Public Types | Public Member Functions | Protected Attributes | Private Types
Eigen::ColPivHouseholderQR< _MatrixType > Class Template Reference

Householder rank-revealing QR decomposition of a matrix with column-pivoting. More...

#include <ColPivHouseholderQR.h>

List of all members.

Public Types

enum  {
  RowsAtCompileTime = MatrixType::RowsAtCompileTime, ColsAtCompileTime = MatrixType::ColsAtCompileTime, Options = MatrixType::Options, MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime,
  MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime
}
typedef
internal::plain_diag_type
< MatrixType >::type 
HCoeffsType
typedef HouseholderSequence
< MatrixType, typename
internal::remove_all< typename
HCoeffsType::ConjugateReturnType >
::type
HouseholderSequenceType
typedef MatrixType::Index Index
typedef
internal::plain_row_type
< MatrixType, Index >::type 
IntRowVectorType
typedef Matrix< Scalar,
RowsAtCompileTime,
RowsAtCompileTime, Options,
MaxRowsAtCompileTime,
MaxRowsAtCompileTime
MatrixQType
typedef _MatrixType MatrixType
typedef PermutationMatrix
< ColsAtCompileTime,
MaxColsAtCompileTime
PermutationType
typedef
internal::plain_row_type
< MatrixType, RealScalar >
::type 
RealRowVectorType
typedef MatrixType::RealScalar RealScalar
typedef
internal::plain_row_type
< MatrixType >::type 
RowVectorType
typedef MatrixType::Scalar Scalar

Public Member Functions

MatrixType::RealScalar absDeterminant () const
 ColPivHouseholderQR ()
 Default Constructor.
 ColPivHouseholderQR (Index rows, Index cols)
 Default Constructor with memory preallocation.
 ColPivHouseholderQR (const MatrixType &matrix)
 Constructs a QR factorization from a given matrix.
Index cols () const
const PermutationTypecolsPermutation () const
ColPivHouseholderQRcompute (const MatrixType &matrix)
Index dimensionOfKernel () const
const HCoeffsTypehCoeffs () const
HouseholderSequenceType householderQ (void) const
ComputationInfo info () const
 Reports whether the QR factorization was succesful.
const internal::solve_retval
< ColPivHouseholderQR,
typename
MatrixType::IdentityReturnType > 
inverse () const
bool isInjective () const
bool isInvertible () const
bool isSurjective () const
MatrixType::RealScalar logAbsDeterminant () const
HouseholderSequenceType matrixQ (void) const
const MatrixTypematrixQR () const
const MatrixTypematrixR () const
RealScalar maxPivot () const
Index nonzeroPivots () const
Index rank () const
Index rows () const
ColPivHouseholderQRsetThreshold (const RealScalar &threshold)
ColPivHouseholderQRsetThreshold (Default_t)
template<typename Rhs >
const internal::solve_retval
< ColPivHouseholderQR, Rhs > 
solve (const MatrixBase< Rhs > &b) const
RealScalar threshold () const

Protected Attributes

PermutationType m_colsPermutation
RealRowVectorType m_colSqNorms
IntRowVectorType m_colsTranspositions
Index m_det_pq
HCoeffsType m_hCoeffs
bool m_isInitialized
RealScalar m_maxpivot
Index m_nonzero_pivots
RealScalar m_prescribedThreshold
MatrixType m_qr
RowVectorType m_temp
bool m_usePrescribedThreshold

Private Types

typedef PermutationType::Index PermIndexType

Detailed Description

template<typename _MatrixType>
class Eigen::ColPivHouseholderQR< _MatrixType >

Householder rank-revealing QR decomposition of a matrix with column-pivoting.

Parameters:
MatrixTypethe type of the matrix of which we are computing the QR decomposition

This class performs a rank-revealing QR decomposition of a matrix A into matrices P, Q and R such that

\[ \mathbf{A} \, \mathbf{P} = \mathbf{Q} \, \mathbf{R} \]

by using Householder transformations. Here, P is a permutation matrix, Q a unitary matrix and R an upper triangular matrix.

