test_matrix_utilities.cpp
Go to the documentation of this file.
1 /*********************************************************************
2  *
3  * Software License Agreement
4  *
5  * Copyright (c) 2020,
6  * TU Dortmund - Institute of Control Theory and Systems Engineering.
7  * All rights reserved.
8  *
9  * This program is free software: you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License as published by
11  * the Free Software Foundation, either version 3 of the License, or
12  * (at your option) any later version.
13  *
14  * This program is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17  * GNU General Public License for more details.
18  *
19  * You should have received a copy of the GNU General Public License
20  * along with this program. If not, see <https://www.gnu.org/licenses/>.
21  *
22  * Authors: Christoph Rösmann
23  *********************************************************************/
24 
26 
27 #include <corbo-core/console.h>
28 #include <corbo-core/macros.h>
30 
31 #include <Eigen/Eigenvalues>
32 
33 #include "gtest/gtest.h"
34 
35 using corbo::is_square;
38 
39 class TestMatrixUtilities : public testing::Test
40 {
41  protected:
42  // You can do set-up work for each test here.
44  // You can do clean-up work that doesn't throw exceptions here.
45  virtual ~TestMatrixUtilities() {}
46  // If the constructor and destructor are not enough for setting up
47  // and cleaning up each test, you can define the following methods:
48 
49  // Code here will be called immediately after the constructor (right
50  // before each test).
51  // virtual void SetUp() {}
52  // Code here will be called immediately after each test (right
53  // before the destructor).
54  // virtual void TearDown();
55 };
56 
58 {
59  Eigen::MatrixXd square_mat = Eigen::MatrixXd::Random(15, 15);
60  EXPECT_TRUE(is_square(square_mat));
61 
62  Eigen::MatrixXd non_square_mat = Eigen::MatrixXd::Random(16, 15);
63  EXPECT_FALSE(is_square(non_square_mat));
64 
65  Eigen::VectorXd vector = Eigen::VectorXd::Random(10);
66  EXPECT_FALSE(is_square(vector));
67 }
68 
70 {
71  Eigen::MatrixXd mat1 = Eigen::MatrixXd::Random(15, 15);
72  Eigen::MatrixXd mat2 = Eigen::MatrixXd::Random(14, 15);
73  Eigen::VectorXd vec1 = Eigen::VectorXd::Random(15);
74  Eigen::VectorXd vec2 = Eigen::VectorXd::Random(14);
75 
76  EXPECT_TRUE(have_equal_size(mat1, mat1));
77  EXPECT_FALSE(have_equal_size(mat1, mat2));
78  EXPECT_FALSE(have_equal_size(mat1, vec1));
79  EXPECT_FALSE(have_equal_size(mat1, vec2));
80 
81  EXPECT_TRUE(have_equal_size(mat2, mat2));
82  EXPECT_FALSE(have_equal_size(mat2, vec1));
83  EXPECT_FALSE(have_equal_size(mat2, vec2));
84 
85  EXPECT_TRUE(have_equal_size(vec1, vec1));
86  EXPECT_FALSE(have_equal_size(vec1, vec2));
87 
88  EXPECT_TRUE(have_equal_size(vec2, vec2));
89 }
90 
91 TEST_F(TestMatrixUtilities, have_equal_size_multiple)
92 {
93  Eigen::MatrixXd mat1 = Eigen::MatrixXd::Random(15, 15);
94  Eigen::MatrixXd mat2 = Eigen::MatrixXd::Random(14, 15);
95  Eigen::VectorXd vec1 = Eigen::VectorXd::Random(15);
96  Eigen::VectorXd vec2 = Eigen::VectorXd::Random(14);
97 
98  EXPECT_TRUE(have_equal_size(mat1, mat1, mat1, mat1, mat1, mat1, mat1));
99  EXPECT_FALSE(have_equal_size(mat1, mat1, mat1, mat2, mat1, mat1, mat1));
100  EXPECT_FALSE(have_equal_size(mat1, mat1, mat1, mat1, vec1, mat1, mat1));
