00001
00002
00003
00004
00005
00006
00007
00008
00009
00010
00011 #ifndef EIGEN_MATRIX_EXPONENTIAL
00012 #define EIGEN_MATRIX_EXPONENTIAL
00013
00014 #include "StemFunction.h"
00015
00016 namespace Eigen {
00017
00023 template <typename MatrixType>
00024 class MatrixExponential {
00025
00026 public:
00027
00035 MatrixExponential(const MatrixType &M);
00036
00041 template <typename ResultType>
00042 void compute(ResultType &result);
00043
00044 private:
00045
00046
00047 MatrixExponential(const MatrixExponential&);
00048 MatrixExponential& operator=(const MatrixExponential&);
00049
00057 void pade3(const MatrixType &A);
00058
00066 void pade5(const MatrixType &A);
00067
00075 void pade7(const MatrixType &A);
00076
00084 void pade9(const MatrixType &A);
00085
00093 void pade13(const MatrixType &A);
00094
00104 void pade17(const MatrixType &A);
00105
00119 void computeUV(double);
00120
00125 void computeUV(float);
00126
00131 void computeUV(long double);
00132
00133 typedef typename internal::traits<MatrixType>::Scalar Scalar;
00134 typedef typename NumTraits<Scalar>::Real RealScalar;
00135 typedef typename std::complex<RealScalar> ComplexScalar;
00136
00138 typename internal::nested<MatrixType>::type m_M;
00139
00141 MatrixType m_U;
00142
00144 MatrixType m_V;
00145
00147 MatrixType m_tmp1;
00148
00150 MatrixType m_tmp2;
00151
00153 MatrixType m_Id;
00154
00156 int m_squarings;
00157
00159 RealScalar m_l1norm;
00160 };
00161
00162 template <typename MatrixType>
00163 MatrixExponential<MatrixType>::MatrixExponential(const MatrixType &M) :
00164 m_M(M),
00165 m_U(M.rows(),M.cols()),
00166 m_V(M.rows(),M.cols()),
00167 m_tmp1(M.rows(),M.cols()),
00168 m_tmp2(M.rows(),M.cols()),
00169 m_Id(MatrixType::Identity(M.rows(), M.cols())),
00170 m_squarings(0),
00171 m_l1norm(M.cwiseAbs().colwise().sum().maxCoeff())
00172 {
00173
00174 }
00175
00176 template <typename MatrixType>
00177 template <typename ResultType>
00178 void MatrixExponential<MatrixType>::compute(ResultType &result)
00179 {
00180 #if LDBL_MANT_DIG > 112 // rarely happens
00181 if(sizeof(RealScalar) > 14) {
00182 result = m_M.matrixFunction(StdStemFunctions<ComplexScalar>::exp);
00183 return;
00184 }
00185 #endif
00186 computeUV(RealScalar());
00187 m_tmp1 = m_U + m_V;
00188 m_tmp2 = -m_U + m_V;
00189 result = m_tmp2.partialPivLu().solve(m_tmp1);
00190 for (int i=0; i<m_squarings; i++)
00191 result *= result;
00192 }
00193
00194 template <typename MatrixType>
00195 EIGEN_STRONG_INLINE void MatrixExponential<MatrixType>::pade3(const MatrixType &A)
00196 {
00197 const RealScalar b[] = {120., 60., 12., 1.};
00198 m_tmp1.noalias() = A * A;
00199 m_tmp2 = b[3]*m_tmp1 + b[1]*m_Id;
00200 m_U.noalias() = A * m_tmp2;
00201 m_V = b[2]*m_tmp1 + b[0]*m_Id;
00202 }
00203
00204 template <typename MatrixType>
00205 EIGEN_STRONG_INLINE void MatrixExponential<MatrixType>::pade5(const MatrixType &A)
00206 {
00207 const RealScalar b[] = {30240., 15120., 3360., 420., 30., 1.};
00208 MatrixType A2 = A * A;
00209 m_tmp1.noalias() = A2 * A2;
00210 m_tmp2 = b[5]*m_tmp1 + b[3]*A2 + b[1]*m_Id;
00211 m_U.noalias() = A * m_tmp2;
00212 m_V = b[4]*m_tmp1 + b[2]*A2 + b[0]*m_Id;
00213 }
00214
00215 template <typename MatrixType>
00216 EIGEN_STRONG_INLINE void MatrixExponential<MatrixType>::pade7(const MatrixType &A)
00217 {
00218 const RealScalar b[] = {17297280., 8648640., 1995840., 277200., 25200., 1512., 56., 1.};
00219 MatrixType A2 = A * A;
00220 MatrixType A4 = A2 * A2;
00221 m_tmp1.noalias() = A4 * A2;
00222 m_tmp2 = b[7]*m_tmp1 + b[5]*A4 + b[3]*A2 + b[1]*m_Id;
00223 m_U.noalias() = A * m_tmp2;
00224 m_V = b[6]*m_tmp1 + b[4]*A4 + b[2]*A2 + b[0]*m_Id;
00225 }
00226
00227 template <typename MatrixType>