This decomposition performs column pivoting in order to be rank-revealing and improve numerical stability. It is slower than HouseholderQR, and faster than FullPivHouseholderQR.

See also:
MatrixBase::colPivHouseholderQr()

Definition at line 37 of file ColPivHouseholderQR.h.


Member Typedef Documentation

template<typename _MatrixType>
typedef internal::plain_diag_type<MatrixType>::type Eigen::ColPivHouseholderQR< _MatrixType >::HCoeffsType

Definition at line 53 of file ColPivHouseholderQR.h.

Definition at line 58 of file ColPivHouseholderQR.h.

template<typename _MatrixType>
typedef MatrixType::Index Eigen::ColPivHouseholderQR< _MatrixType >::Index

Definition at line 51 of file ColPivHouseholderQR.h.

template<typename _MatrixType>
typedef internal::plain_row_type<MatrixType, Index>::type Eigen::ColPivHouseholderQR< _MatrixType >::IntRowVectorType

Definition at line 55 of file ColPivHouseholderQR.h.

Definition at line 52 of file ColPivHouseholderQR.h.

template<typename _MatrixType>
typedef _MatrixType Eigen::ColPivHouseholderQR< _MatrixType >::MatrixType

Definition at line 41 of file ColPivHouseholderQR.h.

template<typename _MatrixType>
typedef PermutationType::Index Eigen::ColPivHouseholderQR< _MatrixType >::PermIndexType [private]

Definition at line 62 of file ColPivHouseholderQR.h.

Definition at line 54 of file ColPivHouseholderQR.h.

template<typename _MatrixType>
typedef internal::plain_row_type<MatrixType, RealScalar>::type Eigen::ColPivHouseholderQR< _MatrixType >::RealRowVectorType

Definition at line 57 of file ColPivHouseholderQR.h.

template<typename _MatrixType>
typedef MatrixType::RealScalar Eigen::ColPivHouseholderQR< _MatrixType >::RealScalar

Definition at line 50 of file ColPivHouseholderQR.h.

template<typename _MatrixType>
typedef internal::plain_row_type<MatrixType>::type Eigen::ColPivHouseholderQR< _MatrixType >::RowVectorType

Definition at line 56 of file ColPivHouseholderQR.h.

template<typename _MatrixType>
typedef MatrixType::Scalar Eigen::ColPivHouseholderQR< _MatrixType >::Scalar

Definition at line 49 of file ColPivHouseholderQR.h.


Member Enumeration Documentation

template<typename _MatrixType>
anonymous enum
Enumerator:
RowsAtCompileTime 
ColsAtCompileTime 
Options 
MaxRowsAtCompileTime 
MaxColsAtCompileTime 

Definition at line 42 of file ColPivHouseholderQR.h.


Constructor & Destructor Documentation

template<typename _MatrixType>
Eigen::ColPivHouseholderQR< _MatrixType >::ColPivHouseholderQR ( ) [inline]

Default Constructor.

The default constructor is useful in cases in which the user intends to perform decompositions via ColPivHouseholderQR::compute(const MatrixType&).

Definition at line 72 of file ColPivHouseholderQR.h.

template<typename _MatrixType>
Eigen::ColPivHouseholderQR< _MatrixType >::ColPivHouseholderQR ( Index  rows,
Index  cols 
) [inline]

Default Constructor with memory preallocation.

Like the default constructor but with preallocation of the internal data according to the specified problem size.

See also:
ColPivHouseholderQR()

Definition at line 87 of file ColPivHouseholderQR.h.

template<typename _MatrixType>
Eigen::ColPivHouseholderQR< _MatrixType >::ColPivHouseholderQR ( const MatrixType matrix) [inline]

Constructs a QR factorization from a given matrix.

This constructor computes the QR factorization of the matrix matrix by calling the method compute(). It is a short cut for:

 ColPivHouseholderQR<MatrixType> qr(matrix.rows(), matrix.cols());
 qr.compute(matrix);
See also:
compute()

Definition at line 109 of file ColPivHouseholderQR.h.


