Derived >::cross ( const MatrixBase< OtherDerived > &  other) const [inline]
Returns:
the cross product of *this and other

Here is a very good explanation of cross-product: http://xkcd.com/199/

See also:
MatrixBase::cross3()

Definition at line 26 of file OrthoMethods.h.

template<typename Derived >
template<typename OtherDerived >
MatrixBase< Derived >::PlainObject Eigen::MatrixBase< Derived >::cross3 ( const MatrixBase< OtherDerived > &  other) const [inline]
Returns:
the cross product of *this and other using only the x, y, and z coefficients

The size of *this and other must be four. This function is especially useful when using 4D vectors instead of 3D ones to get advantage of SSE/AltiVec vectorization.

See also:
MatrixBase::cross()

Definition at line 74 of file OrthoMethods.h.

template<typename Derived>
EIGEN_STRONG_INLINE const CwiseUnaryOp<internal::scalar_abs_op<Scalar>, const Derived> Eigen::MatrixBase< Derived >::cwiseAbs ( ) const [inline]
Returns:
an expression of the coefficient-wise absolute value of *this

Example:

Output:

See also:
cwiseAbs2()

Definition at line 22 of file MatrixBase.h.

template<typename Derived>
EIGEN_STRONG_INLINE const CwiseUnaryOp<internal::scalar_abs2_op<Scalar>, const Derived> Eigen::MatrixBase< Derived >::cwiseAbs2 ( ) const [inline]
Returns:
an expression of the coefficient-wise squared absolute value of *this

Example:

Output:

See also:
cwiseAbs()

Definition at line 32 of file MatrixBase.h.

template<typename Derived>
template<typename OtherDerived >
const CwiseBinaryOp<std::equal_to<Scalar>, const Derived, const OtherDerived> Eigen::MatrixBase< Derived >::cwiseEqual ( const EIGEN_CURRENT_STORAGE_BASE_CLASS< OtherDerived > &  other) const [inline]
Returns:
an expression of the coefficient-wise == operator of *this and other
Warning:
this performs an exact comparison, which is generally a bad idea with floating-point types. In order to check for equality between two vectors or matrices with floating-point coefficients, it is generally a far better idea to use a fuzzy comparison as provided by isApprox() and isMuchSmallerThan().

Example:

Output:

See also:
cwiseNotEqual(), isApprox(), isMuchSmallerThan()

Definition at line 42 of file MatrixBase.h.

template<typename Derived>
const CwiseUnaryOp<std::binder1st<std::equal_to<Scalar> >, const Derived> Eigen::MatrixBase< Derived >::cwiseEqual ( const Scalar s) const [inline]
Returns:
an expression of the coefficient-wise == operator of *this and a scalar s
Warning:
this performs an exact comparison, which is generally a bad idea with floating-point types. In order to check for equality between two vectors or matrices with floating-point coefficients, it is generally a far better idea to use a fuzzy comparison as provided by isApprox() and isMuchSmallerThan().
See also:
cwiseEqual(const MatrixBase<OtherDerived> &) const

Definition at line 64 of file MatrixBase.h.

template<typename Derived>
const CwiseUnaryOp<internal::scalar_inverse_op<Scalar>, const Derived> Eigen::MatrixBase< Derived >::cwiseInverse ( ) const [inline]
Returns:
an expression of the coefficient-wise inverse of *this.

Example:

Output:

See also:
cwiseProduct()

Definition at line 52 of file MatrixBase.h.

template<typename Derived>
template<typename OtherDerived >
EIGEN_STRONG_INLINE const CwiseBinaryOp<internal::scalar_max_op<Scalar>, const Derived, const OtherDerived> Eigen::MatrixBase< Derived >::cwiseMax ( const EIGEN_CURRENT_STORAGE_BASE_CLASS< OtherDerived > &  other) const [inline]
Returns:
an expression of the coefficient-wise max of *this and other

Example:

Output:

See also:
class CwiseBinaryOp, min()

Definition at line 99 of file MatrixBase.h.

template<typename Derived>
EIGEN_STRONG_INLINE const CwiseBinaryOp<internal::scalar_max_op<Scalar>, const Derived, const ConstantReturnType> Eigen::MatrixBase< Derived >::cwiseMax ( const Scalar other) const [inline]
Returns:
an expression of the coefficient-wise max of *this and scalar other
See also:
class CwiseBinaryOp, min()

Definition at line 109 of file MatrixBase.h.

template<typename Derived>
template<typename OtherDerived >
EIGEN_STRONG_INLINE const CwiseBinaryOp<internal::scalar_min_op<Scalar>, const Derived, const OtherDerived> Eigen::MatrixBase< Derived >::cwiseMin ( const EIGEN_CURRENT_STORAGE_BASE_CLASS< OtherDerived > &  other) const [inline]
Returns:
an expression of the coefficient-wise min of *this and other

Example:

Output:

See also:
class CwiseBinaryOp, max()

Definition at line 75 of file MatrixBase.h.

template<typename Derived>
EIGEN_STRONG_INLINE const CwiseBinaryOp<internal::scalar_min_op<Scalar>, const Derived, const ConstantReturnType> Eigen::MatrixBase< Derived >::cwiseMin ( const Scalar other) const [inline]
Returns:
an expression of the coefficient-wise min of *this and scalar other
See also:
class CwiseBinaryOp, min()

Definition at line 85 of file MatrixBase.h.

template<typename Derived>
template<typename OtherDerived >
const CwiseBinaryOp<std::not_equal_to<Scalar>, const Derived, const OtherDerived> Eigen::MatrixBase< Derived >::cwiseNotEqual ( const EIGEN_CURRENT_STORAGE_BASE_CLASS< OtherDerived > &  other) const [inline]
Returns:
an expression of the coefficient-wise != operator of *this and other
Warning:
this performs an exact comparison, which is generally a bad idea with floating-point types. In order to check for equality between two vectors or matrices with floating-point coefficients, it is generally a far better idea to use a fuzzy comparison as provided by isApprox() and isMuchSmallerThan().

Example:

Output:

See also:
cwiseEqual(), isApprox(), isMuchSmallerThan()

Definition at line 61 of file MatrixBase.h.

template<typename Derived>
template<typename OtherDerived >
EIGEN_STRONG_INLINE const CwiseBinaryOp<internal::scalar_quotient_op<Scalar>, const Derived, const OtherDerived> Eigen::MatrixBase< Derived >::cwiseQuotient ( const EIGEN_CURRENT_STORAGE_BASE_CLASS< OtherDerived > &  other) const [inline]
Returns:
an expression of the coefficient-wise quotient of *this and other

Example:

Output:

See also:
class CwiseBinaryOp, cwiseProduct(), cwiseInverse()

Definition at line 124 of file MatrixBase.h.

template<typename Derived>
const CwiseUnaryOp<internal::scalar_sqrt_op<Scalar>, const Derived> Eigen::MatrixBase< Derived >::cwiseSqrt ( ) const [inline]
Returns:
an expression of the coefficient-wise square root of *this.