101  EXPECT_FALSE(have_equal_size(mat1, mat1, mat1, mat1, mat1, vec2, mat1));
102 
103  EXPECT_TRUE(have_equal_size(mat2, mat2, mat2));
104  EXPECT_FALSE(have_equal_size(mat2, mat2, mat1));
105  EXPECT_FALSE(have_equal_size(mat2, mat1, mat2));
106  EXPECT_FALSE(have_equal_size(mat1, mat2, mat2));
107 
108  EXPECT_FALSE(have_equal_size(vec1, mat1, mat1));
109  EXPECT_FALSE(have_equal_size(vec1, mat2, mat2));
110 
111  EXPECT_TRUE(have_equal_size(vec1, vec1, vec1));
112  EXPECT_TRUE(have_equal_size(vec2, vec2, vec2));
113  EXPECT_FALSE(have_equal_size(vec1, vec2, vec1));
114 
115  EXPECT_FALSE(have_equal_size(mat1, mat2, vec1, vec2));
116 }
117 
119 {
120  Eigen::MatrixXd identity = Eigen::MatrixXd::Identity(15, 15);
121  EXPECT_TRUE(is_positive_definite(identity));
122 
123  Eigen::MatrixXd zeros = Eigen::MatrixXd::Zero(30, 30);
124  EXPECT_FALSE(is_positive_definite(zeros));
125 
126  Eigen::MatrixXd pos_semidef = Eigen::MatrixXd::Ones(15, 15);
127  EXPECT_FALSE(is_positive_definite(pos_semidef));
128 
129  Eigen::MatrixXd non_square_mat = Eigen::MatrixXd::Random(12, 14);
130  EXPECT_FALSE(is_positive_definite(non_square_mat));
131 
132  Eigen::VectorXd vector = Eigen::VectorXd::Random(10);
133  EXPECT_FALSE(is_positive_definite(vector));
134 
135  Eigen::Matrix3d pos_def_1;
136  pos_def_1 << 2, -1, 0, -1, 2, -1, 0, -1, 2;
137  EXPECT_TRUE(is_positive_definite(pos_def_1));
138 
139  Eigen::Matrix2d pos_def_2;
140  pos_def_2 << 1, 2, 2, 100;
141  EXPECT_TRUE(is_positive_definite(pos_def_2));
142 
143  Eigen::Matrix2d pos_def_3;
144  pos_def_3 << 1, -1, -1, 4;
145  EXPECT_TRUE(is_positive_definite(pos_def_3));
146 
147  Eigen::Matrix4d pos_def_4;
148  pos_def_4 << 9, 3, -6, 12, 3, 26, -7, -11, -6, -7, 9, 7, 12, -11, 7, 65;
149  EXPECT_TRUE(is_positive_definite(pos_def_4));
150 
151  Eigen::Matrix4d neg_def_1;
152  neg_def_1 << 9, 3, -6, 12, 3, 26, -7, -11, -6, -7, 9, 7, 12, -11, 7, 60;
153  EXPECT_FALSE(is_positive_definite(neg_def_1));
154 
155  Eigen::Matrix2d neg_def_2;
156  neg_def_2 << 1, 4, 4, 1;
157  EXPECT_FALSE(is_positive_definite(neg_def_2));
158 
159  Eigen::Matrix3d pos_def_diag = Eigen::Vector3d(1, 3, 2).asDiagonal();
160  EXPECT_TRUE(is_positive_definite(pos_def_diag));
161 
162  Eigen::Matrix3d neg_def_diag = Eigen::Vector3d(1, 3, -2).asDiagonal();
163  EXPECT_FALSE(is_positive_definite(neg_def_diag));
164 }
corbo::is_positive_definite
bool is_positive_definite(const Eigen::MatrixBase< Derived > &matrix)
Determine if a given matrix is positive definite.
Definition: matrix_utilities.h:125
TestMatrixUtilities::~TestMatrixUtilities
virtual ~TestMatrixUtilities()
Definition: test_matrix_utilities.cpp:45
corbo::have_equal_size
bool have_equal_size(const Eigen::MatrixBase< DerivedA > &matrix1, const Eigen::MatrixBase< DerivedB > &matrix2)
Determine if two matrices exhibit equal sizes/dimensions.
Definition: matrix_utilities.h:93
macros.h
console.h
value_comparison.h
corbo::is_square
bool is_square(const Eigen::MatrixBase< Derived > &matrix)
Determine if a given matrix is square.
Definition: matrix_utilities.h:65
matrix_utilities.h
TestMatrixUtilities
Definition: test_matrix_utilities.cpp:39
TEST_F
TEST_F(TestMatrixUtilities, is_square)
Definition: test_matrix_utilities.cpp:57
TestMatrixUtilities::TestMatrixUtilities
TestMatrixUtilities()
Definition: test_matrix_utilities.cpp:43


control_box_rst
Author(s): Christoph Rösmann
autogenerated on Wed Mar 2 2022 00:07:06