Member Function Documentation

template<typename MatrixType >
MatrixType::RealScalar Eigen::ColPivHouseholderQR< MatrixType >::absDeterminant ( ) const
Returns:
the absolute value of the determinant of the matrix of which *this is the QR decomposition. It has only linear complexity (that is, O(n) where n is the dimension of the square matrix) as the QR decomposition has already been computed.
Note:
This is only for square matrices.
Warning:
a determinant can be very big or small, so for matrices of large enough dimension, there is a risk of overflow/underflow. One way to work around that is to use logAbsDeterminant() instead.
See also:
logAbsDeterminant(), MatrixBase::determinant()

Definition at line 399 of file ColPivHouseholderQR.h.

template<typename _MatrixType>
Index Eigen::ColPivHouseholderQR< _MatrixType >::cols ( void  ) const [inline]

Definition at line 296 of file ColPivHouseholderQR.h.

template<typename _MatrixType>
const PermutationType& Eigen::ColPivHouseholderQR< _MatrixType >::colsPermutation ( ) const [inline]
Returns:
a const reference to the column permutation matrix

Definition at line 179 of file ColPivHouseholderQR.h.

template<typename MatrixType >
ColPivHouseholderQR< MatrixType > & Eigen::ColPivHouseholderQR< MatrixType >::compute ( const MatrixType matrix)

Performs the QR factorization of the given matrix matrix. The result of the factorization is stored into *this, and a reference to *this is returned.

See also:
class ColPivHouseholderQR, ColPivHouseholderQR(const MatrixType&)

Definition at line 422 of file ColPivHouseholderQR.h.

template<typename _MatrixType>
Index Eigen::ColPivHouseholderQR< _MatrixType >::dimensionOfKernel ( ) const [inline]
Returns:
the dimension of the kernel of the matrix of which *this is the QR decomposition.
Note:
This method has to determine which pivots should be considered nonzero. For that, it uses the threshold value that you can control by calling setThreshold(const RealScalar&).

Definition at line 237 of file ColPivHouseholderQR.h.

template<typename _MatrixType>
const HCoeffsType& Eigen::ColPivHouseholderQR< _MatrixType >::hCoeffs ( ) const [inline]
Returns:
a const reference to the vector of Householder coefficients used to represent the factor Q.

For advanced uses only.

Definition at line 302 of file ColPivHouseholderQR.h.

Returns:
the matrix Q as a sequence of householder transformations

Definition at line 560 of file ColPivHouseholderQR.h.

template<typename _MatrixType>
ComputationInfo Eigen::ColPivHouseholderQR< _MatrixType >::info ( ) const [inline]

Reports whether the QR factorization was succesful.

Note:
This function always returns Success. It is provided for compatibility with other factorization routines.
Returns:
Success

Definition at line 379 of file ColPivHouseholderQR.h.

template<typename _MatrixType>
const internal::solve_retval<ColPivHouseholderQR, typename MatrixType::IdentityReturnType> Eigen::ColPivHouseholderQR< _MatrixType >::inverse ( void  ) const [inline]
Returns:
the inverse of the matrix of which *this is the QR decomposition.
Note:
If this matrix is not invertible, the returned matrix has undefined coefficients. Use isInvertible() to first determine whether this matrix is invertible.

Definition at line 288 of file ColPivHouseholderQR.h.

template<typename _MatrixType>
bool Eigen::ColPivHouseholderQR< _MatrixType >::isInjective ( ) const [inline]
Returns:
true if the matrix of which *this is the QR decomposition represents an injective linear map, i.e. has trivial kernel; false otherwise.
Note:
This method has to determine which pivots should be considered nonzero. For that, it uses the threshold value that you can control by calling setThreshold(const RealScalar&).

Definition at line 250 of file ColPivHouseholderQR.h.

template<typename _MatrixType>
bool Eigen::ColPivHouseholderQR< _MatrixType >::isInvertible ( ) const [inline]
Returns:
true if the matrix of which *this is the QR decomposition is invertible.
Note:
This method has to determine which pivots should be considered nonzero. For that, it uses the threshold value that you can control by calling setThreshold(const RealScalar&).