Example:

Output:

See also:
cwisePow(), cwiseSquare()

Definition at line 42 of file MatrixBase.h.

template<typename Derived >
internal::traits< Derived >::Scalar Eigen::MatrixBase< Derived >::determinant ( ) const [inline]
Returns:
the determinant of this matrix

Definition at line 92 of file Determinant.h.

template<typename Derived >
MatrixBase< Derived >::template DiagonalIndexReturnType< Index >::Type Eigen::MatrixBase< Derived >::diagonal ( ) [inline]
Returns:
an expression of the main diagonal of the matrix *this

*this is not required to be square.

Example:

Output:

See also:
class Diagonal
Returns:
an expression of the DiagIndex-th sub or super diagonal of the matrix *this

*this is not required to be square.

The template parameter DiagIndex represent a super diagonal if DiagIndex > 0 and a sub diagonal otherwise. DiagIndex == 0 is equivalent to the main diagonal.

Example:

Output:

See also:
MatrixBase::diagonal(), class Diagonal

Definition at line 168 of file Diagonal.h.

template<typename Derived >
MatrixBase< Derived >::template ConstDiagonalIndexReturnType< Index >::Type Eigen::MatrixBase< Derived >::diagonal ( ) const [inline]

This is the const version of diagonal().

This is the const version of diagonal<int>().

Reimplemented in Eigen::CoeffBasedProduct< LhsNested, RhsNested, NestingFlags >, Eigen::CoeffBasedProduct< LhsNested, RhsNested, NestingFlags >, Eigen::ProductBase< Derived, Lhs, Rhs >, Eigen::ProductBase< GeneralProduct< Lhs, Rhs, GemmProduct >, Lhs, Rhs >, Eigen::ProductBase< SelfadjointProductMatrix< Lhs, LhsMode, false, Rhs, 0, true >, Lhs, Rhs >, Eigen::ProductBase< TriangularProduct< Mode, true, Lhs, false, Rhs, true >, Lhs, Rhs >, Eigen::ProductBase< ScaledProduct< NestedProduct >, NestedProduct::_LhsNested, NestedProduct::_RhsNested >, Eigen::ProductBase< TriangularProduct< Mode, LhsIsTriangular, Lhs, false, Rhs, false >, Lhs, Rhs >, Eigen::ProductBase< GeneralProduct< Lhs, Rhs, OuterProduct >, Lhs, Rhs >, Eigen::ProductBase< DenseTimeSparseSelfAdjointProduct< Lhs, Rhs, UpLo >, Lhs, Rhs >, Eigen::ProductBase< GeneralProduct< Lhs, Rhs, GemvProduct >, Lhs, Rhs >, Eigen::ProductBase< TriangularProduct< Mode, false, Lhs, true, Rhs, false >, Lhs, Rhs >, Eigen::ProductBase< SelfadjointProductMatrix< Lhs, 0, true, Rhs, RhsMode, false >, Lhs, Rhs >, Eigen::ProductBase< DenseTimeSparseProduct< Lhs, Rhs >, Lhs, Rhs >, Eigen::ProductBase< SparseSelfAdjointTimeDenseProduct< Lhs, Rhs, UpLo >, Lhs, Rhs >, Eigen::ProductBase< SparseTimeDenseProduct< Lhs, Rhs >, Lhs, Rhs >, Eigen::ProductBase< SelfadjointProductMatrix< Lhs, LhsMode, false, Rhs, RhsMode, false >, Lhs, Rhs >, Eigen::ProductBase< Derived, Lhs, Rhs >, Eigen::ProductBase< GeneralProduct< Lhs, Rhs, GemmProduct >, Lhs, Rhs >, Eigen::ProductBase< SelfadjointProductMatrix< Lhs, LhsMode, false, Rhs, 0, true >, Lhs, Rhs >, Eigen::ProductBase< TriangularProduct< Mode, true, Lhs, false, Rhs, true >, Lhs, Rhs >, Eigen::ProductBase< ScaledProduct< NestedProduct >, NestedProduct::_LhsNested, NestedProduct::_RhsNested >, Eigen::ProductBase< TriangularProduct< Mode, LhsIsTriangular, Lhs, false, Rhs, false >, Lhs, Rhs >, Eigen::ProductBase< GeneralProduct< Lhs, Rhs, OuterProduct >, Lhs, Rhs >, Eigen::ProductBase< DenseTimeSparseSelfAdjointProduct< Lhs, Rhs, UpLo >, Lhs, Rhs >, Eigen::ProductBase< GeneralProduct< Lhs, Rhs, GemvProduct >, Lhs, Rhs >, Eigen::ProductBase< TriangularProduct< Mode, false, Lhs, true, Rhs, false >, Lhs, Rhs >, Eigen::ProductBase< SelfadjointProductMatrix< Lhs, 0, true, Rhs, RhsMode, false >, Lhs, Rhs >, Eigen::ProductBase< DenseTimeSparseProduct< Lhs, Rhs >, Lhs, Rhs >, Eigen::ProductBase< SparseSelfAdjointTimeDenseProduct< Lhs, Rhs, UpLo >, Lhs, Rhs >, Eigen::ProductBase< SparseTimeDenseProduct< Lhs, Rhs >, Lhs, Rhs >, and Eigen::ProductBase< SelfadjointProductMatrix< Lhs, LhsMode, false, Rhs, RhsMode, false >, Lhs, Rhs >.

