Modules | |
Global aligned box typedefs | |
Classes | |
class | Eigen::AlignedBox |
An axis aligned box. More... | |
class | Eigen::AngleAxis |
Represents a 3D rotation as a rotation angle around an arbitrary 3D axis. More... | |
class | Eigen::Homogeneous |
Expression of one (or a set of) homogeneous vector(s) More... | |
class | Eigen::Hyperplane |
A hyperplane. More... | |
class | Eigen::Map< const Quaternion< _Scalar >, _Options > |
Quaternion expression mapping a constant memory buffer. More... | |
class | Eigen::Map< Quaternion< _Scalar >, _Options > |
Expression of a quaternion from a memory buffer. More... | |
class | Eigen::ParametrizedLine |
A parametrized line. More... | |
class | Eigen::Quaternion |
The quaternion class used to represent 3D orientations and rotations. More... | |
class | Eigen::QuaternionBase |
Base class for quaternion expressions. More... | |
class | Eigen::Rotation2D |
Represents a rotation/orientation in a 2 dimensional space. More... | |
class | Eigen::Transform |
Represents an homogeneous transformation in a N dimensional space. More... | |
class | Eigen::Translation |
Represents a translation transformation. More... | |
class | Eigen::UniformScaling |
Represents a generic uniform scaling transformation. More... | |
typedef Transform<double,2,Affine> Eigen::Affine2d |
Definition at line 708 of file Transform.h.
typedef Transform<float,2,Affine> Eigen::Affine2f |
Definition at line 704 of file Transform.h.
typedef Transform<double,3,Affine> Eigen::Affine3d |
Definition at line 710 of file Transform.h.
typedef Transform<float,3,Affine> Eigen::Affine3f |
Definition at line 706 of file Transform.h.
typedef Transform<double,2,AffineCompact> Eigen::AffineCompact2d |
Definition at line 717 of file Transform.h.
typedef Transform<float,2,AffineCompact> Eigen::AffineCompact2f |
Definition at line 713 of file Transform.h.
typedef Transform<double,3,AffineCompact> Eigen::AffineCompact3d |
Definition at line 719 of file Transform.h.
typedef Transform<float,3,AffineCompact> Eigen::AffineCompact3f |
Definition at line 715 of file Transform.h.
typedef AngleAxis<double> Eigen::AngleAxisd |
double precision angle-axis type
Definition at line 160 of file AngleAxis.h.
typedef AngleAxis<float> Eigen::AngleAxisf |
single precision angle-axis type
Definition at line 157 of file AngleAxis.h.
typedef Transform<double,2,Isometry> Eigen::Isometry2d |
Definition at line 699 of file Transform.h.
typedef Transform<float,2,Isometry> Eigen::Isometry2f |
Definition at line 695 of file Transform.h.
typedef Transform<double,3,Isometry> Eigen::Isometry3d |
Definition at line 701 of file Transform.h.
typedef Transform<float,3,Isometry> Eigen::Isometry3f |
Definition at line 697 of file Transform.h.
typedef Transform<double,2,Projective> Eigen::Projective2d |
Definition at line 726 of file Transform.h.
typedef Transform<float,2,Projective> Eigen::Projective2f |
Definition at line 722 of file Transform.h.
typedef Transform<double,3,Projective> Eigen::Projective3d |
Definition at line 728 of file Transform.h.
typedef Transform<float,3,Projective> Eigen::Projective3f |
Definition at line 724 of file Transform.h.
typedef Quaternion<double> Eigen::Quaterniond |
double precision quaternion type
Definition at line 366 of file 3rdparty/Eigen/Eigen/src/Geometry/Quaternion.h.
typedef Quaternion<float> Eigen::Quaternionf |
single precision quaternion type
Definition at line 363 of file 3rdparty/Eigen/Eigen/src/Geometry/Quaternion.h.
typedef Map<Quaternion<double>, Aligned> Eigen::QuaternionMapAlignedd |
Map a 16-byte aligned array of double precision scalars as a quaternion
Definition at line 478 of file 3rdparty/Eigen/Eigen/src/Geometry/Quaternion.h.
typedef Map<Quaternion<float>, Aligned> Eigen::QuaternionMapAlignedf |
Map a 16-byte aligned array of single precision scalars as a quaternion
Definition at line 475 of file 3rdparty/Eigen/Eigen/src/Geometry/Quaternion.h.