Definition at line 275 of file ColPivHouseholderQR.h.

template<typename _MatrixType>
bool Eigen::ColPivHouseholderQR< _MatrixType >::isSurjective ( ) const [inline]
Returns:
true if the matrix of which *this is the QR decomposition represents a surjective linear map; false otherwise.
Note:
This method has to determine which pivots should be considered nonzero. For that, it uses the threshold value that you can control by calling setThreshold(const RealScalar&).

Definition at line 263 of file ColPivHouseholderQR.h.

template<typename MatrixType >
MatrixType::RealScalar Eigen::ColPivHouseholderQR< MatrixType >::logAbsDeterminant ( ) const
Returns:
the natural log of the absolute value of the determinant of the matrix of which *this is the QR decomposition. It has only linear complexity (that is, O(n) where n is the dimension of the square matrix) as the QR decomposition has already been computed.
Note:
This is only for square matrices.
This method is useful to work around the risk of overflow/underflow that's inherent to determinant computation.
See also:
absDeterminant(), MatrixBase::determinant()

Definition at line 408 of file ColPivHouseholderQR.h.

template<typename _MatrixType>
HouseholderSequenceType Eigen::ColPivHouseholderQR< _MatrixType >::matrixQ ( void  ) const [inline]

Definition at line 148 of file ColPivHouseholderQR.h.

template<typename _MatrixType>
const MatrixType& Eigen::ColPivHouseholderQR< _MatrixType >::matrixQR ( ) const [inline]
Returns:
a reference to the matrix where the Householder QR decomposition is stored

Definition at line 155 of file ColPivHouseholderQR.h.

template<typename _MatrixType>
const MatrixType& Eigen::ColPivHouseholderQR< _MatrixType >::matrixR ( void  ) const [inline]
Returns:
a reference to the matrix where the result Householder QR is stored
Warning:
The strict lower part of this matrix contains internal values. Only the upper triangular part should be referenced. To get it, use
 matrixR().template triangularView<Upper>() 
For rank-deficient matrices, use
 matrixR().topLeftCorner(rank(), rank()).template triangularView<Upper>() 

Definition at line 170 of file ColPivHouseholderQR.h.

template<typename _MatrixType>
RealScalar Eigen::ColPivHouseholderQR< _MatrixType >::maxPivot ( ) const [inline]
Returns:
the absolute value of the biggest pivot, i.e. the biggest diagonal coefficient of R.

Definition at line 371 of file ColPivHouseholderQR.h.

template<typename _MatrixType>
Index Eigen::ColPivHouseholderQR< _MatrixType >::nonzeroPivots ( ) const [inline]
Returns:
the number of nonzero pivots in the QR decomposition. Here nonzero is meant in the exact sense, not in a fuzzy sense. So that notion isn't really intrinsically interesting, but it is still useful when implementing algorithms.
See also:
rank()

Definition at line 362 of file ColPivHouseholderQR.h.

template<typename _MatrixType>
Index Eigen::ColPivHouseholderQR< _MatrixType >::rank ( ) const [inline]
Returns:
the rank of the matrix of which *this is the QR decomposition.
Note:
This method has to determine which pivots should be considered nonzero. For that, it uses the threshold value that you can control by calling setThreshold(const RealScalar&).

Definition at line 220 of file ColPivHouseholderQR.h.

template<typename _MatrixType>
Index Eigen::ColPivHouseholderQR< _MatrixType >::rows ( void  ) const [inline]

Definition at line 295 of file ColPivHouseholderQR.h.

template<typename _MatrixType>
ColPivHouseholderQR& Eigen::ColPivHouseholderQR< _MatrixType >::setThreshold ( const RealScalar threshold) [inline]

Allows to prescribe a threshold to be used by certain methods, such as rank(), who need to determine when pivots are to be considered nonzero. This is not used for the QR decomposition itself.

When it needs to get the threshold value, Eigen calls threshold(). By default, this uses a formula to automatically determine a reasonable threshold. Once you have called the present method setThreshold(const RealScalar&), your value is used instead.

Parameters:
thresholdThe new value to use as the threshold.

A pivot will be considered nonzero if its absolute value is strictly greater than $ \vert pivot \vert \leqslant threshold \times \vert maxpivot \vert $ where maxpivot is the biggest pivot.