Definition at line 176 of file Diagonal.h.

template<typename Derived>
template<int Index>
DiagonalIndexReturnType<Index>::Type Eigen::MatrixBase< Derived >::diagonal ( )
template<typename Derived>
template<int Index>
ConstDiagonalIndexReturnType<Index>::Type Eigen::MatrixBase< Derived >::diagonal ( ) const

Reimplemented in Eigen::CoeffBasedProduct< LhsNested, RhsNested, NestingFlags >, Eigen::CoeffBasedProduct< LhsNested, RhsNested, NestingFlags >, Eigen::ProductBase< Derived, Lhs, Rhs >, Eigen::ProductBase< GeneralProduct< Lhs, Rhs, GemmProduct >, Lhs, Rhs >, Eigen::ProductBase< SelfadjointProductMatrix< Lhs, LhsMode, false, Rhs, 0, true >, Lhs, Rhs >, Eigen::ProductBase< TriangularProduct< Mode, true, Lhs, false, Rhs, true >, Lhs, Rhs >, Eigen::ProductBase< ScaledProduct< NestedProduct >, NestedProduct::_LhsNested, NestedProduct::_RhsNested >, Eigen::ProductBase< TriangularProduct< Mode, LhsIsTriangular, Lhs, false, Rhs, false >, Lhs, Rhs >, Eigen::ProductBase< GeneralProduct< Lhs, Rhs, OuterProduct >, Lhs, Rhs >, Eigen::ProductBase< DenseTimeSparseSelfAdjointProduct< Lhs, Rhs, UpLo >, Lhs, Rhs >, Eigen::ProductBase< GeneralProduct< Lhs, Rhs, GemvProduct >, Lhs, Rhs >, Eigen::ProductBase< TriangularProduct< Mode, false, Lhs, true, Rhs, false >, Lhs, Rhs >, Eigen::ProductBase< SelfadjointProductMatrix< Lhs, 0, true, Rhs, RhsMode, false >, Lhs, Rhs >, Eigen::ProductBase< DenseTimeSparseProduct< Lhs, Rhs >, Lhs, Rhs >, Eigen::ProductBase< SparseSelfAdjointTimeDenseProduct< Lhs, Rhs, UpLo >, Lhs, Rhs >, Eigen::ProductBase< SparseTimeDenseProduct< Lhs, Rhs >, Lhs, Rhs >, Eigen::ProductBase< SelfadjointProductMatrix< Lhs, LhsMode, false, Rhs, RhsMode, false >, Lhs, Rhs >, Eigen::ProductBase< Derived, Lhs, Rhs >, Eigen::ProductBase< GeneralProduct< Lhs, Rhs, GemmProduct >, Lhs, Rhs >, Eigen::ProductBase< SelfadjointProductMatrix< Lhs, LhsMode, false, Rhs, 0, true >, Lhs, Rhs >, Eigen::ProductBase< TriangularProduct< Mode, true, Lhs, false, Rhs, true >, Lhs, Rhs >, Eigen::ProductBase< ScaledProduct< NestedProduct >, NestedProduct::_LhsNested, NestedProduct::_RhsNested >, Eigen::ProductBase< TriangularProduct< Mode, LhsIsTriangular, Lhs, false, Rhs, false >, Lhs, Rhs >, Eigen::ProductBase< GeneralProduct< Lhs, Rhs, OuterProduct >, Lhs, Rhs >, Eigen::ProductBase< DenseTimeSparseSelfAdjointProduct< Lhs, Rhs, UpLo >, Lhs, Rhs >, Eigen::ProductBase< GeneralProduct< Lhs, Rhs, GemvProduct >, Lhs, Rhs >, Eigen::ProductBase< TriangularProduct< Mode, false, Lhs, true, Rhs, false >, Lhs, Rhs >, Eigen::ProductBase< SelfadjointProductMatrix< Lhs, 0, true, Rhs, RhsMode, false >, Lhs, Rhs >, Eigen::ProductBase< DenseTimeSparseProduct< Lhs, Rhs >, Lhs, Rhs >, Eigen::ProductBase< SparseSelfAdjointTimeDenseProduct< Lhs, Rhs, UpLo >, Lhs, Rhs >, Eigen::ProductBase< SparseTimeDenseProduct< Lhs, Rhs >, Lhs, Rhs >, and Eigen::ProductBase< SelfadjointProductMatrix< Lhs, LhsMode, false, Rhs, RhsMode, false >, Lhs, Rhs >.

template<typename Derived >
MatrixBase< Derived >::template DiagonalIndexReturnType< DynamicIndex >::Type Eigen::MatrixBase< Derived >::diagonal ( Index  index) [inline]
Returns:
an expression of the DiagIndex-th sub or super diagonal of the matrix *this

*this is not required to be square.

The template parameter DiagIndex represent a super diagonal if DiagIndex > 0 and a sub diagonal otherwise. DiagIndex == 0 is equivalent to the main diagonal.

Example:

Output:

See also:
MatrixBase::diagonal(), class Diagonal

Definition at line 194 of file Diagonal.h.

template<typename Derived >
MatrixBase< Derived >::template ConstDiagonalIndexReturnType< DynamicIndex >::Type Eigen::MatrixBase< Derived >::diagonal ( Index  index) const [inline]
template<typename Derived>
Index Eigen::MatrixBase< Derived >::diagonalSize ( ) const [inline]
Returns:
the size of the main diagonal, which is min(rows(),cols()).
See also:
rows(), cols(), SizeAtCompileTime.

Definition at line 101 of file MatrixBase.h.

template<typename Derived >
template<typename OtherDerived >
internal::scalar_product_traits< typename internal::traits< Derived >::Scalar, typename internal::traits< OtherDerived >::Scalar >::ReturnType Eigen::MatrixBase< Derived >::dot ( const MatrixBase< OtherDerived > &  other) const
Returns:
the dot product of *this with other.
Note:
If the scalar type is complex numbers, then this function returns the hermitian (sesquilinear) dot product, conjugate-linear in the first variable and linear in the second variable.
See also:
squaredNorm(), norm()

Definition at line 63 of file Dot.h.

template<typename Derived>
template<typename OtherDerived >
EIGEN_STRONG_INLINE const Eigen::MatrixBase< Derived >::EIGEN_CWISE_PRODUCT_RETURN_TYPE ( Derived  ,
OtherDerived   
) const [inline]
Returns:
an expression of the Schur product (coefficient wise product) of *this and other

Example:

Output:

See also:
class CwiseBinaryOp, cwiseAbs2

Definition at line 22 of file MatrixBase.h.

template<typename Derived >
MatrixBase< Derived >::EigenvaluesReturnType Eigen::MatrixBase< Derived >::eigenvalues ( ) const [inline]

Computes the eigenvalues of a matrix.

Returns:
Column vector containing the eigenvalues.

This function computes the eigenvalues with the help of the EigenSolver class (for real matrices) or the ComplexEigenSolver class (for complex matrices).

The eigenvalues are repeated according to their algebraic multiplicity, so there are as many eigenvalues as rows in the matrix.

The SelfAdjointView class provides a better algorithm for selfadjoint matrices.

Example:

Output:

See also:
EigenSolver::eigenvalues(), ComplexEigenSolver::eigenvalues(), SelfAdjointView::eigenvalues()

Definition at line 67 of file MatrixBaseEigenvalues.h.

template<typename Derived >
const MatrixExponentialReturnValue< Derived > Eigen::MatrixBase< Derived >::exp ( ) const

Definition at line 443 of file MatrixExponential.h.

template<typename Derived >
const ForceAlignedAccess< Derived > Eigen::MatrixBase< Derived >::forceAlignedAccess ( ) const [inline]
Returns:
an expression of *this with forced aligned access
See also:
forceAlignedAccessIf(),class ForceAlignedAccess

Reimplemented from Eigen::DenseBase< Derived >.

