10 #ifndef EIGEN_MATRIX_FUNCTION_H
11 #define EIGEN_MATRIX_FUNCTION_H
29 template <
typename MatrixType>
52 template <
typename MatrixType>
57 const MatrixType N = MatrixType::Identity(rows, rows) -
A;
58 VectorType e = VectorType::Ones(rows);
59 N.template triangularView<Upper>().solveInPlace(e);
60 return e.cwiseAbs().maxCoeff();
63 template <
typename MatrixType>
71 MatrixType Ashifted =
A - avgEival * MatrixType::Identity(rows, rows);
73 MatrixType F = m_f(avgEival, 0) * MatrixType::Identity(rows, rows);
76 for (
Index s = 1;
s < 1.1 * rows + 10;
s++) {
77 Fincr = m_f(avgEival,
static_cast<int>(
s)) * P;
82 const RealScalar F_norm = F.cwiseAbs().rowwise().sum().maxCoeff();
83 const RealScalar Fincr_norm = Fincr.cwiseAbs().rowwise().sum().maxCoeff();
87 for (
Index r = 0; r < rows; r++) {
89 for (
Index i = 0; i < rows; i++)
90 mx = (
std::max)(mx,
std::abs(m_f(Ashifted(i, i) + avgEival,
static_cast<int>(
s+r))));
93 delta = (
std::max)(delta, mx / rfactorial);
95 const RealScalar P_norm = P.cwiseAbs().rowwise().sum().maxCoeff();
108 template <
typename Index,
typename ListOfClusters>
111 typename std::list<Index>::iterator j;
112 for (
typename ListOfClusters::iterator i = clusters.begin(); i != clusters.end(); ++i) {
113 j = std::find(i->begin(), i->end(), key);
117 return clusters.end();
131 template <
typename EivalsType,
typename Cluster>
136 for (
Index i=0; i<eivals.rows(); ++i) {
139 if (qi == clusters.end()) {
142 clusters.push_back(l);
148 for (
Index j=i+1; j<eivals.rows(); ++j) {
150 && std::find(qi->begin(), qi->end(), j) == qi->end()) {
152 if (qj == clusters.end()) {
155 qi->insert(qi->end(), qj->begin(), qj->end());
164 template <
typename ListOfClusters,
typename Index>
167 const Index numClusters =
static_cast<Index>(clusters.size());
168 clusterSize.
setZero(numClusters);
169 Index clusterIndex = 0;
170 for (
typename ListOfClusters::const_iterator cluster = clusters.begin(); cluster != clusters.end(); ++cluster) {
171 clusterSize[clusterIndex] = cluster->size();
177 template <
typename VectorType>
180 blockStart.resize(clusterSize.rows());
183 blockStart(i) = blockStart(i-1) + clusterSize(i-1);
188 template <
typename EivalsType,
typename ListOfClusters,
typename VectorType>
192 eivalToCluster.resize(eivals.rows());
193 Index clusterIndex = 0;
194 for (
typename ListOfClusters::const_iterator cluster = clusters.begin(); cluster != clusters.end(); ++cluster) {
195 for (
Index i = 0; i < eivals.rows(); ++i) {
196 if (std::find(cluster->begin(), cluster->end(), i) != cluster->end()) {
197 eivalToCluster[i] = clusterIndex;
205 template <
typename DynVectorType,
typename VectorType>
209 DynVectorType indexNextEntry = blockStart;
210 permutation.resize(eivalToCluster.rows());
211 for (
Index i = 0; i < eivalToCluster.rows(); i++) {
212 Index cluster = eivalToCluster[i];
213 permutation[i] = indexNextEntry[cluster];
214 ++indexNextEntry[cluster];
219 template <
typename VectorType,
typename MatrixType>
223 for (
Index i = 0; i < permutation.rows() - 1; i++) {
225 for (j = i; j < permutation.rows(); j++) {
226 if (permutation(j) == i)
break;
229 for (
Index k = j-1; k >= i; k--) {
231 rotation.