00228 EIGEN_STRONG_INLINE void MatrixExponential<MatrixType>::pade9(const MatrixType &A)
00229 {
00230 const RealScalar b[] = {17643225600., 8821612800., 2075673600., 302702400., 30270240.,
00231 2162160., 110880., 3960., 90., 1.};
00232 MatrixType A2 = A * A;
00233 MatrixType A4 = A2 * A2;
00234 MatrixType A6 = A4 * A2;
00235 m_tmp1.noalias() = A6 * A2;
00236 m_tmp2 = b[9]*m_tmp1 + b[7]*A6 + b[5]*A4 + b[3]*A2 + b[1]*m_Id;
00237 m_U.noalias() = A * m_tmp2;
00238 m_V = b[8]*m_tmp1 + b[6]*A6 + b[4]*A4 + b[2]*A2 + b[0]*m_Id;
00239 }
00240
00241 template <typename MatrixType>
00242 EIGEN_STRONG_INLINE void MatrixExponential<MatrixType>::pade13(const MatrixType &A)
00243 {
00244 const RealScalar b[] = {64764752532480000., 32382376266240000., 7771770303897600.,
00245 1187353796428800., 129060195264000., 10559470521600., 670442572800.,
00246 33522128640., 1323241920., 40840800., 960960., 16380., 182., 1.};
00247 MatrixType A2 = A * A;
00248 MatrixType A4 = A2 * A2;
00249 m_tmp1.noalias() = A4 * A2;
00250 m_V = b[13]*m_tmp1 + b[11]*A4 + b[9]*A2;
00251 m_tmp2.noalias() = m_tmp1 * m_V;
00252 m_tmp2 += b[7]*m_tmp1 + b[5]*A4 + b[3]*A2 + b[1]*m_Id;
00253 m_U.noalias() = A * m_tmp2;
00254 m_tmp2 = b[12]*m_tmp1 + b[10]*A4 + b[8]*A2;
00255 m_V.noalias() = m_tmp1 * m_tmp2;
00256 m_V += b[6]*m_tmp1 + b[4]*A4 + b[2]*A2 + b[0]*m_Id;
00257 }
00258
00259 #if LDBL_MANT_DIG > 64
00260 template <typename MatrixType>
00261 EIGEN_STRONG_INLINE void MatrixExponential<MatrixType>::pade17(const MatrixType &A)
00262 {
00263 const RealScalar b[] = {830034394580628357120000.L, 415017197290314178560000.L,
00264 100610229646136770560000.L, 15720348382208870400000.L,
00265 1774878043152614400000.L, 153822763739893248000.L, 10608466464820224000.L,
00266 595373117923584000.L, 27563570274240000.L, 1060137318240000.L,
00267 33924394183680.L, 899510451840.L, 19554575040.L, 341863200.L, 4651200.L,
00268 46512.L, 306.L, 1.L};
00269 MatrixType A2 = A * A;
00270 MatrixType A4 = A2 * A2;
00271 MatrixType A6 = A4 * A2;
00272 m_tmp1.noalias() = A4 * A4;
00273 m_V = b[17]*m_tmp1 + b[15]*A6 + b[13]*A4 + b[11]*A2;
00274 m_tmp2.noalias() = m_tmp1 * m_V;
00275 m_tmp2 += b[9]*m_tmp1 + b[7]*A6 + b[5]*A4 + b[3]*A2 + b[1]*m_Id;
00276 m_U.noalias() = A * m_tmp2;
00277 m_tmp2 = b[16]*m_tmp1 + b[14]*A6 + b[12]*A4 + b[10]*A2;
00278 m_V.noalias() = m_tmp1 * m_tmp2;
00279 m_V += b[8]*m_tmp1 + b[6]*A6 + b[4]*A4 + b[2]*A2 + b[0]*m_Id;
00280 }
00281 #endif
00282
00283 template <typename MatrixType>
00284 void MatrixExponential<MatrixType>::computeUV(float)
00285 {
00286 using std::frexp;
00287 using std::pow;
00288 if (m_l1norm < 4.258730016922831e-001) {
00289 pade3(m_M);
00290 } else if (m_l1norm < 1.880152677804762e+000) {
00291 pade5(m_M);
00292 } else {
00293 const float maxnorm = 3.925724783138660f;
00294 frexp(m_l1norm / maxnorm, &m_squarings);
00295 if (m_squarings < 0) m_squarings = 0;
00296 MatrixType A = m_M / pow(Scalar(2), m_squarings);
00297 pade7(A);
00298 }
00299 }
00300
00301 template <typename MatrixType>
00302 void MatrixExponential<MatrixType>::computeUV(double)
00303 {
00304 using std::frexp;
00305 using std::pow;
00306 if (m_l1norm < 1.495585217958292e-002) {
00307 pade3(m_M);
00308 } else if (m_l1norm < 2.539398330063230e-001) {
00309 pade5(m_M);
00310 } else if (m_l1norm < 9.504178996162932e-001) {
00311 pade7(m_M);
00312 } else if (m_l1norm < 2.097847961257068e+000) {
00313 pade9(m_M);
00314 } else {
00315 const double maxnorm = 5.371920351148152;
00316 frexp(m_l1norm / maxnorm, &m_squarings);
00317 if (m_squarings < 0) m_squarings = 0;
00318 MatrixType A = m_M / pow(Scalar(2), m_squarings);
00319 pade13(A);
00320 }
00321 }
00322
00323 template <typename MatrixType>
00324 void MatrixExponential<MatrixType>::computeUV(long double)