Definition at line 107 of file ForceAlignedAccess.h.

template<typename Derived >
ForceAlignedAccess< Derived > Eigen::MatrixBase< Derived >::forceAlignedAccess ( ) [inline]
Returns:
an expression of *this with forced aligned access
See also:
forceAlignedAccessIf(), class ForceAlignedAccess

Reimplemented from Eigen::DenseBase< Derived >.

Definition at line 117 of file ForceAlignedAccess.h.

template<typename Derived >
template<bool Enable>
internal::add_const_on_value_type< typename internal::conditional< Enable, ForceAlignedAccess< Derived >, Derived & >::type >::type Eigen::MatrixBase< Derived >::forceAlignedAccessIf ( ) const [inline]
Returns:
an expression of *this with forced aligned access if Enable is true.
See also:
forceAlignedAccess(), class ForceAlignedAccess

Reimplemented from Eigen::DenseBase< Derived >.

Definition at line 128 of file ForceAlignedAccess.h.

template<typename Derived >
template<bool Enable>
internal::conditional< Enable, ForceAlignedAccess< Derived >, Derived & >::type Eigen::MatrixBase< Derived >::forceAlignedAccessIf ( ) [inline]
Returns:
an expression of *this with forced aligned access if Enable is true.
See also:
forceAlignedAccess(), class ForceAlignedAccess

Reimplemented from Eigen::DenseBase< Derived >.

Definition at line 139 of file ForceAlignedAccess.h.

template<typename Derived >
const FullPivHouseholderQR< typename MatrixBase< Derived >::PlainObject > Eigen::MatrixBase< Derived >::fullPivHouseholderQr ( ) const
Returns:
the full-pivoting Householder QR decomposition of *this.
See also:
class FullPivHouseholderQR

Definition at line 616 of file FullPivHouseholderQR.h.

template<typename Derived >
const FullPivLU< typename MatrixBase< Derived >::PlainObject > Eigen::MatrixBase< Derived >::fullPivLu ( ) const [inline]
Returns:
the full-pivoting LU decomposition of *this.
See also:
class FullPivLU

Definition at line 735 of file FullPivLU.h.

template<typename Derived >
const MatrixBase< Derived >::HNormalizedReturnType Eigen::MatrixBase< Derived >::hnormalized ( ) const [inline]
Returns:
an expression of the homogeneous normalized vector of *this

Example:

Output:

See also:
VectorwiseOp::hnormalized()

Definition at line 158 of file Homogeneous.h.

template<typename Derived >
const HouseholderQR< typename MatrixBase< Derived >::PlainObject > Eigen::MatrixBase< Derived >::householderQr ( ) const
Returns:
the Householder QR decomposition of *this.
See also:
class HouseholderQR

Definition at line 367 of file HouseholderQR.h.

template<typename Derived >
NumTraits< typename internal::traits< Derived >::Scalar >::Real Eigen::MatrixBase< Derived >::hypotNorm ( ) const [inline]
Returns:
the l2 norm of *this avoiding undeflow and overflow. This version use a concatenation of hypot() calls, and it is very slow.
See also:
norm(), stableNorm()

Definition at line 183 of file StableNorm.h.

template<typename Derived >
EIGEN_STRONG_INLINE const MatrixBase< Derived >::IdentityReturnType Eigen::MatrixBase< Derived >::Identity ( ) [static]
Returns:
an expression of the identity matrix (not necessarily square).

This variant is only for fixed-size MatrixBase types. For dynamic-size types, you need to use the variant taking size arguments.

Example:

Output:

See also:
Identity(Index,Index), setIdentity(), isIdentity()

Definition at line 700 of file CwiseNullaryOp.h.

template<typename Derived >
EIGEN_STRONG_INLINE const MatrixBase< Derived >::IdentityReturnType Eigen::MatrixBase< Derived >::Identity ( Index  nbRows,
Index  nbCols 
) [static]
Returns:
an expression of the identity matrix (not necessarily square).

The parameters nbRows and nbCols are the number of rows and of columns of the returned matrix. Must be compatible with this MatrixBase type.

This variant is meant to be used for dynamic-size matrix types. For fixed-size types, it is redundant to pass rows and cols as arguments, so Identity() should be used instead.

Example:

Output:

See also:
Identity(), setIdentity(), isIdentity()

Definition at line 683 of file CwiseNullaryOp.h.

template<typename Derived>
const ImagReturnType Eigen::MatrixBase< Derived >::imag ( ) const [inline]
Returns:
an read-only expression of the imaginary part of *this.
See also:
real()

Definition at line 117 of file MatrixBase.h.

template<typename Derived>
NonConstImagReturnType Eigen::MatrixBase< Derived >::imag ( ) [inline]
Returns:
a non const expression of the imaginary part of *this.
See also:
real()

Definition at line 173 of file MatrixBase.h.

template<typename Derived >
const internal::inverse_impl< Derived > Eigen::MatrixBase< Derived >::inverse ( ) const [inline]
Returns:
the matrix inverse of this matrix.

For small fixed sizes up to 4x4, this method uses cofactors. In the general case, this method uses class PartialPivLU.

Note:
This matrix must be invertible, otherwise the result is undefined. If you need an invertibility check, do the following: Example:
Output:
See also:
computeInverseAndDetWithCheck()

Definition at line 320 of file Inverse.h.

template<typename Derived >
bool Eigen::MatrixBase< Derived >::isDiagonal ( const RealScalar prec = NumTraits<Scalar>::dummy_precision()) const
Returns:
true if *this is approximately equal to a diagonal matrix, within the precision given by prec.

Example:

Output:

See also:
asDiagonal()

Definition at line 292 of file DiagonalMatrix.h.

template<typename Derived >
bool Eigen::MatrixBase< Derived >::isIdentity ( const RealScalar prec = NumTraits<Scalar>::dummy_precision()) const
Returns:
true if *this is approximately equal to the identity matrix (not necessarily square), within the precision given by prec.

Example:

Output:

See also:
class CwiseNullaryOp, Identity(), Identity(Index,Index), setIdentity()

Definition at line 717 of file CwiseNullaryOp.h.

template<typename Derived >
bool Eigen::MatrixBase< Derived >::isLowerTriangular ( const RealScalar prec = NumTraits<Scalar>::dummy_precision()) const
Returns:
true if *this is approximately equal to a lower triangular matrix, within the precision given by prec.
See also:
isUpperTriangular()

Definition at line 808 of file TriangularMatrix.h.

template<typename Derived >
template<typename OtherDerived >
bool Eigen::MatrixBase< Derived >::isOrthogonal ( const MatrixBase< OtherDerived > &  other,
const RealScalar prec = NumTraits<Scalar>::dummy_precision() 
) const
Returns:
true if *this is approximately orthogonal to other, within the precision given by prec.

