Classes | Typedefs
gtsam::noiseModel::mEstimator Namespace Reference

Classes

class  AsymmetricCauchy
 
class  AsymmetricTukey
 
class  Base
 
class  Cauchy
 
class  Custom
 
class  DCS
 
class  Fair
 
class  GemanMcClure
 
class  Huber
 
class  L2WithDeadZone
 
class  Null
 
class  Tukey
 
class  Welsch
 

Typedefs

using CustomLossFunction = std::function< double(double)>
 
using CustomWeightFunction = std::function< double(double)>
 

Detailed Description

The mEstimator name space contains all robust error functions. It mirrors the exposition at https://members.loria.fr/MOBerger/Enseignement/Master2/Documents/ZhangIVC-97-01.pdf which talks about minimizing \sum \rho(r_i), where \rho is a loss function of choice.

To illustrate, let's consider the least-squares (L2), L1, and Huber estimators as examples:

Name Symbol Least-Squares L1-norm Huber Loss \rho(x) 0.5*x^2 |x| 0.5*x^2 if |x|<k, 0.5*k^2 + k|x-k| otherwise Derivative \phi(x) x sgn(x) x if |x|<k, k sgn(x) otherwise Weight w(x)=\phi(x)/x 1 1/|x| 1 if |x|<k, k/|x| otherwise

With these definitions, D(\rho(x), p) = \phi(x) D(x,p) = w(x) x D(x,p) = w(x) D(L2(x), p), and hence we can solve the equivalent weighted least squares problem \sum w(r_i) \rho(r_i)

Each M-estimator in the mEstimator name space simply implements the above functions.

Typedef Documentation

◆ CustomLossFunction

using gtsam::noiseModel::mEstimator::CustomLossFunction = typedef std::function<double(double)>

Definition at line 548 of file LossFunctions.h.

◆ CustomWeightFunction

using gtsam::noiseModel::mEstimator::CustomWeightFunction = typedef std::function<double(double)>

Definition at line 549 of file LossFunctions.h.



gtsam
Author(s):
autogenerated on Sun Dec 22 2024 04:24:55