00325 {
00326 using std::frexp;
00327 using std::pow;
00328 #if LDBL_MANT_DIG == 53 // double precision
00329 computeUV(double());
00330 #elif LDBL_MANT_DIG <= 64 // extended precision
00331 if (m_l1norm < 4.1968497232266989671e-003L) {
00332 pade3(m_M);
00333 } else if (m_l1norm < 1.1848116734693823091e-001L) {
00334 pade5(m_M);
00335 } else if (m_l1norm < 5.5170388480686700274e-001L) {
00336 pade7(m_M);
00337 } else if (m_l1norm < 1.3759868875587845383e+000L) {
00338 pade9(m_M);
00339 } else {
00340 const long double maxnorm = 4.0246098906697353063L;
00341 frexp(m_l1norm / maxnorm, &m_squarings);
00342 if (m_squarings < 0) m_squarings = 0;
00343 MatrixType A = m_M / pow(Scalar(2), m_squarings);
00344 pade13(A);
00345 }
00346 #elif LDBL_MANT_DIG <= 106 // double-double
00347 if (m_l1norm < 3.2787892205607026992947488108213e-005L) {
00348 pade3(m_M);
00349 } else if (m_l1norm < 6.4467025060072760084130906076332e-003L) {
00350 pade5(m_M);
00351 } else if (m_l1norm < 6.8988028496595374751374122881143e-002L) {
00352 pade7(m_M);
00353 } else if (m_l1norm < 2.7339737518502231741495857201670e-001L) {
00354 pade9(m_M);
00355 } else if (m_l1norm < 1.3203382096514474905666448850278e+000L) {
00356 pade13(m_M);
00357 } else {
00358 const long double maxnorm = 3.2579440895405400856599663723517L;
00359 frexp(m_l1norm / maxnorm, &m_squarings);
00360 if (m_squarings < 0) m_squarings = 0;
00361 MatrixType A = m_M / pow(Scalar(2), m_squarings);
00362 pade17(A);
00363 }
00364 #elif LDBL_MANT_DIG <= 112 // quadruple precison
00365 if (m_l1norm < 1.639394610288918690547467954466970e-005L) {
00366 pade3(m_M);
00367 } else if (m_l1norm < 4.253237712165275566025884344433009e-003L) {
00368 pade5(m_M);
00369 } else if (m_l1norm < 5.125804063165764409885122032933142e-002L) {
00370 pade7(m_M);
00371 } else if (m_l1norm < 2.170000765161155195453205651889853e-001L) {
00372 pade9(m_M);
00373 } else if (m_l1norm < 1.125358383453143065081397882891878e+000L) {
00374 pade13(m_M);
00375 } else {
00376 const long double maxnorm = 2.884233277829519311757165057717815L;
00377 frexp(m_l1norm / maxnorm, &m_squarings);
00378 if (m_squarings < 0) m_squarings = 0;
00379 MatrixType A = m_M / pow(Scalar(2), m_squarings);
00380 pade17(A);
00381 }
00382 #else
00383
00384 eigen_assert(false && "Bug in MatrixExponential");
00385 #endif // LDBL_MANT_DIG
00386 }
00387
00400 template<typename Derived> struct MatrixExponentialReturnValue
00401 : public ReturnByValue<MatrixExponentialReturnValue<Derived> >
00402 {
00403 typedef typename Derived::Index Index;
00404 public:
00410 MatrixExponentialReturnValue(const Derived& src) : m_src(src) { }
00411
00417 template <typename ResultType>
00418 inline void evalTo(ResultType& result) const
00419 {
00420 const typename Derived::PlainObject srcEvaluated = m_src.eval();
00421 MatrixExponential<typename Derived::PlainObject> me(srcEvaluated);
00422 me.compute(result);
00423 }
00424
00425 Index rows() const { return m_src.rows(); }
00426 Index cols() const { return m_src.cols(); }
00427
00428 protected:
00429 const Derived& m_src;
00430 private:
00431 MatrixExponentialReturnValue& operator=(const MatrixExponentialReturnValue&);
00432 };
00433
00434 namespace internal {
00435 template<typename Derived>
00436 struct traits<MatrixExponentialReturnValue<Derived> >
00437 {
00438 typedef typename Derived::PlainObject ReturnType;
00439 };
00440 }
00441
00442 template <typename Derived>
00443 const MatrixExponentialReturnValue<Derived> MatrixBase<Derived>::exp() const
00444 {
00445 eigen_assert(rows() == cols());
00446 return MatrixExponentialReturnValue<Derived>(derived());
00447 }
00448
00449 }
00450
00451 #endif // EIGEN_MATRIX_EXPONENTIAL