Example:

Output:

Definition at line 228 of file Dot.h.

template<typename Derived >
bool Eigen::MatrixBase< Derived >::isUnitary ( const RealScalar prec = NumTraits<Scalar>::dummy_precision()) const
Returns:
true if *this is approximately an unitary matrix, within the precision given by prec. In the case where the Scalar type is real numbers, a unitary matrix is an orthogonal matrix, whence the name.
Note:
This can be used to check whether a family of vectors forms an orthonormal basis. Indeed, m.isUnitary() returns true if and only if the columns (equivalently, the rows) of m form an orthonormal basis.

Example:

Output:

Definition at line 247 of file Dot.h.

template<typename Derived >
bool Eigen::MatrixBase< Derived >::isUpperTriangular ( const RealScalar prec = NumTraits<Scalar>::dummy_precision()) const
Returns:
true if *this is approximately equal to an upper triangular matrix, within the precision given by prec.
See also:
isLowerTriangular()

Definition at line 782 of file TriangularMatrix.h.

template<typename Derived >
JacobiSVD< typename MatrixBase< Derived >::PlainObject > Eigen::MatrixBase< Derived >::jacobiSvd ( unsigned int  computationOptions = 0) const
Returns:
the singular value decomposition of *this computed by two-sided Jacobi transformations.
See also:
class JacobiSVD

Definition at line 872 of file JacobiSVD.h.

template<typename Derived >
template<typename ProductDerived , typename Lhs , typename Rhs >
Derived & Eigen::MatrixBase< Derived >::lazyAssign ( const ProductBase< ProductDerived, Lhs, Rhs > &  other)

Definition at line 270 of file ProductBase.h.

template<typename Derived>
template<typename MatrixPower , typename Lhs , typename Rhs >
Derived& Eigen::MatrixBase< Derived >::lazyAssign ( const MatrixPowerProduct< MatrixPower, Lhs, Rhs > &  other)
template<typename Derived >
template<typename OtherDerived >
const LazyProductReturnType< Derived, OtherDerived >::Type Eigen::MatrixBase< Derived >::lazyProduct ( const MatrixBase< OtherDerived > &  other) const
Returns:
an expression of the matrix product of *this and other without implicit evaluation.

The returned product will behave like any other expressions: the coefficients of the product will be computed once at a time as requested. This might be useful in some extremely rare cases when only a small and no coherent fraction of the result's coefficients have to be computed.

Warning:
This version of the matrix product can be much much slower. So use it only if you know what you are doing and that you measured a true speed improvement.
See also:
operator*(const MatrixBase&)

Definition at line 612 of file GeneralProduct.h.

template<typename Derived >
const LDLT< typename MatrixBase< Derived >::PlainObject > Eigen::MatrixBase< Derived >::ldlt ( ) const [inline]
Returns:
the Cholesky decomposition with full pivoting without square root of *this

Definition at line 593 of file LDLT.h.

template<typename Derived >
const LLT< typename MatrixBase< Derived >::PlainObject > Eigen::MatrixBase< Derived >::llt ( ) const [inline]
Returns:
the LLT decomposition of *this

Definition at line 473 of file LLT.h.

template<typename Derived >
const MatrixLogarithmReturnValue< Derived > Eigen::MatrixBase< Derived >::log ( ) const

Definition at line 478 of file MatrixLogarithm.h.

template<typename Derived >
template<int p>
NumTraits< typename internal::traits< Derived >::Scalar >::Real Eigen::MatrixBase< Derived >::lpNorm ( ) const [inline]
Returns:
the $ \ell^p $ norm of *this, that is, returns the p-th root of the sum of the p-th powers of the absolute values of the coefficients of *this. If p is the special value Eigen::Infinity, this function returns the $ \ell^\infty $ norm, that is the maximum of the absolute values of the coefficients of *this.
See also:
norm()

Reimplemented from Eigen::DenseBase< Derived >.

Definition at line 212 of file Dot.h.

template<typename Derived >
template<typename EssentialPart >
void Eigen::MatrixBase< Derived >::makeHouseholder ( EssentialPart &  essential,
Scalar tau,
RealScalar beta 
) const

Computes the elementary reflector H such that: $ H *this = [ beta 0 ... 0]^T $ where the transformation H is: $ H = I - tau v v^*$ and the vector v is: $ v^T = [1 essential^T] $

On output:

Parameters:
essentialthe essential part of the vector v
tauthe scaling factor of the Householder transformation
betathe result of H * *this
See also:
MatrixBase::makeHouseholderInPlace(), MatrixBase::applyHouseholderOnTheLeft(), MatrixBase::applyHouseholderOnTheRight()

Definition at line 65 of file Householder.h.

template<typename Derived >
void Eigen::MatrixBase< Derived >::makeHouseholderInPlace ( Scalar tau,
RealScalar beta 
)

Computes the elementary reflector H such that: $ H *this = [ beta 0 ... 0]^T $ where the transformation H is: $ H = I - tau v v^*$ and the vector v is: $ v^T = [1 essential^T] $

The essential part of the vector v is stored in *this.

On output:

Parameters:
tauthe scaling factor of the Householder transformation
betathe result of H * *this
See also:
MatrixBase::makeHouseholder(), MatrixBase::applyHouseholderOnTheLeft(), MatrixBase::applyHouseholderOnTheRight()

Definition at line 42 of file Householder.h.

template<typename Derived>
MatrixBase<Derived>& Eigen::MatrixBase< Derived >::matrix ( ) [inline]

Definition at line 317 of file MatrixBase.h.

template<typename Derived>
const MatrixBase<Derived>& Eigen::MatrixBase< Derived >::matrix ( ) const [inline]

Definition at line 318 of file MatrixBase.h.

template<typename Derived>
const MatrixFunctionReturnValue< Derived > Eigen::MatrixBase< Derived >::matrixFunction ( StemFunction  f) const

Definition at line 551 of file MatrixFunction.h.

template<typename Derived >
NoAlias< Derived, MatrixBase > Eigen::MatrixBase< Derived >::noalias ( )
Returns:
a pseudo expression of *this with an operator= assuming no aliasing between *this and the source expression.

More precisely, noalias() allows to bypass the EvalBeforeAssignBit flag. Currently, even though several expressions may alias, only product expressions have this flag. Therefore, noalias() is only usefull when the source expression contains a matrix product.

