Go to the documentation of this file.
29 class HybridGaussianFactor;
35 :
public DecisionTree<Key, GaussianFactorGraphValuePair> {
50 template <
class FACTOR>
90 void print(
const std::string&
s =
"",
100 double tol = 1
e-9)
const;
122 #ifdef GTSAM_ENABLE_BOOST_SERIALIZATION
124 friend class boost::serialization::access;
125 template <
class Archive>
126 void serialize(Archive& ar,
const unsigned int ) {
127 ar& BOOST_SERIALIZATION_BASE_OBJECT_NVP(
Base);
135 :
public Testable<HybridGaussianProductFactor> {};
Linear Factor Graph where all factors are Gaussians.
istream & operator>>(istream &inputStream, Matrix &destinationMatrix)
Array< double, 1, 3 > e(1./3., 0.5, 2.)
std::pair< GaussianFactorGraph, double > GaussianFactorGraphValuePair
HybridGaussianProductFactor(const std::shared_ptr< FACTOR > &factor)
Construct from a single factor.
const KeyFormatter & formatter
Alias for DecisionTree of GaussianFactorGraphs and their scalar sums.
KeyFormatter DefaultKeyFormatter
Assign default key formatter.
void print(const Matrix &A, const string &s, ostream &stream)
std::function< std::string(Key)> KeyFormatter
Typedef for a function to format a key, i.e. to convert it to a string.
Decision Tree for use in DiscreteFactors.
std::shared_ptr< This > shared_ptr
shared_ptr to this class
HybridGaussianProductFactor operator+(const HybridGaussianProductFactor &a, const HybridGaussianProductFactor &b)
a decision tree is a function from assignments to values.
detail::enable_if_t<!detail::move_never< T >::value, T > move(object &&obj)
Implementation of a discrete-conditioned hybrid factor. Implements a joint discrete-continuous factor...
HybridGaussianProductFactor(Base &&tree)
Construct from DecisionTree.
EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC bfloat16 & operator+=(bfloat16 &a, const bfloat16 &b)
gtsam
Author(s):
autogenerated on Sat Nov 16 2024 04:02:26