Go to the documentation of this file.
89 template <
typename DERIVED>
99 for (
int i = 0;
i <
X.size();
i++)
100 W.row(
i) = DERIVED::CalculateWeights(
N,
X(
i));
115 for (
int i = 0;
i <
X.size();
i++)
116 W.row(
i) = DERIVED::CalculateWeights(
N,
X(
i),
a,
b);
137 :
weights_(DERIVED::CalculateWeights(
N,
x)) {}
144 double apply(
const typename DERIVED::Parameters&
p,
156 void print(
const std::string&
s =
"")
const {
157 std::cout <<
s << (
s !=
"" ?
" " :
"") <<
weights_ << std::endl;
208 return P.matrix() * this->weights_.transpose();
315 T result = T::ChartAtOrigin::Retract(
xi,
H ? &D_result_xi : 0);
320 if (
H) *
H = D_result_xi * (*H);
343 :
weights_(DERIVED::DerivativeWeights(
N,
x)) {}
348 void print(
const std::string&
s =
"")
const {
349 std::cout <<
s << (
s !=
"" ?
" " :
"") <<
weights_ << std::endl;
370 double apply(
const typename DERIVED::Parameters&
p,
373 return (this->weights_ *
p)(0);
430 return P.matrix() * this->weights_.transpose();
465 for (
int j = 0;
j < this->weights_.size();
j++)
489 return P.row(
rowIndex_) * this->weights_.transpose();
double apply(const Matrix &P, OptionalJacobian< -1, -1 > H={}) const
Calculate derivative of component rowIndex_ of F.
set noclip points set clip one set noclip two set bar set border lt lw set xdata set ydata set zdata set x2data set y2data set boxwidth set dummy y set format x g set format y g set format x2 g set format y2 g set format z g set angles radians set nogrid set key title set key left top Right noreverse box linetype linewidth samplen spacing width set nolabel set noarrow set nologscale set logscale x set set pointsize set encoding default set nopolar set noparametric set set set set surface set nocontour set clabel set mapping cartesian set nohidden3d set cntrparam order set cntrparam linear set cntrparam levels auto set cntrparam points set size set set xzeroaxis lt lw set x2zeroaxis lt lw set yzeroaxis lt lw set y2zeroaxis lt lw set tics in set ticslevel set tics set mxtics default set mytics default set mx2tics default set my2tics default set xtics border mirror norotate autofreq set ytics border mirror norotate autofreq set ztics border nomirror norotate autofreq set nox2tics set noy2tics set timestamp bottom norotate set rrange[*:*] noreverse nowriteback set trange[*:*] noreverse nowriteback set urange[*:*] noreverse nowriteback set vrange[*:*] noreverse nowriteback set xlabel matrix size set x2label set timefmt d m y n H
void print(const std::string &s="") const
DerivativeFunctor(size_t N, double x)
static Matrix WeightMatrix(size_t N, const Vector &X, double a, double b)
Calculate weights for all x in vector X, with interval [a,b].
VectorEvaluationFunctor(size_t M, size_t N, double x, double a, double b)
Constructor, with interval [a,b].
Base class for functors below that calculate derivative weights.
typedef and functions to augment Eigen's MatrixXd
double operator()(const typename DERIVED::Parameters &p, OptionalJacobian<-1, -1 > H={}) const
c++ sugar
set noclip points set clip one set noclip two set bar set border lt lw set xdata set ydata set zdata set x2data set y2data set boxwidth set dummy x
EvaluationFunctor(size_t N, double x, double a, double b)
Constructor with interval [a,b].
T apply(const Matrix &P, OptionalJacobian< -1, -1 > H={}) const
Manifold evaluation.
VectorComponentFunctor(size_t M, size_t N, size_t i, double x)
Construct with row index.
DerivativeFunctorBase(size_t N, double x, double a, double b)
ManifoldEvaluationFunctor(size_t N, double x)
Default Constructor.
Vector apply(const Matrix &P, OptionalJacobian< -1, -1 > H={}) const
EvaluationFunctor(size_t N, double x)
Constructor with interval [a,b].
double operator()(const Matrix &P, OptionalJacobian< -1, -1 > H={}) const
c++ sugar
VectorEvaluationFunctor(size_t M, size_t N, double x)
Default Constructor.
DerivativeFunctorBase(size_t N, double x)
Matrix kroneckerProductIdentity(size_t M, const Weights &w)
Function for computing the kronecker product of the 1*N Weight vector w with the MxM identity matrix ...
double apply(const Matrix &P, OptionalJacobian< -1, -1 > H={}) const
Calculate component of component rowIndex_ of P.
static Matrix WeightMatrix(size_t N, const Vector &X)
VectorDerivativeFunctor(size_t M, size_t N, double x)
Default Constructor.
Vector operator()(const Matrix &P, OptionalJacobian< -1, -1 > H={}) const
c++ sugar
Special class for optional Jacobian arguments.
#define EIGEN_MAKE_ALIGNED_OPERATOR_NEW
VectorComponentFunctor()
For serialization.
ManifoldEvaluationFunctor(size_t N, double x, double a, double b)
Constructor, with interval [a,b].
double apply(const typename DERIVED::Parameters &p, OptionalJacobian< -1, -1 > H={}) const
ComponentDerivativeFunctor()
For serialization.
VectorDerivativeFunctor(size_t M, size_t N, double x, double a, double b)
Constructor, with optional interval [a,b].
EIGEN_MAKE_ALIGNED_OPERATOR_NEW VectorDerivativeFunctor()
For serialization.
double apply(const typename DERIVED::Parameters &p, OptionalJacobian<-1, -1 > H={}) const
Regular 1D evaluation.
VectorComponentFunctor(size_t M, size_t N, size_t i, double x, double a, double b)
Construct with row index and interval.
T operator()(const Matrix &P, OptionalJacobian< -1, -1 > H={}) const
c++ sugar
Vector apply(const Matrix &P, OptionalJacobian< -1, -1 > H={}) const
M-dimensional evaluation.
Vector operator()(const Matrix &P, OptionalJacobian< -1, -1 > H={}) const
c++ sugar
ManifoldEvaluationFunctor()
For serialization.
void print(const std::string &s="") const
DerivativeFunctor(size_t N, double x, double a, double b)
double operator()(const Matrix &P, OptionalJacobian< -1, -1 > H={}) const
c++ sugar
EIGEN_DEVICE_FUNC Derived & setZero(Index size)
DerivativeFunctor()
For serialization.
EvaluationFunctor()
For serialization.
EIGEN_MAKE_ALIGNED_OPERATOR_NEW VectorEvaluationFunctor()
For serialization.
double operator()(const typename DERIVED::Parameters &p, OptionalJacobian< -1, -1 > H={}) const
c++ sugar
ComponentDerivativeFunctor(size_t M, size_t N, size_t i, double x, double a, double b)
Construct with row index and interval.
ComponentDerivativeFunctor(size_t M, size_t N, size_t i, double x)
Construct with row index.
DerivativeFunctorBase()
For serialization.
Matrix< RealScalar, Dynamic, Dynamic > M
gtsam
Author(s):
autogenerated on Sat Nov 16 2024 04:01:54