Here are some examples where noalias is usefull:

 D.noalias()  = A * B;
 D.noalias() += A.transpose() * B;
 D.noalias() -= 2 * A * B.adjoint();

On the other hand the following example will lead to a wrong result:

 A.noalias() = A * B;

because the result matrix A is also an operand of the matrix product. Therefore, there is no alternative than evaluating A * B in a temporary, that is the default behavior when you write:

 A = A * B;
See also:
class NoAlias

Definition at line 127 of file NoAlias.h.

template<typename Derived >
NumTraits< typename internal::traits< Derived >::Scalar >::Real Eigen::MatrixBase< Derived >::norm ( ) const [inline]
Returns:
, for vectors, the l2 norm of *this, and for matrices the Frobenius norm. In both cases, it consists in the square root of the sum of the square of all the matrix entries. For vectors, this is also equals to the square root of the dot product of *this with itself.
See also:
dot(), squaredNorm()

Definition at line 125 of file Dot.h.

template<typename Derived >
void Eigen::MatrixBase< Derived >::normalize ( ) [inline]

Normalizes the vector, i.e. divides it by its own norm.

See also:
norm(), normalized()

Definition at line 154 of file Dot.h.

template<typename Derived >
const MatrixBase< Derived >::PlainObject Eigen::MatrixBase< Derived >::normalized ( ) const [inline]
Returns:
an expression of the quotient of *this by its own norm.
See also:
norm(), normalize()

Definition at line 139 of file Dot.h.

template<typename Derived>
template<typename OtherDerived >
bool Eigen::MatrixBase< Derived >::operator!= ( const MatrixBase< OtherDerived > &  other) const [inline]
Returns:
true if at least one pair of coefficients of *this and other are not exactly equal to each other.
Warning:
When using floating point scalar values you probably should rather use a fuzzy comparison such as isApprox()
See also:
isApprox(), operator==

Definition at line 301 of file MatrixBase.h.

template<typename Derived>
const ScalarMultipleReturnType Eigen::MatrixBase< Derived >::operator* ( const Scalar scalar) const [inline]
Returns:
an expression of *this scaled by the scalar factor scalar

Definition at line 50 of file MatrixBase.h.

template<typename Derived>
const CwiseUnaryOp<internal::scalar_multiple2_op<Scalar,std::complex<Scalar> >, const Derived> Eigen::MatrixBase< Derived >::operator* ( const std::complex< Scalar > &  scalar) const [inline]

Overloaded for efficient real matrix times complex scalar value

Definition at line 70 of file MatrixBase.h.

template<typename Derived>
template<typename Derived >
MatrixBase<Derived>::ScalarMultipleReturnType Eigen::MatrixBase< Derived >::operator* ( const UniformScaling< Scalar > &  s) const

Concatenates a linear transformation matrix and a uniform scaling

Definition at line 111 of file Eigen/src/Geometry/Scaling.h.

template<typename Derived >
template<typename OtherDerived >
const ProductReturnType< Derived, OtherDerived >::Type Eigen::MatrixBase< Derived >::operator* ( const MatrixBase< OtherDerived > &  other) const [inline]
Returns:
the matrix product of *this and other.
Note:
If instead of the matrix product you want the coefficient-wise product, see Cwise::operator*().
See also:
lazyProduct(), operator*=(const MatrixBase&), Cwise::operator*()

Definition at line 571 of file GeneralProduct.h.

template<typename Derived >
template<typename DiagonalDerived >
const DiagonalProduct< Derived, DiagonalDerived, OnTheRight > Eigen::MatrixBase< Derived >::operator* ( const DiagonalBase< DiagonalDerived > &  a_diagonal) const [inline]
Returns:
the diagonal matrix product of *this by the diagonal matrix diagonal.

Definition at line 123 of file DiagonalProduct.h.

template<typename Derived >
template<typename OtherDerived >
Derived & Eigen::MatrixBase< Derived >::operator*= ( const EigenBase< OtherDerived > &  other) [inline]

replaces *this by *this * other.

Returns:
a reference to *this

Definition at line 136 of file EigenBase.h.

template<typename Derived >
template<typename OtherDerived >
EIGEN_STRONG_INLINE Derived & Eigen::MatrixBase< Derived >::operator+= ( const MatrixBase< OtherDerived > &  other)

replaces *this by *this + other.

Returns:
a reference to *this

Definition at line 220 of file CwiseBinaryOp.h.

template<typename Derived>
template<typename OtherDerived >
Derived& Eigen::MatrixBase< Derived >::operator+= ( const ArrayBase< OtherDerived > &  ) [inline, protected]

Definition at line 506 of file MatrixBase.h.

template<typename Derived>
const CwiseUnaryOp<internal::scalar_opposite_op<typename internal::traits<Derived>::Scalar>, const Derived> Eigen::MatrixBase< Derived >::operator- ( ) const [inline]
Returns:
an expression of the opposite of *this

Definition at line 45 of file MatrixBase.h.

template<typename Derived >
template<typename OtherDerived >
EIGEN_STRONG_INLINE Derived & Eigen::MatrixBase< Derived >::operator-= ( const MatrixBase< OtherDerived > &  other)

replaces *this by *this - other.

Returns:
a reference to *this

Definition at line 206 of file CwiseBinaryOp.h.

template<typename Derived>
template<typename OtherDerived >
Derived& Eigen::MatrixBase< Derived >::operator-= ( const ArrayBase< OtherDerived > &  ) [inline, protected]

Definition at line 509 of file MatrixBase.h.

template<typename Derived>
const CwiseUnaryOp<internal::scalar_quotient1_op<typename internal::traits<Derived>::Scalar>, const Derived> Eigen::MatrixBase< Derived >::operator/ ( const Scalar scalar) const [inline]
Returns:
an expression of *this divided by the scalar value scalar

Definition at line 62 of file MatrixBase.h.

template<typename Derived >
EIGEN_STRONG_INLINE Derived & Eigen::MatrixBase< Derived >::operator= ( const MatrixBase< Derived > &  other)

Special case of the template operator=, in order to prevent the compiler from generating a default operator= (issue hit with g++ 4.1)

Definition at line 555 of file Assign.h.

template<typename Derived >
template<typename OtherDerived >
EIGEN_STRONG_INLINE Derived & Eigen::MatrixBase< Derived >::operator= ( const DenseBase< OtherDerived > &  other)

Copies other into *this.

Returns:
a reference to *this.

Reimplemented from Eigen::DenseBase< Derived >.

