Go to the documentation of this file.
11 #ifndef EIGEN_HESSENBERGDECOMPOSITION_H
12 #define EIGEN_HESSENBERGDECOMPOSITION_H
19 template<
typename MatrixType>
65 Size = MatrixType::RowsAtCompileTime,
68 MaxSize = MatrixType::MaxRowsAtCompileTime,
118 template<
typename InputType>
151 template<
typename InputType>
293 template<
typename MatrixType>
299 for (
Index i = 0; i<
n-1; ++i)
302 Index remainingSize =
n-i-1;
305 matA.col(i).tail(remainingSize).makeHouseholderInPlace(h, beta);
306 matA.col(i).coeffRef(i+1) = beta;
313 matA.bottomRightCorner(remainingSize, remainingSize)
314 .applyHouseholderOnTheLeft(matA.col(i).tail(remainingSize-1), h, &temp.
coeffRef(0));
317 matA.rightCols(remainingSize)
318 .applyHouseholderOnTheRight(matA.col(i).tail(remainingSize-1).conjugate(),
numext::conj(h), &temp.
coeffRef(0));
339 template<
typename MatrixType>
struct HessenbergDecompositionMatrixHReturnType
340 :
public ReturnByValue<HessenbergDecompositionMatrixHReturnType<MatrixType> >
354 template <
typename ResultType>
355 inline void evalTo(ResultType& result)
const
357 result = m_hess.packedMatrix();
363 Index rows()
const {
return m_hess.packedMatrix().rows(); }
364 Index cols()
const {
return m_hess.packedMatrix().cols(); }
374 #endif // EIGEN_HESSENBERGDECOMPOSITION_H
const AutoDiffScalar< DerType > & conj(const AutoDiffScalar< DerType > &x)
HouseholderSequence< MatrixType, typename internal::remove_all< typename CoeffVectorType::ConjugateReturnType >::type > HouseholderSequenceType
Return type of matrixQ()
HessenbergDecomposition & compute(const EigenBase< InputType > &matrix)
Computes Hessenberg decomposition of given matrix.
HouseholderSequenceType matrixQ() const
Reconstructs the orthogonal matrix Q in the decomposition.
static void _compute(MatrixType &matA, CoeffVectorType &hCoeffs, VectorType &temp)
const MatrixType & packedMatrix() const
Returns the internal representation of the decomposition.
const CoeffVectorType & householderCoefficients() const
Returns the Householder coefficients.
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void resize(Index rows, Index cols)
Map< Matrix< T, Dynamic, Dynamic, ColMajor >, 0, OuterStride<> > matrix(T *data, int rows, int cols, int stride)
void evalTo(ResultType &result) const
Hessenberg matrix in decomposition.
MatrixHReturnType matrixH() const
Constructs the Hessenberg matrix H in the decomposition.
HessenbergDecompositionMatrixHReturnType(const HessenbergDecomposition< MatrixType > &hess)
Constructor.
A triangularView< Lower >().adjoint().solveInPlace(B)
HessenbergDecomposition(Index size=Size==Dynamic ? 2 :Size)
Default constructor; the decomposition will be computed later.
internal::HessenbergDecompositionMatrixHReturnType< MatrixType > MatrixHReturnType
MatrixType::Scalar Scalar
Scalar type for matrices of type MatrixType.
CoeffVectorType m_hCoeffs
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Scalar & coeffRef(Index rowId, Index colId)
Expression type for return value of HessenbergDecomposition::matrixH()
_MatrixType MatrixType
Synonym for the template parameter _MatrixType.
HessenbergDecomposition(const EigenBase< InputType > &matrix)
Constructor; computes Hessenberg decomposition of given matrix.
Matrix< Scalar, SizeMinusOne, 1, Options &~RowMajor, MaxSizeMinusOne, 1 > CoeffVectorType
Type for vector of Householder coefficients.
NumTraits< Scalar >::Real RealScalar
static constexpr size_t size(Tuple< Args... > &)
Provides access to the number of elements in a tuple as a compile-time constant expression.
Reduces a square matrix to Hessenberg form by an orthogonal similarity transformation.
Holds information about the various numeric (i.e. scalar) types allowed by Eigen.
const HessenbergDecomposition< MatrixType > & m_hess
Matrix< Scalar, 1, Size, Options|RowMajor, 1, MaxSize > VectorType
EIGEN_DEFAULT_DENSE_INDEX_TYPE Index
The Index type as used for the API.
Sequence of Householder reflections acting on subspaces with decreasing size.
control_box_rst
Author(s): Christoph Rösmann
autogenerated on Wed Mar 2 2022 00:05:47