Public Types | Public Member Functions | Static Public Member Functions | List of all members
gtsam::noiseModel::mEstimator::Null Class Reference

#include <LossFunctions.h>

Inheritance diagram for gtsam::noiseModel::mEstimator::Null:
Inheritance graph
[legend]

Public Types

typedef std::shared_ptr< Nullshared_ptr
 
- Public Types inherited from gtsam::noiseModel::mEstimator::Base
enum  ReweightScheme { Scalar, Block }
 
typedef std::shared_ptr< Baseshared_ptr
 

Public Member Functions

bool equals (const Base &, double) const override
 
double loss (double distance) const override
 
 Null (const ReweightScheme reweight=Block)
 
void print (const std::string &s) const override
 
double weight (double) const override
 
 ~Null () override
 
- Public Member Functions inherited from gtsam::noiseModel::mEstimator::Base
 Base (const ReweightScheme reweight=Block)
 
void reweight (Matrix &A, Vector &error) const
 
void reweight (Matrix &A1, Matrix &A2, Matrix &A3, Vector &error) const
 
void reweight (Matrix &A1, Matrix &A2, Vector &error) const
 
void reweight (std::vector< Matrix > &A, Vector &error) const
 
void reweight (Vector &error) const
 
ReweightScheme reweightScheme () const
 Returns the reweight scheme, as explained in ReweightScheme. More...
 
Vector sqrtWeight (const Vector &error) const
 
double sqrtWeight (double distance) const
 
Vector weight (const Vector &error) const
 
virtual ~Base ()
 

Static Public Member Functions

static shared_ptr Create ()
 

Additional Inherited Members

- Protected Attributes inherited from gtsam::noiseModel::mEstimator::Base
ReweightScheme reweight_
 Strategy for reweighting. More...
 

Detailed Description

"Null" robust loss function, equivalent to a Gaussian pdf noise model, or plain least-squares (non-robust).

This model has no additional parameters.

Definition at line 151 of file LossFunctions.h.

Member Typedef Documentation

◆ shared_ptr

Definition at line 153 of file LossFunctions.h.

Constructor & Destructor Documentation

◆ Null()

gtsam::noiseModel::mEstimator::Null::Null ( const ReweightScheme  reweight = Block)
inline

Definition at line 155 of file LossFunctions.h.

◆ ~Null()

gtsam::noiseModel::mEstimator::Null::~Null ( )
inlineoverride

Definition at line 156 of file LossFunctions.h.

Member Function Documentation

◆ Create()

Null::shared_ptr gtsam::noiseModel::mEstimator::Null::Create ( )
static

Definition at line 133 of file LossFunctions.cpp.

◆ equals()

bool gtsam::noiseModel::mEstimator::Null::equals ( const Base ,
double   
) const
inlineoverridevirtual

Implements gtsam::noiseModel::mEstimator::Base.

Definition at line 160 of file LossFunctions.h.

◆ loss()

double gtsam::noiseModel::mEstimator::Null::loss ( double  distance) const
inlineoverridevirtual

This method is responsible for returning the total penalty for a given amount of error. For example, this method is responsible for implementing the quadratic function for an L2 penalty, the absolute value function for an L1 penalty, etc.

TODO(mikebosse): When the loss function has as input the norm of the error vector, then it prevents implementations of asymmeric loss functions. It would be better for this function to accept the vector and internally call the norm if necessary.

This returns $\rho(x)$ in mEstimator

Reimplemented from gtsam::noiseModel::mEstimator::Base.

Definition at line 158 of file LossFunctions.h.

◆ print()

void gtsam::noiseModel::mEstimator::Null::print ( const std::string &  s = "") const
overridevirtual

Implements gtsam::noiseModel::mEstimator::Base.

Definition at line 130 of file LossFunctions.cpp.

◆ weight()

double gtsam::noiseModel::mEstimator::Null::weight ( double  distance) const
inlineoverridevirtual

This method is responsible for returning the weight function for a given amount of error. The weight function is related to the analytic derivative of the loss function. See https://members.loria.fr/MOBerger/Enseignement/Master2/Documents/ZhangIVC-97-01.pdf for details. This method is required when optimizing cost functions with robust penalties using iteratively re-weighted least squares.

This returns w(x) in mEstimator

Implements gtsam::noiseModel::mEstimator::Base.

Definition at line 157 of file LossFunctions.h.


The documentation for this class was generated from the following files:


gtsam
Author(s):
autogenerated on Sat Jan 4 2025 04:14:40