Definition at line 562 of file Assign.h.

template<typename Derived >
template<typename OtherDerived >
EIGEN_STRONG_INLINE Derived & Eigen::MatrixBase< Derived >::operator= ( const EigenBase< OtherDerived > &  other)

Copies the generic expression other into *this.

The expression must provide a (templated) evalTo(Derived& dst) const function which does the actual job. In practice, this allows any user to write its own special matrix without having to modify MatrixBase

Returns:
a reference to *this.

Reimplemented from Eigen::DenseBase< Derived >.

Definition at line 569 of file Assign.h.

template<typename Derived >
template<typename OtherDerived >
EIGEN_STRONG_INLINE Derived & Eigen::MatrixBase< Derived >::operator= ( const ReturnByValue< OtherDerived > &  other)

Reimplemented from Eigen::DenseBase< Derived >.

Definition at line 576 of file Assign.h.

template<typename Derived>
template<typename OtherDerived >
bool Eigen::MatrixBase< Derived >::operator== ( const MatrixBase< OtherDerived > &  other) const [inline]
Returns:
true if each coefficients of *this and other are all exactly equal.
Warning:
When using floating point scalar values you probably should rather use a fuzzy comparison such as isApprox()
See also:
isApprox(), operator!=

Definition at line 293 of file MatrixBase.h.

template<typename Derived >
MatrixBase< Derived >::RealScalar Eigen::MatrixBase< Derived >::operatorNorm ( ) const [inline]

Computes the L2 operator norm.

Returns:
Operator norm of the matrix.

This function computes the L2 operator norm of a matrix, which is also known as the spectral norm. The norm of a matrix $ A $ is defined to be

\[ \|A\|_2 = \max_x \frac{\|Ax\|_2}{\|x\|_2} \]

where the maximum is over all vectors and the norm on the right is the Euclidean vector norm. The norm equals the largest singular value, which is the square root of the largest eigenvalue of the positive semi-definite matrix $ A^*A $.

The current implementation uses the eigenvalues of $ A^*A $, as computed by SelfAdjointView::eigenvalues(), to compute the operator norm of a matrix. The SelfAdjointView class provides a better algorithm for selfadjoint matrices.

Example:

Output:

See also:
SelfAdjointView::eigenvalues(), SelfAdjointView::operatorNorm()

Definition at line 122 of file MatrixBaseEigenvalues.h.

template<typename Derived >
const PartialPivLU< typename MatrixBase< Derived >::PlainObject > Eigen::MatrixBase< Derived >::partialPivLu ( ) const [inline]
Returns:
the partial-pivoting LU decomposition of *this.
See also:
class PartialPivLU

Definition at line 477 of file PartialPivLU.h.

template<typename Derived >
const MatrixPowerReturnValue< Derived > Eigen::MatrixBase< Derived >::pow ( const RealScalar p) const

Definition at line 504 of file MatrixPower.h.

template<typename Derived>
RealReturnType Eigen::MatrixBase< Derived >::real ( ) const [inline]
Returns:
a read-only expression of the real part of *this.
See also:
imag()

Definition at line 111 of file MatrixBase.h.

template<typename Derived>
NonConstRealReturnType Eigen::MatrixBase< Derived >::real ( ) [inline]
Returns:
a non const expression of the real part of *this.
See also:
imag()

Definition at line 167 of file MatrixBase.h.

template<typename Derived >
template<unsigned int UpLo>
MatrixBase< Derived >::template SelfAdjointViewReturnType< UpLo >::Type Eigen::MatrixBase< Derived >::selfadjointView ( )

Definition at line 307 of file SelfAdjointView.h.

template<typename Derived >
template<unsigned int UpLo>
MatrixBase< Derived >::template ConstSelfAdjointViewReturnType< UpLo >::Type Eigen::MatrixBase< Derived >::selfadjointView ( ) const

Definition at line 299 of file SelfAdjointView.h.

template<typename Derived >
EIGEN_STRONG_INLINE Derived & Eigen::MatrixBase< Derived >::setIdentity ( )

Writes the identity expression (not necessarily square) into *this.

Example:

Output:

See also:
class CwiseNullaryOp, Identity(), Identity(Index,Index), isIdentity()

Definition at line 772 of file CwiseNullaryOp.h.

template<typename Derived >
EIGEN_STRONG_INLINE Derived & Eigen::MatrixBase< Derived >::setIdentity ( Index  nbRows,
Index  nbCols 
)

Resizes to the given size, and writes the identity expression (not necessarily square) into *this.

Parameters:
nbRowsthe new number of rows
nbColsthe new number of columns

Example:

Output:

See also:
MatrixBase::setIdentity(), class CwiseNullaryOp, MatrixBase::Identity()

Definition at line 788 of file CwiseNullaryOp.h.

template<typename Derived >
const MatrixFunctionReturnValue< Derived > Eigen::MatrixBase< Derived >::sin ( ) const

Definition at line 558 of file MatrixFunction.h.

template<typename Derived >
const MatrixFunctionReturnValue< Derived > Eigen::MatrixBase< Derived >::sinh ( ) const

Definition at line 574 of file MatrixFunction.h.

template<typename Derived >
const SparseView< Derived > Eigen::MatrixBase< Derived >::sparseView ( const Scalar m_reference = Scalar(0),
const typename NumTraits< Scalar >::Real &  m_epsilon = NumTraits<Scalar>::dummy_precision() 
) const

Definition at line 91 of file SparseView.h.

template<typename Derived >
const MatrixSquareRootReturnValue< Derived > Eigen::MatrixBase< Derived >::sqrt ( ) const

Definition at line 458 of file MatrixSquareRoot.h.

template<typename Derived >
EIGEN_STRONG_INLINE NumTraits< typename internal::traits< Derived >::Scalar >::Real Eigen::MatrixBase< Derived >::squaredNorm ( ) const
Returns:
, for vectors, the squared l2 norm of *this, and for matrices the Frobenius norm. In both cases, it consists in the sum of the square of all the matrix entries. For vectors, this is also equals to the dot product of *this with itself.
See also:
dot(), norm()

Definition at line 113 of file Dot.h.

template<typename Derived >
NumTraits< typename internal::traits< Derived >::Scalar >::Real Eigen::MatrixBase< Derived >::stableNorm ( ) const [inline]
Returns:
the l2 norm of *this avoiding underflow and overflow. This version use a blockwise two passes algorithm: 1 - find the absolute largest coefficient s 2 - compute $ s \Vert \frac{*this}{s} \Vert $ in a standard way

For architecture/scalar types supporting vectorization, this version is faster than blueNorm(). Otherwise the blueNorm() is much faster.