makeGivens(T(k, k+1), T(k+1, k+1) - T(k, k));
232 T.applyOnTheLeft(k, k+1, rotation.
adjoint());
233 T.applyOnTheRight(k, k+1, rotation);
234 U.applyOnTheRight(k, k+1, rotation);
235 std::swap(permutation.coeffRef(k), permutation.coeffRef(k+1));
246 template <
typename MatrixType,
typename AtomicType,
typename VectorType>
249 fT.setZero(T.rows(), T.cols());
251 fT.block(blockStart(i), blockStart(i), clusterSize(i), clusterSize(i))
252 = atomic.compute(T.block(blockStart(i), blockStart(i), clusterSize(i), clusterSize(i)));
278 template <
typename MatrixType>
295 for (
Index i = m - 1; i >= 0; --i) {
296 for (
Index j = 0; j <
n; ++j) {
316 X(i,j) = (C(i,j) - AX - XB) / (
A(i,i) +
B(j,j));
328 template <
typename MatrixType,
typename VectorType>
334 static const int RowsAtCompileTime = Traits::RowsAtCompileTime;
335 static const int ColsAtCompileTime = Traits::ColsAtCompileTime;
336 static const int Options = MatrixType::Options;
339 for (
Index k = 1; k < clusterSize.rows(); k++) {
340 for (
Index i = 0; i < clusterSize.rows() - k; i++) {
342 DynMatrixType
A = T.block(blockStart(i), blockStart(i), clusterSize(i), clusterSize(i));
343 DynMatrixType
B = -T.block(blockStart(i+k), blockStart(i+k), clusterSize(i+k), clusterSize(i+k));
344 DynMatrixType C = fT.block(blockStart(i), blockStart(i), clusterSize(i), clusterSize(i))
345 * T.block(blockStart(i), blockStart(i+k), clusterSize(i), clusterSize(i+k));
346 C -= T.block(blockStart(i), blockStart(i+k), clusterSize(i), clusterSize(i+k))
347 * fT.block(blockStart(i+k), blockStart(i+k), clusterSize(i+k), clusterSize(i+k));
348 for (
Index m = i + 1; m < i + k; m++) {
349 C += fT.block(blockStart(i), blockStart(m), clusterSize(i), clusterSize(m))
350 * T.block(blockStart(m), blockStart(i+k), clusterSize(m), clusterSize(i+k));
351 C -= T.block(blockStart(i), blockStart(m), clusterSize(i), clusterSize(m))
352 * fT.block(blockStart(m), blockStart(i+k), clusterSize(m), clusterSize(i+k));
354 fT.block(blockStart(i), blockStart(i+k), clusterSize(i), clusterSize(i+k))
388 template <
typename AtomicType,
typename ResultType>
389 static void run(
const MatrixType&
A, AtomicType& atomic, ResultType &result);
398 template <
typename MatrixType>
401 template <
typename MatA,
typename AtomicType,
typename ResultType>
402 static void run(
const MatA&
A, AtomicType& atomic, ResultType &result)
406 static const int Rows = Traits::RowsAtCompileTime, Cols = Traits::ColsAtCompileTime;
407 static const int MaxRows = Traits::MaxRowsAtCompileTime, MaxCols = Traits::MaxColsAtCompileTime;
409 typedef std::complex<Scalar> ComplexScalar;
412 ComplexMatrix CA =
A.template cast<ComplexScalar>();
413 ComplexMatrix Cresult;
415 result = Cresult.real();
422 template <
typename MatrixType>
425 template <
typename MatA,
typename AtomicType,
typename ResultType>
426 static void run(
const MatA&
A, AtomicType& atomic, ResultType &result)
436 std::list<std::list<Index> > clusters;
462 result = U * (fT.template triangularView<Upper>() * U.adjoint());
478 template<
typename Derived>
class MatrixFunctionReturnValue
479 :
public ReturnByValue<MatrixFunctionReturnValue<Derived> >
502 template <
typename ResultType>
503 inline void evalTo(ResultType& result)
const
508 static const int RowsAtCompileTime = Traits::RowsAtCompileTime;
509 static const int ColsAtCompileTime = Traits::ColsAtCompileTime;
510 typedef std::complex<typename NumTraits<Scalar>::Real> ComplexScalar;
514 AtomicType atomic(
m_f);
528 template<
typename Derived>
539 template <
typename Derived>
546 template <
typename Derived>
554 template <
typename Derived>
559 return MatrixFunctionReturnValue<Derived>(derived(), internal::stem_function_cos<ComplexScalar>);
562 template <
typename Derived>
567 return MatrixFunctionReturnValue<Derived>(derived(), internal::stem_function_sinh<ComplexScalar>);
570 template <
typename Derived>
575 return MatrixFunctionReturnValue<Derived>(derived(), internal::stem_function_cosh<ComplexScalar>);
580 #endif // EIGEN_MATRIX_FUNCTION_H