If you want to come back to the default behavior, call setThreshold(Default_t)

Definition at line 321 of file ColPivHouseholderQR.h.

template<typename _MatrixType>
ColPivHouseholderQR& Eigen::ColPivHouseholderQR< _MatrixType >::setThreshold ( Default_t  ) [inline]

Allows to come back to the default behavior, letting Eigen use its default formula for determining the threshold.

You should pass the special object Eigen::Default as parameter here.

 qr.setThreshold(Eigen::Default); 

See the documentation of setThreshold(const RealScalar&).

Definition at line 336 of file ColPivHouseholderQR.h.

template<typename _MatrixType>
template<typename Rhs >
const internal::solve_retval<ColPivHouseholderQR, Rhs> Eigen::ColPivHouseholderQR< _MatrixType >::solve ( const MatrixBase< Rhs > &  b) const [inline]

This method finds a solution x to the equation Ax=b, where A is the matrix of which *this is the QR decomposition, if any exists.

Parameters:
bthe right-hand-side of the equation to solve.
Returns:
a solution.
Note:
The case where b is a matrix is not yet implemented. Also, this code is space inefficient.

Example:

Output:

Definition at line 141 of file ColPivHouseholderQR.h.

template<typename _MatrixType>
RealScalar Eigen::ColPivHouseholderQR< _MatrixType >::threshold ( ) const [inline]

Returns the threshold that will be used by certain methods such as rank().

See the documentation of setThreshold(const RealScalar&).

Definition at line 346 of file ColPivHouseholderQR.h.


Member Data Documentation

template<typename _MatrixType>
PermutationType Eigen::ColPivHouseholderQR< _MatrixType >::m_colsPermutation [protected]

Definition at line 388 of file ColPivHouseholderQR.h.

template<typename _MatrixType>
RealRowVectorType Eigen::ColPivHouseholderQR< _MatrixType >::m_colSqNorms [protected]

Definition at line 391 of file ColPivHouseholderQR.h.

template<typename _MatrixType>
IntRowVectorType Eigen::ColPivHouseholderQR< _MatrixType >::m_colsTranspositions [protected]

Definition at line 389 of file ColPivHouseholderQR.h.

template<typename _MatrixType>
Index Eigen::ColPivHouseholderQR< _MatrixType >::m_det_pq [protected]

Definition at line 395 of file ColPivHouseholderQR.h.

template<typename _MatrixType>
HCoeffsType Eigen::ColPivHouseholderQR< _MatrixType >::m_hCoeffs [protected]

Definition at line 387 of file ColPivHouseholderQR.h.

template<typename _MatrixType>
bool Eigen::ColPivHouseholderQR< _MatrixType >::m_isInitialized [protected]

Definition at line 392 of file ColPivHouseholderQR.h.

template<typename _MatrixType>
RealScalar Eigen::ColPivHouseholderQR< _MatrixType >::m_maxpivot [protected]

Definition at line 393 of file ColPivHouseholderQR.h.

template<typename _MatrixType>
Index Eigen::ColPivHouseholderQR< _MatrixType >::m_nonzero_pivots [protected]

Definition at line 394 of file ColPivHouseholderQR.h.

template<typename _MatrixType>
RealScalar Eigen::ColPivHouseholderQR< _MatrixType >::m_prescribedThreshold [protected]

Definition at line 393 of file ColPivHouseholderQR.h.

template<typename _MatrixType>
MatrixType Eigen::ColPivHouseholderQR< _MatrixType >::m_qr [protected]

Definition at line 386 of file ColPivHouseholderQR.h.

template<typename _MatrixType>
RowVectorType Eigen::ColPivHouseholderQR< _MatrixType >::m_temp [protected]

Definition at line 390 of file ColPivHouseholderQR.h.

template<typename _MatrixType>
bool Eigen::ColPivHouseholderQR< _MatrixType >::m_usePrescribedThreshold [protected]

Definition at line 392 of file ColPivHouseholderQR.h.


The documentation for this class was generated from the following file:


acado
Author(s): Milan Vukov, Rien Quirynen
autogenerated on Thu Aug 27 2015 12:01:46