See also:
norm(), blueNorm(), hypotNorm()

Definition at line 140 of file StableNorm.h.

template<typename Derived >
EIGEN_STRONG_INLINE internal::traits< Derived >::Scalar Eigen::MatrixBase< Derived >::trace ( ) const
Returns:
the trace of *this, i.e. the sum of the coefficients on the main diagonal.

*this can be any matrix, not necessarily square.

See also:
diagonal(), sum()

Reimplemented from Eigen::DenseBase< Derived >.

Definition at line 401 of file Redux.h.

template<typename Derived >
template<unsigned int Mode>
MatrixBase< Derived >::template TriangularViewReturnType< Mode >::Type Eigen::MatrixBase< Derived >::triangularView ( )
Returns:
an expression of a triangular view extracted from the current matrix

The parameter Mode can have the following values: Upper, StrictlyUpper, UnitUpper, Lower, StrictlyLower, UnitLower.

Example:

Output:

See also:
class TriangularView

Definition at line 762 of file TriangularMatrix.h.

template<typename Derived >
template<unsigned int Mode>
MatrixBase< Derived >::template ConstTriangularViewReturnType< Mode >::Type Eigen::MatrixBase< Derived >::triangularView ( ) const

This is the const version of MatrixBase::triangularView()

Definition at line 771 of file TriangularMatrix.h.

template<typename Derived>
template<typename CustomUnaryOp >
const CwiseUnaryOp<CustomUnaryOp, const Derived> Eigen::MatrixBase< Derived >::unaryExpr ( const CustomUnaryOp &  func = CustomUnaryOp()) const [inline]

Apply a unary operator coefficient-wise.

Parameters:
[in]funcFunctor implementing the unary operator
Template Parameters:
CustomUnaryOpType of func
Returns:
An expression of a custom coefficient-wise unary operator func of *this

The function ptr_fun() from the C++ standard library can be used to make functors out of normal functions.

Example:

Output:

Genuine functors allow for more possibilities, for instance it may contain a state.

Example:

Output:

See also:
class CwiseUnaryOp, class CwiseBinaryOp

Definition at line 140 of file MatrixBase.h.

template<typename Derived>
template<typename CustomViewOp >
const CwiseUnaryView<CustomViewOp, const Derived> Eigen::MatrixBase< Derived >::unaryViewExpr ( const CustomViewOp &  func = CustomViewOp()) const [inline]
Returns:
an expression of a custom coefficient-wise unary operator func of *this

The template parameter CustomUnaryOp is the type of the functor of the custom unary operator.

Example:

Output:

See also:
class CwiseUnaryOp, class CwiseBinaryOp

Definition at line 158 of file MatrixBase.h.

template<typename Derived >
EIGEN_STRONG_INLINE const MatrixBase< Derived >::BasisReturnType Eigen::MatrixBase< Derived >::Unit ( Index  newSize,
Index  i 
) [static]
Returns:
an expression of the i-th unit (basis) vector.
See also:
MatrixBase::Unit(Index), MatrixBase::UnitX(), MatrixBase::UnitY(), MatrixBase::UnitZ(), MatrixBase::UnitW()

Definition at line 801 of file CwiseNullaryOp.h.

template<typename Derived >
EIGEN_STRONG_INLINE const MatrixBase< Derived >::BasisReturnType Eigen::MatrixBase< Derived >::Unit ( Index  i) [static]
Returns:
an expression of the i-th unit (basis) vector.

This variant is for fixed-size vector only.

See also:
MatrixBase::Unit(Index,Index), MatrixBase::UnitX(), MatrixBase::UnitY(), MatrixBase::UnitZ(), MatrixBase::UnitW()

Definition at line 816 of file CwiseNullaryOp.h.

template<typename Derived >
MatrixBase< Derived >::PlainObject Eigen::MatrixBase< Derived >::unitOrthogonal ( void  ) const
Returns:
a unit vector which is orthogonal to *this

The size of *this must be at least 2. If the size is exactly 2, then the returned vector is a counter clock wise rotation of *this, i.e., (-y,x).normalized().

See also:
cross()

Definition at line 210 of file OrthoMethods.h.

template<typename Derived >
EIGEN_STRONG_INLINE const MatrixBase< Derived >::BasisReturnType Eigen::MatrixBase< Derived >::UnitW ( ) [static]
Returns:
an expression of the W axis unit vector (0,0,0,1)
See also:
MatrixBase::Unit(Index,Index), MatrixBase::Unit(Index), MatrixBase::UnitY(), MatrixBase::UnitZ(), MatrixBase::UnitW()

Definition at line 859 of file CwiseNullaryOp.h.

template<typename Derived >
EIGEN_STRONG_INLINE const MatrixBase< Derived >::BasisReturnType Eigen::MatrixBase< Derived >::UnitX ( ) [static]
Returns:
an expression of the X axis unit vector (1{,0}^*)
See also:
MatrixBase::Unit(Index,Index), MatrixBase::Unit(Index), MatrixBase::UnitY(), MatrixBase::UnitZ(), MatrixBase::UnitW()

Definition at line 829 of file CwiseNullaryOp.h.

template<typename Derived >
EIGEN_STRONG_INLINE const MatrixBase< Derived >::BasisReturnType Eigen::MatrixBase< Derived >::UnitY ( ) [static]
Returns:
an expression of the Y axis unit vector (0,1{,0}^*)
See also:
MatrixBase::Unit(Index,Index), MatrixBase::Unit(Index), MatrixBase::UnitY(), MatrixBase::UnitZ(), MatrixBase::UnitW()

Definition at line 839 of file CwiseNullaryOp.h.

template<typename Derived >
EIGEN_STRONG_INLINE const MatrixBase< Derived >::BasisReturnType Eigen::MatrixBase< Derived >::UnitZ ( ) [static]
Returns:
an expression of the Z axis unit vector (0,0,1{,0}^*)
See also:
MatrixBase::Unit(Index,Index), MatrixBase::Unit(Index), MatrixBase::UnitY(), MatrixBase::UnitZ(), MatrixBase::UnitW()

Definition at line 849 of file CwiseNullaryOp.h.


Friends And Related Function Documentation

template<typename Derived>
const ScalarMultipleReturnType operator* ( const Scalar scalar,
const StorageBaseType matrix 
) [friend]

Definition at line 77 of file MatrixBase.h.

template<typename Derived>
const CwiseUnaryOp<internal::scalar_multiple2_op<Scalar,std::complex<Scalar> >, const Derived> operator* ( const std::complex< Scalar > &  scalar,
const StorageBaseType matrix 
) [friend]

Definition at line 81 of file MatrixBase.h.


The documentation for this class was generated from the following files:


acado
Author(s): Milan Vukov, Rien Quirynen
autogenerated on Thu Aug 27 2015 12:01:59