56 -1.50000000000000000000E0,
58 6.44934066848226436472E-1,
59 2.02056903159594285400E-1,
60 8.23232337111381915160E-2,
61 3.69277551433699263314E-2,
62 1.73430619844491397145E-2,
63 8.34927738192282683980E-3,
64 4.07735619794433937869E-3,
65 2.00839282608221441785E-3,
66 9.94575127818085337146E-4,
67 4.94188604119464558702E-4,
68 2.46086553308048298638E-4,
69 1.22713347578489146752E-4,
70 6.12481350587048292585E-5,
71 3.05882363070204935517E-5,
72 1.52822594086518717326E-5,
73 7.63719763789976227360E-6,
74 3.81729326499983985646E-6,
75 1.90821271655393892566E-6,
76 9.53962033872796113152E-7,
77 4.76932986787806463117E-7,
78 2.38450502727732990004E-7,
79 1.19219925965311073068E-7,
80 5.96081890512594796124E-8,
81 2.98035035146522801861E-8,
82 1.49015548283650412347E-8,
83 7.45071178983542949198E-9,
84 3.72533402478845705482E-9,
85 1.86265972351304900640E-9,
86 9.31327432419668182872E-10
90 static double P[9] = {
91 5.85746514569725319540E11,
92 2.57534127756102572888E11,
93 4.87781159567948256438E10,
94 5.15399538023885770696E9,
95 3.41646073514754094281E8,
96 1.60837006880656492731E7,
97 5.92785467342109522998E5,
98 1.51129169964938823117E4,
99 2.01822444485997955865E2,
102 static double Q[8] = {
104 3.90497676373371157516E11,
105 5.22858235368272161797E10,
106 5.64451517271280543351E9,
107 3.39006746015350418834E8,
108 1.79410371500126453702E7,
109 5.66666825131384797029E5,
110 1.60382976810944131506E4,
111 1.96436237223387314144E2,
115 static double A[11] = {
116 8.70728567484590192539E6,
117 1.76506865670346462757E8,
118 2.60889506707483264896E10,
119 5.29806374009894791647E11,
120 2.26888156119238241487E13,
121 3.31884402932705083599E14,
122 5.13778997975868230192E15,
123 -1.98123688133907171455E15,
124 -9.92763810039983572356E16,
125 7.82905376180870586444E16,
126 9.26786275768927717187E16,
129 static double B[10] = {
131 -7.92625410563741062861E6,
132 -1.60529969932920229676E8,
133 -2.37669260975543221788E10,
134 -4.80319584350455169857E11,
135 -2.07820961754173320170E13,
136 -2.96075404507272223680E14,
137 -4.86299103694609136686E15,
138 5.34589509675789930199E15,
139 5.71464111092297631292E16,
140 -1.79915597658676556828E16,
144 static double R[6] = {
145 -3.28717474506562731748E-1,
146 1.55162528742623950834E1,
147 -2.48762831680821954401E2,
148 1.01050368053237678329E3,
149 1.26726061410235149405E4,
150 -1.11578094770515181334E5,
153 static double S[5] = {
155 1.95107674914060531512E1,
156 3.17710311750646984099E2,
157 3.03835500874445748734E3,
158 2.03665876435770579345E4,
159 7.43853965136767874343E4,
163 -1.0000000009110164892,
164 -1.0000000057646759799,
165 -9.9999983138417361078e-1,
166 -1.0000013011460139596,
167 -1.000001940896320456,
168 -9.9987929950057116496e-1,
169 -1.000785194477042408,
170 -1.0031782279542924256,
171 -9.1893853320467274178e-1,
176 #define SQRT_2_PI 0.79788456080286535587989
193 else if (
x == -INFINITY) {
196 else if (x < 0.0 && x > -0.01) {
216 else if (
x == -INFINITY) {
219 else if (x < 0.0 && x > -0.01) {
256 return (*(
double *) &
azetac[4 *
i]);
268 b =
pow(2.0,
x) * (
x - 1.0);
292 s = (
s +
b) / (1.0 -
b);
313 double base, large_term, small_term, hx, x_shift;
316 if (hx ==
floor(hx)) {
322 x_shift =
fmod(
x, 4);
330 return large_term * small_term;
343 large_term =
pow(
base, 0.5 *
x + 0.25);
344 return (large_term * small_term) * large_term;