typedef Map<Quaternion<double>, 0> Eigen::QuaternionMapd |
Map an unaligned array of double precision scalars as a quaternion
Definition at line 472 of file 3rdparty/Eigen/Eigen/src/Geometry/Quaternion.h.
typedef Map<Quaternion<float>, 0> Eigen::QuaternionMapf |
Map an unaligned array of single precision scalars as a quaternion
Definition at line 469 of file 3rdparty/Eigen/Eigen/src/Geometry/Quaternion.h.
typedef Rotation2D<double> Eigen::Rotation2Dd |
double precision 2D rotation type
Definition at line 168 of file Rotation2D.h.
typedef Rotation2D<float> Eigen::Rotation2Df |
single precision 2D rotation type
Definition at line 165 of file Rotation2D.h.
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE MatrixBase<Derived>::template cross_product_return_type<OtherDerived>::type Eigen::MatrixBase< Derived >::cross | ( | const MatrixBase< OtherDerived > & | other | ) | const |
\geometry_module
*this
and other Here is a very good explanation of cross-product: http://xkcd.com/199/
With complex numbers, the cross product is implemented as
Definition at line 35 of file OrthoMethods.h.
const EIGEN_DEVICE_FUNC VectorwiseOp< ExpressionType, Direction >::CrossReturnType Eigen::VectorwiseOp::cross | ( | const MatrixBase< OtherDerived > & | other | ) | const |
\geometry_module
The referenced matrix must have one dimension equal to 3. The result matrix has the same dimensions than the referenced one.
Definition at line 111 of file OrthoMethods.h.
|
inline |
\geometry_module
*this
and other using only the x, y, and z coefficientsThe size of *this
and other must be four. This function is especially useful when using 4D vectors instead of 3D ones to get advantage of SSE/AltiVec vectorization.
Definition at line 83 of file OrthoMethods.h.
|
inline |
\geometry_module
*this
using the convention defined by the triplet (a0,a1,a2)Each of the three parameters a0,a1,a2 represents the respective rotation axis as an integer in {0,1,2}. For instance, in:
"2" represents the z axis and "0" the x axis, etc. The returned angles are such that we have the following equality:
This corresponds to the right-multiply conventions (with right hand side frames).
The returned angles are in the ranges [0:pi]x[-pi:pi]x[-pi:pi].
Definition at line 37 of file Eigen/src/Geometry/EulerAngles.h.
|
inline |
homogeneous normalization
\geometry_module
*this
divided by that last coefficient.This can be used to convert homogeneous coordinates to affine coordinates.
It is essentially a shortcut for:
Example:
Output:
Definition at line 174 of file Homogeneous.h.
|
inline |
column or row-wise homogeneous normalization
\geometry_module
*this
divided by the last coefficient of each column (or row).This can be used to convert homogeneous coordinates to affine coordinates.
It is conceptually equivalent to calling MatrixBase::hnormalized() to each column (or row) of *this
.
Example:
Output:
Definition at line 198 of file Homogeneous.h.
|
inline |
\geometry_module
This can be used to convert affine coordinates to homogeneous coordinates.
\only_for_vectors
Example:
Output:
Definition at line 132 of file Homogeneous.h.
|
inline |
\geometry_module
This can be used to convert affine coordinates to homogeneous coordinates.
Example:
Output:
Definition at line 150 of file Homogeneous.h.
internal::umeyama_transform_matrix_type<Derived, OtherDerived>::type Eigen::umeyama | ( | const MatrixBase< Derived > & | src, |
const MatrixBase< OtherDerived > & | dst, | ||
bool | with_scaling = true |
||
) |
Returns the transformation between two point sets.
\geometry_module
The algorithm is based on: "Least-squares estimation of transformation parameters between two point patterns", Shinji Umeyama, PAMI 1991, DOI: 10.1109/34.88573
It estimates parameters and such that
is minimized.
The algorithm is based on the analysis of the covariance matrix of the input point sets and where is corresponding to the dimension (which is typically small). The analysis is involving the SVD having a complexity of though the actual computational effort lies in the covariance matrix computation which has an asymptotic lower bound of when the input point sets have dimension .
Currently the method is working only for floating point matrices.
src | Source points . |
dst | Destination points . |
with_scaling | Sets when false is passed. |
minimizing the residual above. This transformation is always returned as an Eigen::Matrix.
|
inline |
\geometry_module
*this
The size of *this
must be at least 2. If the size is exactly 2, then the returned vector is a counter clock wise rotation of *this
, i.e., (-y,x).normalized().
Definition at line 227 of file OrthoMethods.h.